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Abstract: In correcting a small mistake in [10], we can prove a new result on non-exponential

stability for a coupled system arising in resonators. This also gives another (surprising and) sim-

ple example for a thermoelastic system changing from exponential stability to non-exponential

stability when changing from Fourier’s law to Cattaneo’s law in the modeling of heat conduc-

tion.

1 Introduction

In our paper [10], in particular, the thermoelastic system

a∆2u+ ∆θ + ü = 0, (1.1)

∆θ −mθ + d∆ ˙̂u = c
˙̂
θ, (1.2)

where

f̂ = f + τ ḟ , (ḟ = ft =
∂f

∂t
), (1.3)

for the functions (u, θ) = (u, θ)(x, t) with x ∈ B ⊂ Rn, t ≥ 0, was studied, where B is

(smoothly) bounded, n ≥ 2, and a,m, d, c are positive constants. Additionally, one has
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the boundary conditions

u(x, t) = ∆u(x, t) = θ(x, t) = 0, (x, t) ∈ ∂B × [0,∞), (1.4)

and initial conditions for (u, ut, θ, θt) in t = 0. (For the background an the interpretation

in micro-beam resonators see [10].)

The system is reformulated as a first-order system for

V := (û, ût, θ, θt)
′,

and we obtain

Vt = AV, V (0) = V 0 (1.5)

with the (yet formal) differential operator A given by the symbol

Af :=


0 1 0 0

−a∆2 0 −∆ −τ∆

0 0 0 1

0 d
cτ

∆ 1
cτ

(∆−m) − 1
τ


and the initial value

V0(x) := (û, ût, θ, θt)
′(x, 0)

with its components being given in terms of the originally prescribed initial data by using

the differential equations. As underlying Hilbert space we have

H := (H2(B) ∩H1
0 (B))× (L2(B))n ×H1

0 (B)× L2(B)

with inner product

〈V,W 〉H :=
(
d〈V 2,W 2〉+ ad〈∆V 1,∆W 1〉

)
+τ(〈∇V 3,∇W 3〉+ τm〈V 3,W 3〉+ c〈V 3 + τV 4,W 3 + τW 4〉

where 〈·, ·〉 denotes the usual L2(B)-inner product. The operator A is now given as

A : D(A) ⊂ H 7→ H, AV := AfV,

with

D(A) := {V ∈ H | V 2 ∈ H2(B) ∩H1
0 (B), V 4 ∈ H1

0 (B), AfV ∈ H}.

A generates a contraction semigroup (cf. [10] for the boundary condition u ∈ H2
0 (B)),

and A−1 is compact, hence the spectrum σ(A) of A equals the point spectrum σp(A)
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Due to the boundary conditions, the following ansatz for V = (V 1, V 2, V 3, V 4)T is

possible (cf. [10]):

V (t, x) =
∞∑
j=1

(αj(t), γj(t), δj(t), εj(t))
T wj(x),

where (wj)j denote the eigenfunctions of the Laplace operator under Dirichlet boundary

conditions corresponding to the eigenvalue λj,

−∆wj = λjwj, wj = 0 on ∂B, (1.6)

with

0 < λ1 ≤ · · · ≤ λj →∞ (as j →∞).

Then the coefficients αj, γj, δj, εj satisfy the same differential equation,

cτz′′′′ + cz′′′ + (λj +m+ acτλ2
j + dτλ2

j)z
′′ + (acλ2

j + dλ2
j)z
′ + aλ2

j(λj +m)z = 0. (1.7)

The corresponding characteristic polynomial Pj is given by

Pj(β) = β4 +
1

τ
β3 +

1

cτ
(λj +m+ τ(ac+ d)λ2

j)β
2 +

1

cτ
(ac+ d)λ2

jβ +
a

cτ
(λ3

j +mλ2
j). (1.8)

The zeros of Pj are denoted by β1(j), . . . , β4(j). Let S denote the spectral set of all zeros,

S := {βk(j) | j = 1, 2, 3 . . . ; k = 1, 2, 3, 4}.

Then it is easy to see ([10]) that

σp(A) ⊂ S. (1.9)

In [10, Theorem 4] it was claimed that

∃ω > 0 : sup {Re β | β ∈ S} ≤ −ω. (1.10)

The final arguments in the proof of (1.10) are based on [10, (5.17)], saying

Re β2(j) = Re β1(j) −→ −
1

2τ
, (1.11)

as j →∞, which is claimed to follow from [10, (5.8)], saying

Re β1(j) + Re β3(j) = − 1

2τ
, (1.12)

and [10, (5.17)], saying

Re β4(j) = Re β3(j) −→ −
1

2τ
. (1.13)
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But, (1.12) and (1.13) do not imply (1.11), but instead

Re β2(j) = Re β1(j) −→ 0. (1.14)

This way, the assertion (1.10) (expressing [10, Theorem 4]) is seen to be wrong. But now,

the correct relation (1.14) allows us first to prove that the semigroup is not exponentially

stable (Theorem 2.1 below).

Since the considerations allow us to take the parameter m in the equation (1.2) for θ to

be zero without changing the conclusions, we can conclude another new result that gives

a new, simple, somehow surprising example for a thermoelastic system, the corresponding

semigroup of which changes from exponentially decaying type to non-exponential decay-

ing type if the model for heat conduction is changed from Fourier’s law to Cattaneo’s

law (Theorem 3.1 below). This kind of behavior was observed for the rather special

Timoshenko system with heat conduction in [2]; now we have another, simpler and even

more convincing example that the change from Fourier’s law to Cattaneo’s law — the

modification of a partially parabolic system with infinite propagation speed of signals to

a hyperbolic model with finite propagagion speed — may change basic properties of the

system and hence suggests to think about the modeling character of each system.

2 The non-exponential stability of the semigroup

Theorem 2.1

(i) sup {Re β | β ∈ S} = 0.

(ii) S = σ(A) = σp(A).

(iii) {etA}t≥0 is not exponentially stable.

Proof: Since (i) follows from (1.14), and since (iii) is an easy consequence of (i) and (ii),

it remains to show, in view of (1.9),

S ⊂ σp(A). (2.1)

To prove (2.1) let β ∈ S, i.e. β = βk(j) for some fixed j ∈ N and some fixed k ∈ {1, 2, 3, 4},
in particular

Pj(β) = 0. (2.2)

Let −∆wj = λwj as given above in (1.6). Let V 1 ∈ H2(B) ∩H1
0 (B) be the solution to

(
dβ

cτ
∆)V 1 = (β2 +

β

τ
)wj −

1

cτ
(∆−m)wj, (2.3)

and let

V := (V 1, βV 1, wj, βwj)
T .

4



Then we have V ∈ D(A), and we claim:

AV = βV, (2.4)

which would finish the proof. Now, the following equivalences hold: In view of the

definition of V 1 in (2.3), the claim (2.4) is equivalent to

−a∆2V 1 −∆wj − τβ∆wj = β2V 1. (2.5)

Applying (dβ
cτ

∆) to both sides of (2.5), this is equivalent to

−a∆2(
dβ

cτ
∆)V 1 − (

dβ

cτ
∆)∆wj − τβ(

dβ

cτ
∆)∆wj = β2(

dβ

cτ
∆)V 1, (2.6)

which, using (2.3) and (1.6), is equivalent to(
β4 +

1

τ
β3 +

1

cτ
(λj +m+ τ(ac+ d)λ2

j)β
2 +

1

cτ
(ac+ d)λ2

jβ +
a

cτ
(λ3

j +mλ2
j)
)
wj = 0,

which is equivalent to Pj(β) = 0 and hence finishes the proof.

3 Fourier versus Cattaneo law — from exponential

to non-exponential stability

As a corollary to the previous section, we are able to present a new example, where the

change from the Fourier law to the Cattaneo law in the modeling of the heat conduction

changes the system from an exponentially stable system to a non-exponentially stable

one.

This effect was known for a special Timoshenko type system with heat conduction

and presented in [2]. Here, we give a simpler and even more convincing example for

this partially surprising effect that asks for a discussion of the models and their range of

validity — even for very simple systems.

In the resonator system discussed above, we may assume m = 0 and still are led to the

same conclusions. The system — for m = 0 from now on — can be rewritten as follows:

Introducing a heat flux vector q, a solution (u, θ, q) to

utt + a∆2u+ ∆θ = 0, (3.1)

cθt + div q − d∆ut = 0, (3.2)

τqt + q +∇θ = 0 (3.3)

(plus initial and boundary conditions) gives a solution (u, θ) to the resonator equations

(1.1), (1.2) by eliminating q again. The equation (3.3) represents the Cattaneo law for
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heat conduction. As we have seen in the previous section, the solutions do not tend to

zero exponentially (and uniformly in the data).

On the other hand, if we take τ = 0 in (3.3) — corresponding to Fourier’s law for heat

conduction —, we obtain, after eliminating the heat flux q, the classical system for the

thermoelastic plate equation,

utt + a∆2u+ ∆θ = 0, (3.4)

cθt −∆θ − d∆ut = 0, (3.5)

which is known to be represented by an exponentially stable semigroup, see [3, 9, 8, 1, 4,

5, 6, 7]. Hence we have the following

Theorem 3.1 The systems (3.1)–(3.3) and (3.4), (3.5), respectively, give an example

where the change from Fourier’s law to Cattaneo’s law in the modeling of the heat con-

duction part changes the system from an exponentially stable one to a non-exponentially

stable one.

The just presented example for the effect described in the last theorem is simpler than

the one presented in [2] which relied on special relations of coefficients, the advantages of

which are destroyed by the change from Fourier to Cattaneo.

Acknowledgment: We thank Bugra Kabil for pointing out the mistake in [10] that led

to the new results presented here.
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