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Abstract

Our main focus in the present paper is to study the asymptotic behavior of a
nonlinear version of the Timoshenko system in thermoelasticity with second sound. As
it has been already proved in [38], the linear version of this system is of regularity-loss
type. It is well known ([10], [13], [19]) that the regularity-loss property of the linear
problem creates difficulties when dealing with the nonlinear problem. In fact, the
dissipative property of the problem becomes very weak in the high frequency region
and as a result the classical energy method fails. To overcome this difficulty and
following [13] and [14], we use an energy method with negative weights to create an
artificial damping which allows us to control the nonlinearity. We prove that for 0 ≤
k ≤ [s/2] − 2 with s ≥ 8, the solution of our problem is global in time and decays as∥∥∂kxU (t)

∥∥
2
≤ C (1 + t)−1/4−k/2 , provided that the initial datum U0 ∈ Hs(R) ∩ L1(R).

Keywords: Timoshenko systems; thermoelasticity; second sound; decay rate; regularity-
loss.
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1 Introduction

In this paper, we consider the dissipative Timoshenko system in thermoelasticity of second
sound 

ϕtt − (ϕx − ψ)x = 0,

ψtt − σ(ψx)x − (ϕx − ψ) + βθx + αψt = 0,

θt + κqx + βψtx = 0,

τ 0qt + δq + κθx = 0.

(1.1)

∗Department of Mathematics and Statistics, University of Konstanz, 78457 Konstanz, Germany. E-mail:
reinhard.racke@uni-konstanz.de.
†Division of Mathematical and Computer Sciences and Engineering, King Abdullah University of Science

and Technology (KAUST), Thuwal, Saudi Arabia. E-mail: belkacem.saidhouari@kaust.edu.sa

1



where t ∈ (0,∞) denotes the time variable and x ∈ R is the space variable, the functions ϕ
and ψ are the displacement of the solid elastic material, the function θ is the temperature
difference, q = q(t, x) ∈ R is the heat flux, and γ, τ 0, δ, κ and β are positive constants, and
σ is a smooth function such that σ′(η) > 0, for any η > 0, with

σ′(0) = a2

defining a > 0. We consider the following initial conditions{
ϕ(., 0) = ϕ0(x), ϕt(., 0) = ϕ1(x), ψ(., 0) = ψ0(x),

ψt(., 0) = ψ1(x), θ(., 0) = θ0 (x) , q(., 0) = q0 (x) .
(1.2)

Before going on, let us recall some other works related to the problem we address. In the
classical theory of thermoelasticity, the behavior of an elastic heat body can be described
by a coupled system of hyperbolic-parabolic type, where the classical Fourier model of heat
conduction is used. This law assumes the flux q to be proportional to the gradient of the
temperature θ at the same time t,

q + κ∇θ = 0, (1.3)

where κ > 0 is the thermal conductivity depends on the properties of the material. This
hyperbolic-parabolic system is interesting due to its large applications in mechanics, physics
and engineering problems.

Modeling heat conduction with the so-called Fourier law, which assumes the flux q to be
proportional to the gradient of the temperature ∇θ at the same time t as in (1.3), leads
to the paradox of infinite heat propagation speed. That is, any local thermal disturbance
can have an instantaneous effect everywhere in the medium. In other words, it is clear that
equation (1.3) together with the energy equation of the heat conduction

ρ3θt + %divq = 0 (1.4)

yields the classical heat transport equation (of parabolic type)

ρ3θt − κ%∆θ = 0, (1.5)

allows an infinite speed for thermal signals. To overcome this drawback, a number of modi-
fications of the basic assumption on the relation between the heat flux and the temperature
have been made, such as: Cattaneo law, Gurtin and Pipkin theory, Jeffreys law, Green and
Naghdi theory and others. The common feature of these theories is that all lead to hyper-
bolic differential equation and permit transmission of heat flow as thermal waves at finite
speed, see [5, 18] for more details.

Here, we consider the Cattaneo law,

τ 0qt + q + κ∇θ = 0, (τ 0 > 0, relatively small)1, (1.6)

1The constant τ0 represents the time lag needed to establish the steady state of the heat conduction in an
element of volume when a temperator gradient is suddenly imposed on that element. See the survey paper
[4] for more details. Moreover, and as it was shown in [6], in real solid materials the constant τ0 is likely to
be extremely small compared with time lengths.
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replacing the Fourier law (1.3).

Equation (1.6) was proposed by Cattaneo in [3] in order to correct the paradox of instanta-
neous propagation of thermal disturbances predicted by Fourier’s theory of heat conduction.
Also, formula (1.6) is the most obvious and simplest generalization of Fourier’s law that
gives rise to finite speeds of propagation. Indeed, from (1.4) and (1.6), we get the telegraph
equation

ρ3θtt −
%κ

τ 0

∆θ +
ρ3

τ 0

θt = 0, (1.7)

which is an equation of hyperbolic type and predicts a finite speed equals to (%κ/ (ρ3τ 0))1/2

for the heat propagation.

The classical thermoelastic systems has been investigated by many authors (cf. the book
[17]). The system of equations describing the coupling of elastic and thermal behavior of a
body, where the heat flux obeys Cattaneo’s law, is given (in the linear one dimensional case)
by 

utt − buxx + γθx = 0,

θt + κqx + γutx = 0,

τ 0qt + δq + κθx = 0,

(1.8)

where b, γ, κ, δ and τ 0 are positive constants.

Problems related to (1.8) have been studied in recent years, see [25, 32, 33, 34, 36, 41].
In most of these papers, it has been proved that the behavior of problem (1.8) is similar to
the behavior of the classical2 thermoelastic system (i.e. system (1.8) with τ 0 = 0), cf. the
survey [34].

The Timoshenko system with heat conduction of Cattaneo’s law, problem (1.1), is partic-
ularly interesting since the behavior of the Timoshenko system in thermoelasticity of second
sound is different from the one in classical thermoelasticity. In fact the first example in this
direction has been given in [8]. There, Fernández Sare and Racke investigated the system

ρ1ϕtt − k(ϕx + ψ)x = 0,

ρ2ψtt − bψxx + k(ϕx + ψ) + βθx = 0,

ρ3θt + γqx + δψtx = 0,

τ 0qt + q + κθx = 0,

(1.9)

where (x, t) ∈ (0, L)× (0,∞) and ϕ = ϕ(t, x) is the displacement vector, ψ = ψ(t, x) is the
rotation angle of the filament, θ = θ(t, x) is the temperature difference, q = q(t, x) is the
heat flux vector, ρ1, ρ2, ρ3, b, k, γ, δ, κ, µ, τ 0 are positive constants. They showed that this
system is no longer exponentially stable even if the wave speeds of the first two equations in

2By classical we mean the Fourier law of heat conduction.
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(1.9) are equal, that is
k

ρ1

=
b

ρ2

.3 (1.10)

In contrast, the Timoshenko system with Fourier’s law (i.e. τ 0 = 0 in (1.9)) is exponentially
stable provided that (1.10) is fulfilled. This later result has been proved by Muñoz Rivera
and Racke in [27].

An even more surprising result is that the Cattaneo coupling even “destroys” exponential
stability. More precisely, Muñoz Rivera and Fernández Sare [37] and Messaoudi and Said-
Houari [23], considered a Timoshenko type system with past history acting only in one
equation. They looked into the following problem

ρ1ϕtt − k(ϕx + ψ)x = 0,

ρ2ψtt − bψxx +

∫ ∞
0

g(t)ψxx(t− s, .)ds+ k(ϕx + ψ) = 0,
(1.11)

together with homogenous boundary conditions in a bounded domain, and showed that the
dissipation given by the history term is strong enough to stabilize the system exponentially
if and only if (1.10) holds and g decays exponentially. Also a polynomial decay result has
been shown in [23] for g decaying polynomially. It has been proved the exponential stability
of the system in [37], while the Cattaneo law “destroys” this property, as it has been shown
in [8]. For this reason some additional damping terms might be necessary to restore the
exponential stability of system (1.9). This situation has been studied by Messaoudi et al.
[22], where a nonlinear version of (1.9) has been also considered and a damping term of the
form µϕt has been introduced. Namely, they looked at the following problem

ρ1ϕtt − σ(ϕx, ψ)x + µϕt = 0,

ρ2ψtt − bψxx + k(ϕx + ψ) + βθx = 0,

ρ3θt + γqx + δψtx = 0,

τ 0qt + q + κθx = 0,

(1.12)

where (x, t) ∈ (0, L)×(0,∞), µ > 0, and the nonlinear function σ is assumed to be sufficiently
smooth and satisfies

σϕx(0, 0) = σψ(0, 0) = k

and
σϕxϕx(0, 0) = σϕxψ(0, 0) = σψψ = 0.

Several exponential decay results for both linear and nonlinear cases have been established
without the assumption (1.10).

3This condition is significant only from the mathematical point of view since in practice the velocities of
waves propagations are always different.
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According to what we have explained before, the presence of the linear damping term αψt
in (1.1) is justified and seems necessary to preserve the decay rate of the pure Timoshenko
system.

For the pure Timoshenko system (i.e. without heat conduction) in bounded domain, there
is an extensive literature. The interested reader is referred to [1, 21, 24, 28, 29, 40] for the
Timoshenko systems with frictional damping and to [2, 9, 26, 37] for Timoshenko systems
with viscoelastic damping.

It is well known that the proof of the stability results of the Timoshenko systems in a
bounded domain is somehow based on the Poincaré inequality and the type of the boundary
conditions. But in the whole space R there are only few results, to our knowledge.

In [12], Ide, Haramoto and Kawashima investigated the problem
ϕtt (t, x)− (ϕx − ψ)x (t, x) = 0, (t, x) ∈ R+ × R,

ψtt (t, x)− a2ψxx (t, x)− (ϕx − ψ) (t, x) + µψt (t, x) = 0, (t, x) ∈ R+ × R,

(ϕ, ϕt, ψ, ψt) (0, x) = (ϕ0, ϕ1, ψ0, ψ1) , x ∈ R,

(1.13)

where t denotes the time variable and x is the space variable, the function ϕ and ψ are the
displacement and the rotation angle of the beam respectively, a and µ are positive constants.
They used Fourier analysis to obtain precise decay rates for spacial L2-norm of solutions to
the linear problem (1.13). More precisely, they proved that if a = 1, then the solution of
(1.13) decays like:

∥∥∂kxU (t)
∥∥

2
≤ C (1 + t)−1/4−k/2 ‖U0‖1 + Ce−ct

∥∥∂kxU0

∥∥
2
, (1.14)

where U = (ϕx − ψ, ϕt, aψx, ψt)
T . While if a 6= 1, then system (1.13) is of regularity-loss

type and the solutions decay as:∥∥∂kxU (t)
∥∥

2
≤ C (1 + t)−1/4−k/2 ‖U0‖1 + C (1 + t)−l/2

∥∥∂k+l
x U0

∥∥
2
, (1.15)

where the parameters k and l in (1.14) and (1.15) are non-negative integers, and C and c
are positive constants.

Estimate (1.15) indicates that system (1.13) is of regularity-loss type, which means that
the decay rate (1 + t)−1/4−k/2 can be obtained only under the additional assumption that
l > 1/2 + k more derivates of U0 exist.

The work in [12] was followed by [13] where Ide and Kawashima generalized the above
decay results to a nonlinear version, where they considered σ(ψx)x instead of a2ψxx in (1.13)
where σ(η) is a smooth function of η such that σ′(η) > 0. In fact, they combined weighted
energy estimates with the result of [12] to establish global existence for the nonlinear problem.
They also obtained precise decay rates for the solutions, under the smallness condition on
the initial data in Hs ∩ L1 with suitably large s, (in fact for s ≥ 6).

In [35], we analyzed system (1.13) with a nonlinear term of the form |ψ|p, (p > 1) acting
on the right hand side of the second equation. We extended the decay results obtained in [12]
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so that, for initial data U0 ∈ Hs (R)∩L1,γ (R) with a suitably large s and γ ∈ [0, 1], solutions
decay faster than those given in [12]. In addition, we proved a global existence result and
some decay estimates of the semilinear system for p > 12. Recently, Said-Houari and Kasi-
mov [38] proved that, for the Cauchy problem, the coupling of the linear Timoshenko system
with the Fourier law preserves the decay properties (1.14) and (1.15). While for the Cattaneo
law, they proved that the regularity-loss type estimate (1.15) appears independently on the
wave speed a.

It is the purpose of this paper to extend the result in [13] to the initial value problem
(1.1)-(1.2). Since, the dissipative property of the problem becomes very weak in the high
frequency region and as result the classical energy method fails. To overcome this difficulty
and following [13] and [14], we use an energy method with negative weights to create an ar-
tificial damping which allows us to control the nonlinearity. Here, a substantial modification
of the energy functionals resp. the Lyapunov functional will be necessary. We prove that for
0 ≤ k ≤ [s/2]−2 with s ≥ 8, the solution U = (ϕx − ψ, ϕt, aψx, ψt, θ, τ 0q)

T of our problem is

global in time and decays as
∥∥∂kxU (t)

∥∥
2
≤ C (1 + t)−1/4−k/2 , provided that the initial datum

U0 ∈ Hs(R) ∩ L1(R).

This paper is organized as follows: In section 2, we fix notations and for the convenience
of the reader, we recall without proofs some useful technical Lemmas. In section 3, we state
our main result, while section 4 is devoted to the proof of our main result.

2 Preliminaries

In this section, we introduce some notations and some technical lemmas to be used through-
out this paper. Throughout this paper, ‖.‖q and ‖.‖Hl stand for the Lq(R)-norm (1 ≤ q ≤ ∞)
and the H l(R)-norm. Also, for γ ∈ [0,∞), we define the weighted function space Lp,γ(R) as
follows: u ∈ Lp,γ(R) iffu ∈ Lp (R) and

‖u‖pp,γ =

∫
R
(1 + |x|)γ|u(x)|pdx <∞.

Let us also denote by f̂ = F (f) the Fourier transform of f with inverse F−1:

f̂ (ξ) = F (f) (ξ) =

∫
R
f (x) e−iξxdx,

Next, we introduce the following lemma, which can be found, for example in [20, 39], cp.
also Lemma 7.4 in [31].

Lemma 2.1 Let a > 0 and b > 0 be constants. If max(a, b) > 1, then∫ t

0

(1 + t− s)−a (1 + s)−b ds ≤ C (1 + t)−min(a,b) . (2.1)
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If max (a, b) = 1, then∫ t

0

(1 + t− s)−a (1 + s)−b ds ≤ C (1 + t)−min(a,b) ln (2 + t) . (2.2)

If max (a, b) < 1, then ∫ t

0

(1 + t− s)−a (1 + s)−b ds ≤ C (1 + t)1−a−b . (2.3)

Furthermore, the next Lemma has been proved for instance in [10, Lemma 4.1].

Lemma 2.2 Let 1 ≤ p, q, r ≤ ∞ and 1/p = 1/q + 1/r. Then, we have

‖∂kx(uv)‖p ≤ C(‖u‖p‖∂kxv‖r + ‖v‖q‖∂kxu‖r), k ≥ 0, (2.4)

and
‖[∂kx , u]vx‖p ≤ C(‖ux‖p‖∂kxv‖r + ‖vx‖q‖∂kxu‖r), k ≥ 1. (2.5)

3 Main results

In this section, we present the results on the global existence and the asymptotic decay of the
solutions of problem (1.1)-(1.2). To this end, we write our system (1.1)-(1.2) as a first-order
system. Indeed, we introduce the following variables:

v := ϕx − ψ, u := ϕt, z := aψx, y := ψt, w := τ 0q,

where we recall that a2 = σ′(0). Consequently, system (1.1) can be rewritten as the following
first-order hyperbolic system:

vt − ux + y = 0,

ut − vx = 0,

zt − ayx = 0,

yt − σ (z/a)x − v + αy + βθx = 0,

θt +
κ

τ 0

wx + βyx = 0,

wt +
δ

τ 0

w + κθx = 0

(3.1)

and the initial conditions (1.2) take the form

(v, u, z, y, θ, w) (x, 0) = (v0, u0, z0, y0, θ0, w0) (3.2)
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where
v0 = ϕ0,x − ψ0, u0 = ψ1, z0 = aψ0,x, y0 = ψ1, w0 = τ 0q0.

System (3.1)-(3.2) is equivalent to the first-order system{
Ut + F (U)x + LU = 0,

U (x, 0) = U0.
(3.3)

where U := (v, u, z, y, θ, w)T , F (U) := −
(
u, v, ay, σ (z/a)− βθ,− κ

τ 0

w − βy,−κθ
)T

and L

is defined as

L :=


0 0 0 1 0 0
0 0 0 0 0 0
0 0 0 0 0 0
−1 0 0 α 0 0
0 0 0 0 0 0
0 0 0 0 0 δ

τ0

 ,

and U0 := (v0, u0, z0, y0, θ0, w0)T . It is clear that UTLU = αy2 + δ
τ0
w2 ≥ 0. Thus, L is a

non-negative definite but it is not real symmetric.

The linearized problem of (3.3) can be obtained by taking the Jacobian of F in U = 0.
Thus, we get the problem {

Ut + AUx + LU = 0,

U (x, 0) = U0.
(3.4)

where the matrix A is defined as

A := DUF (0) = −



0 1 0 0 0 0
1 0 0 0 0 0
0 0 0 a 0 0
0 0 a 0 −β 0

0 0 0 −β 0
κ

τ 0

0 0 0 0 κ 0


.

The six real eigenvalues of A are

λ1|2|3|4 = ±1

2

√
2

τ 0

√
η1 ±

√
η2, λ5|6 = ±1,

where

η1 = a2τ 0 + κ2 + β2τ 0, η2 =
(
a2τ 0 − κ2

)2
+ 2a2β2τ 2

0 + 2κ2β2τ 0 + β4τ 2
0.

Consequently, system (3.4) is a hyperbolic system in the main part Ut + AUx = 0 with a
damping term LU . This late system has been investigated in [38], where the following result
has been proved.
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Theorem 3.1 ([38]) Let s be a nonnegative integer and assume that U0 ∈ Hs(R) ∩ L1(R).
Then the solution U of problem (3.4) satisfies the following decay estimates:∥∥∂kxU (t)

∥∥
2
≤ C (1 + t)−1/4−k/2 ‖U0‖L1 + C (1 + t)−l/2

∥∥∂k+l
x U0

∥∥
2
, (3.5)

Moreover, if U0 ∈ Hs(R) ∩ L1,γ(R), with γ ∈ [0, 1], then the solution U of problem (3.4)
satisfies the following decay estimates:∥∥∂kxU (t)

∥∥
2
≤ C (1 + t)−1/4−k/2−γ/2 ‖U0‖L1,γ + C (1 + t)−l/2

∥∥∂k+l
x U0

∥∥
2

+C (1 + t)−1/4−k/2
∣∣∣∣∫

R
U0 (x) dx

∣∣∣∣ , (3.6)

where k and l are non-negative integers satisfying k + l ≤ s and C and c are two positive
constants.

The estimate in (3.6) becomes optimal under the condition
∫

R U0 (x) dx = 0.

Remark 3.2 For γ ∈ N and U0 ∈ Hs(R) ∩ L1,2(γ+1)(R) satisfying∫
R
xmU0 (x) dx = 0, m = 0, ..., 2γ,

one has the following decay estimate with stronger decay,∥∥∂kxU (t)
∥∥

2
≤ C (1 + t)−1/4−k/2−(2γ+1)/2

(
‖U0‖L1,2(γ+1) + ‖U0‖L1,2γ+1

)
+C (1 + t)−l/2

∥∥∂k+l
x U0

∥∥
2
, (3.7)

where k and l are non-negative integers satisfying k + l ≤ s and C and c are two positive
constants. This can be proved using [16, Lemma 2.3] and the estimate for the Fourier image,
given in [38], ∣∣∣Û(ξ, t)

∣∣∣2 ≤ Ce−cρ(ξ)t
∣∣∣Û(ξ, 0)

∣∣∣2, (3.8)

where ρ(ξ) = ξ2/(1 + ξ2)2 and, C, c are two positive constants.

Now, we present the results on the global existence and on the asymptotic stability of the
nonlinear problem (3.3). In order to state our main result, and led by [13], we introduce the
time weighed energy norm E(t) and the corresponding dissipation norm D(t) as follows:

E2(t) ≡
[s/2]∑
j=0

sup
0≤τ≤t

(1 + τ)j−
1
2

∥∥∂jxU (τ)
∥∥2

Hs−2j (3.9)
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and

D2(t) ≡
[s/2]∑
j=0

∫ t

0

(1 + τ)j−
3
2

∥∥∂jxU (τ)
∥∥2

Hs−2j dτ

+

[s/2]−1∑
j=0

∫ t

0

(1 + τ)j−
1
2

(∥∥∂jxv (τ)
∥∥2

Hs−1−2j +
∥∥∂jxθx (τ)

∥∥2

Hs−2j−1

)
dτ (3.10)

+

[s/2]∑
j=0

∫ t

0

(1 + τ)j−
1
2

(∥∥∂jxy (τ)
∥∥2

Hs−2j +
∥∥∂jxw (τ)

∥∥2

Hs−2j

)
dτ .

Our main result reads as follows:

Theorem 3.3 Assume that σ′(η) > 0. Let U0 ∈ Hs(R) ∩ L1(R) with s ≥ 8 and put E0 :=
‖U0‖Hs + ‖U0‖L1. Then, there exists a positive constant δ0 > 0 such that if E0 ≤ δ0, then
problem (3.3) has a unique global solution U satisfying

U ∈ C ([0,∞) ;Hs(R)) ∩ C1([0,∞) ;Hs−1(R)). (3.11)

Moreover, the solution satisfies the weighted energy estimate

E2(t) +D2(t) ≤ CE2
0 , (3.12)

and the decay estimate ∥∥∂kxU (t)
∥∥

2
≤ CE0 (1 + t)−1/4−k/2 , (3.13)

where C is a positive constant and 0 ≤ k ≤ [s/2]− 2.

Remark 3.4 The assumption U0 ∈ L1(R) in Theorem 3.3 is needed only to prove the decay
estimate (3.13). To prove the global existence, the requirement U0 ∈ Hs(R) with the smallness
assumption on ‖U0‖Hs is sufficient.

Remark 3.5 A similar result to Theorem 3.3 has been proved recently in [13] for the pure
Timoshenko system (without heat conduction). Introducing the heat conduction of Cattaneo’s
law, renders the analysis more difficult. Moreover, for the pure Timoshenko system, the result
of Theorem 3.3 holds for s ≥ 6. Our requirement on s here is s ≥ 8, since it is not obvious
to get the better decay estimate from [13, Corollary 2.1] in our case.

Remark 3.6 As we have explained in the introduction, if we consider the pure heat conduc-
tion of Cattaneo’s law, we get the telegraph equation ρ3θtt −

%κ

τ 0

∆θ +
ρ3

τ 0

θt = 0,

θ (x, 0) = θ0 (x) , θt (x, 0) = θ1 (x) .
(3.14)
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The decay rate of (3.14) is of the form (see [20])

‖θ (t)‖2 ≤ C (1 + t)−N/4 , (3.15)

provided that (θ0, θ1) ∈ (H1(RN)∩L1(RN))×(L2(RN)∩L1(RN)). Consequently, we conclude
that the Timoshenko part is responsible for the regularity-loss property.

On the other hand, the Fourier law yields the parabolic equation{
ρ3θ̃t − κ%∆θ̃ = 0,

θ̃(x, 0) = θ̃0.
(3.16)

It is well known that the solution of (3.16) decays with the same rate as in (3.15) and the

norm of the difference
∥∥∥θ − θ̃∥∥∥

L2
decays even better like (1 + t)−N/4−1 if θ̃0 = θ0 + θ1. See

[42]. Consequently, it is natural to expect that the characteristic behavior should be also the
same in connection with elastic systems. However, this is not always the case. Recently
it has been proved in [8] that for the Timoshenko systems in bounded domain, exponential
stability is lost when substituting the Fourier law of heat conduction by Cattaneo’s law, and
the behavior of the two systems are different. The same conclusion holds for the coupling
with the plate equation [30].

Remark 3.7 The smallness assumption on the initial data in Theorem 3.3 seems necessary
to prove the global existence of solutions. Globally defined solution should not be expected
for large initial data. This is still an interesting open problem. In fact this is also an open
problem even for the Cauchy problem associated to system (1.8). For the Cauchy problem in
classical thermoelasticity, Hrusa and Messaoudi [11] have shown that if the initial data are
large enough, then the solution will develop singularities in finite time. (See also [7] for a
similar result).

To prove Theorem 3.3, we use the same method as in [13] with the necessary modifications
imposed by the nature of our problem. The proof will be a direct consequence of Lemma
3.8.

Let us first define the quantities

M0 (t) := sup
0≤τ≤t

(1 + τ)
1
2 ‖U (τ)‖L∞ ,

M1 (t) := sup
0≤τ≤t

(1 + τ) ‖∂xU (τ)‖L∞ .

and inspired by the estimates (3.5), we define

M (t) :=

[s/2]−2∑
j=0

sup
0≤τ≤t

(1 + τ)1/4+j/2
∥∥∂jxU (τ)

∥∥
2
.

We have the following Lemma.
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Lemma 3.8 Assume that the conditions of Theorem 3.3 hold. Let T > 0 and s ≥ 2 and let
U be a solution to the problem (3.3) satisfying

U ∈ C ([0, T ];Hs(R) ∩ C1(0, T ];Hs−1(R).

Then we have the a priori estimates

E2(T ) +D2(T ) ≤ CE2
0 , (3.17)

M (T ) ≤ CE0, (3.18)

where E0 is given in Theorem 3.3 and C is a positive constant independent of T .

The local existence theorem needed in Lemma 3.8 can be proved by standard methods for
symmetric-hyperbolic systems, see subsection 4.3. The global existence is based on a priori
estimates that can be used to continue a local solution globally in time.

So, let T > 0 and consider solutions to the problem (3.3) which are defined on the time
interval [0, T ] and satisfy the regularity mentioned in Lemma 3.8.

Thanks to the assumption s > N
2

+ 1 (where N is the space dimension which is one in our
case), it follows from the Sobolev embedding theorem that

sup
0≤τ≤t

‖U (τ)‖L∞ + sup
0≤τ≤t

‖∂xU (τ)‖L∞ ≤ C ‖U (t)‖Hs .

We shall derive the energy estimates under the a priori assumption

sup
0≤t≤T

‖U (t)‖L∞ ≤ α (3.19)

where α is a fixed small number, independent of T .

In order to prove Lemma 3.8, we have to use Proposition 3.9 and Lemma 3.10 below.
Proposition 3.9, will be proved in subsection 4.1, while subsection 4.2 is devoted to the proof
of Lemma 3.10. Lemma 3.8 and Theorem 3.3 will be proved in subsection 4.3.

Proposition 3.9 Suppose that the assumptions in Theorem 3.3 hold. Let T > 0 and s ≥ 2,
and let U be the solution of problem (3.1)-(3.2) satisfying (3.11) and (3.19). Then, the
estimate

E (t)2 +D (t)2 ≤ C ‖U0‖2
Hs + C (M0 (t) +M1 (t))D2 (t) , (3.20)

holds true for all t ∈ [0, T ], where C is a positive constant which is independent of T .

Lemma 3.10 Under the same assumptions as in Proposition 3.9, and supposing that U0 ∈
Hs(R) ∩ L1(R) with s ≥ 2, we have

M (t) ≤ CE0 + CM (t)2 + CM0 (t)E (t) (3.21)

for all t ∈ [0, T ], where C is a positive constant which is independent of T , and E0 is given
in Theorem 3.3.
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4 Proof of the main results

In this section, we prove our main results presented in section 3.

4.1 Proof of Proposition 3.9

We proceed with the basic energy estimate by multiplying the first equation in (3.1) by v,
the second equation by u, the third by (σ(z/a) − σ(0))/a, the fourth by y, the fifth θ and
the sixth equation by 1

τ0
w, respectively, adding the resulting equations, and integrating with

respect to x over R, we obtain

d

dt
E(0) (t) + α ‖y‖2

2 +
δ

τ 2
0

‖w‖2
2 = 0, (4.1)

where

E(0) (t) :=
1

2

(
‖v‖2

2 + ‖u‖2
2 + ‖y‖2

2 +
1

τ 0

‖w‖2
2 + ‖θ‖2

2

)
+

∫
R
F (z) dx (4.2)

and

F (z) := 2

∫ z/a

0

(σ (s)− σ (0)) ds.

To obtain the energy estimates on higher-order terms, applying, for k ≥ 1, ∂kx to (3.1), we
get 

∂kxvt − ∂k+1
x u+ ∂kxy = 0,

∂kxut − ∂k+1
x v = 0,

∂kxzt − a∂k+1
x y = 0,

∂kxyt − σ′ (z/a) ∂k+1
x (z/a)− ∂kxv + α∂kxy + β∂k+1

x θ =
[
∂kx , σ

′ (z/a)
]

(z/a)x ,

∂kxθt +
κ

τ 0

∂k+1
x w + β∂k+1

x y = 0,

∂kxwt +
δ

τ 0

∂kxw + κ∂k+1
x θ = 0

(4.3)

where we have used the notation [∂kx , A]B := ∂kx (AB)− A∂kxB.
Now, define the energy associated to system (4.3) as

Ek (t) :=
1

2

(∥∥∂kxv∥∥2

2
+
∥∥∂kxu∥∥2

2
+
∥∥∂kxy∥∥2

2
+
∥∥∂kxw∥∥2

2
+

1

τ 0

∥∥∂kxθ∥∥2

2

)
+

∫
R
F k (z) dx (4.4)

where

F k (z) :=
1

2
σ′(z/a)(∂kxz/a)2.

Now, we try to find a Lyapunov functional and appropriate multipliers. To do so, some
nonlinear terms may arise and we treat these non-linear terms as perturbations of the energy
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terms. The proof somehow imitates the energy estimates in the Fourier space derived for
the linear problem in [38].

Thus, multiplying the first equation in (4.3) by ∂kxv, the second equation by ∂kxu, the third
by (1/a2) (σ′(z/a)∂kxz), the fourth by ∂kxy, the fifth equation by ∂kxθ and the sixth equation
by 1

τ0
∂kxw, respectively, adding the resulting equations, and integrating with respect to x, we

obtain
d

dt
E(k) (t) + α

∥∥∂kxy∥∥2

2
+

δ

τ 2
0

∥∥∂kxw∥∥2

2
= R

(k)
0 , (4.5)

where

R
(k)
0 :=

∫
R

{
1

2
σ′ (z/a)t

(
∂kxz/a

)2 − σ′ (z/a)x
(
∂kxz/a

)
∂kxy + ∂kxy

[
∂kx , σ

′ (z/a)
]

(z/a)x

}
dx.

Using the assumption (3.19) and as in [13], we get∣∣∣R(k)
0

∣∣∣ ≤ C

∫
R
|yx|

∣∣∂kxz∣∣2 + |zx|
∣∣∂kxz∣∣ ∣∣∂kxy∣∣+

∣∣∂kxy∣∣ ∣∣[∂kx , σ′ (z/a)
]∣∣ |zx| ,

where C = C(α) with α from (3.19). This implies that, by using Lemma 2.2 (see [13] for
details), ∣∣∣R(k)

0

∣∣∣ ≤ C ‖∂xU‖L∞
∥∥∂kxU∥∥2

L2 . (4.6)

On the other hand, recalling (3.19), we deduce that there exist two positive constants β1

and β2 depending on α, such that

β1

∥∥∂kxU∥∥2

L2 ≤ Ek (t) ≤ β2

∥∥∂kxU∥∥2

L2 , k ≥ 0. (4.7)

Consequently, multiplying (4.1) by (1 + t)µ, with µ ∈ R (later to be chosen as µ = −1/2),
and integrating with respect to t and using (4.7) we get

(1 + t)µ ‖U (t)‖2
L2 + α

∫ t

0

(1 + s)µ ‖y (s)‖2
2 ds+

δ

τ 2
0

∫ t

0

(1 + s)µ ‖w (s)‖2
2 ds

≤ ‖U0‖2
L2 + µ

∫ t

0

(1 + s)µ−1 ‖U (s)‖2
L2 ds. (4.8)

Similarly, for k ≥ 1, the estimates (4.6), (4.7) together with (4.5) yield, after a multiplication
by (1 + t)µ and integration with respect to t over (0, t)

(1 + t)µ
∥∥∂kxU (t)

∥∥2

L2 + α

∫ t

0

(1 + s)µ ‖∂kxy (s) ‖2
2ds

+
δ

τ 2
0

∫ t

0

(1 + s)µ ‖∂kxw (s) ‖2
2ds

≤ C
∥∥∂kxU0

∥∥2

L2 + µ

∫ t

0

(1 + s)µ−1 ‖∂kxU (s) ‖2
L2ds

+C

∫ t

0

(1 + s)µ ‖∂xU (s)‖L∞ ‖∂
k
xU (s) ‖2

L2ds.

(4.9)
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Adding the estimate (4.8) to (4.9) and taking the summation for 1 ≤ k ≤ s, we get the main
estimate

(1 + t)µ ‖U (t)‖2
Hs + α

∫ t

0

(1 + s)µ ‖y (s)‖2
Hs ds

+
δ

τ 2
0

∫ t

0

(1 + s)µ ‖w (s)‖2
Hs ds

≤ C ‖U0‖2
Hs + µ

∫ t

0

(1 + s)µ−1 ‖U (s)‖2
Hs ds

+C

∫ t

0

(1 + s)µ ‖∂xU (s)‖L∞ ‖∂xU (s)‖2
Hs−1 ds.

(4.10)

Our goal now is to control the second term in the right-hand side of (4.10). To do so, we
have to get a dissipative term of the form

∫ t
0
‖U (t)‖2

Hs on the left-hand side of (4.10).

Applying ∂kx to system (3.1) and put ∂kx (u, v, z, y, θ, w) = (ũ, ṽ, z̃, ỹ, θ̃, w̃), system (3.1) can
be rewritten as 

ṽt − ũx + ỹ = 0,

ũt − ṽx = 0,

z̃t − aỹx = 0,

ỹt − az̃x − ṽ + αỹ + βθ̃x = ∂kxg (z)x ,

θ̃t +
κ

τ 0

w̃x + βỹx = 0,

w̃t +
δ

τ 0

w̃ + κθ̃x = 0,

(4.11)

where g (z) := σ (z/a)− σ (0)− σ′ (0) z/a = O (z2) near z = 0.

In the calculations that follow, we make repeated use of the Young inequality

|db| ≤ εd2 + C(ε)b2,

where C(ε) here and in the sequel will denote possibly different values in different places
(and can be easily determined explicitly).

First, multiplying the first equation in (4.11) by −ũx, the second equation by ṽx and adding
the resulting equations, we get

−(ṽũx)t + (ṽũt)x + ũ2
x − ṽ2

x − ũxỹ = 0. (4.12)

Similarly, multiplying the third equation in (4.11) by ỹx, and the fourth equation by z̃x, and
subtracting the two equations, we obtain

(z̃tỹ)x − (ỹz̃x)t + az̃2
x − aỹ2

x + (ṽ − αỹ)z̃x − βθ̃xz̃x = −z̃x∂kxg (z)x . (4.13)

Now, we add the equalities (4.12) and (4.13), and we obtain

− (ṽũx + ỹz̃x)t + (ṽũt + z̃tỹ)x + ũ2
x + az̃2

x

= ṽ2
x + aỹ2

x + ũxỹ − (ṽ − αỹ)z̃x + βθ̃xz̃x − z̃x∂kxg (z)x .
(4.14)
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Using Young’s inequality, we get for any ε > 0

ũxỹ − (ṽ − αỹ)z̃x ≤ ε
(
ũ2
x + z̃2

x

)
+ C (ε)

(
ṽ2 + ỹ2

)
(4.15)

and
βθ̃xz̃x ≤ εz̃2

x + C (ε) θ̃
2

x. (4.16)

Now, plugging the inequalities (4.15) and (4.16) into (4.14), and integrating the result
with respect to x, we get

dF (k)(t)

dt
+ (1− ε)

∥∥∂kxux∥∥2

2
+ (a− 2ε)

∥∥∂kxzx∥∥2

2

≤ C (ε)
(∥∥∂kxv∥∥2

H1 +
∥∥∂kxy∥∥2

H1

)
+ C (ε)

∥∥∂kxθx∥∥2

2
+R

(k)
1

(4.17)

where

F (k) (t) := −
∫

R

(
∂kxv∂

k
xux + ∂kxy∂

k
xzx
)
dx, R

(k)
1 :=

∫
R
|∂kxzx|

∣∣∂kxg (z)x
∣∣ dx. (4.18)

Also, multiplying the fifth equation in (4.11) by w̃x, and the sixth equation by θ̃x and
subtracting the two resulting equations, we find(

−θ̃w̃x
)
t
+ (w̃tθ̃)x + κθ̃

2

x −
κ

τ 0

w̃2
x − βỹxw̃x +

δ

τ 0

w̃θ̃x = 0. (4.19)

Young’s inequality gives

βỹxw̃x +
δ

τ 0

w̃θ̃x ≤ ε
(
ỹ2
x + θ̃

2

x

)
+ C (ε)

(
w̃2 + w̃2

x

)
. (4.20)

Now, inserting the inequality (4.20) into (4.19) and integrating the result with respect to x,
we get

d

dt
N (k) (t) + (κ− ε)‖∂kxθx‖2

2 ≤ ε‖∂kxyx‖2
2 + C (ε)

(
‖∂kxw‖2

2 + ‖∂kxwx‖2
2

)
, (4.21)

where

N (k) (t) := −
∫

R
∂kxθ∂

k
xwxdx.

Next, multiplying the first equation in (4.11) by −ỹ and the fourth equation by −ṽ and
adding the two results, we obtain

−(ṽỹ)t + ṽ2 − ỹ2 + ũxỹ + az̃xṽ − αỹṽ − βθ̃xṽ = −ṽ∂kxg (z)x . (4.22)

Similarly, multiplying the second equation in (4.11) by −az̃, the third equation by −aũ
and adding the two equations, we find

−(az̃ũ)t + az̃ṽx + a2ũỹx = 0. (4.23)
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Subtracting the equation (4.23) from (4.22), we find

−(ṽỹ − az̃ũ)t − a(ũỹ)x + ṽ2 − ỹ2 =
(

(1− a2)ũxỹ + αỹṽ + βθ̃xṽ
)
− ṽ∂kxg (z)x . (4.24)

Applying Young’s inequality to the first term in the right-hand side of (4.24), we obtain for
any ε > 0

(αỹṽ + βθ̃xṽ) ≤ εṽ2 + C (ε)
(
ỹ2 + θ̃

2

x

)
. (4.25)

Consequently, inserting (4.25) into (4.24) and integrating the result with respect to the x
variable, we get

d

dt
K (k)(t) + (1− ε)

∥∥∂kxv∥∥2

2

≤ C (ε)
(∥∥∂kxy∥∥2

2
+
∥∥∂kxθx∥∥2

2

)
+ (1− a2)

∫
R
ũxỹdx+R

(k)
2

(4.26)

where

K (k)(t) :=

∫
R

(
−∂kxv∂kxy + a∂kxz∂

k
xu
)
dx R

(k)
2 :=

∫
R,
|∂kxv||∂kxg (z)x |. (4.27)

Of course, the above estimates (4.17), (4.21) and (4.26) hold for every 0 ≤ k ≤ s− 1.

It is clear that from (4.17), (4.21) and (4.26) we get, for any 0 ≤ k ≤ s− 2

d

dt
L (k) (t) +

{
α2 (κ− ε)− α1C (ε)− α3C (ε)

}
‖∂kxθx‖2

H1 + α1 (a− 2ε) ‖∂kxzx‖2
2

+
{
α3 (1− ε)− α1C (ε)

}
‖∂kxv‖2

H1 + α1 (1− ε) ‖∂kxux‖2
2

≤
{
α1C (ε) + α3C (ε) + α2ε

}
‖∂kxy‖2

H2 + α2C (ε) ‖∂kxw‖2
H2 (4.28)

+α3(1− a2)

∫
R

(
∂kxux∂

k
xy + ∂k+1

x ux∂
k+1
x y

)
dx+R

(k)
1 + α3(R

(k)
2 +R

(k+1)
2 )

where

L (k) (t) = F (k)(t) + α2(N (k) (t) + N (k+1) (t)) + α3(K (k)(t) + K (k+1)(t)),

and α2, α3 > 0 have to be determined appropriately below. The last integral term in (4.28)
can be estimated as follows:

(1− a2)

∫
R

(
∂kxux∂

k
xy + ∂k+1

x ux∂
k+1
x y

)
dx

= (1− a2)

∫
R
∂kxux

(
∂kxy − ∂kxyxx

)
dx

≤ ε̃‖∂kxux‖2
2 + C (ε̃) ‖∂kxy‖2

H2 . (4.29)
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Plugging the estimate (4.29) into (4.28), we find

d

dt
L (k) (t) +

{
α2 (κ− ε)− α1C (ε)− α3C (ε)

}
‖∂kxθx‖2

H1 + α1 (a− 2ε) ‖∂kxzx‖2
2

+
{
α3 (1− ε)− α1C (ε)

}
‖∂kxv‖2

H1 +
{
α1 (1− ε)− α3ε̃

}
‖∂kxux‖2

2 (4.30)

≤
{
α1C (ε) + α3C (ε) + α2ε+ α3C (ε̃)

}
‖∂kxy‖2

H2 + α2C (ε) ‖∂kxw‖2
H2

+R
(k)
1 + α3(R

(k)
2 +R

(k+1)
2 ).

Now, we fix the constants in the above estimate as follows: First, we fix ε small enough such
that

ε ≤ min
(κ

2
, 1,

a

4

)
.

After that, we choose α2 and α3 large enough such that
α3 (1− ε)− C (ε) > 0,

α2
κ

2τ 0

− C (ε)− α3C (ε) > 0.

Once, the above constants are fixed, we choose ε̃ small enough such that

(1− ε)− α3ε̃ > 0.

Consequently, for any 0 ≤ k ≤ s− 2, the estimate (4.30) takes the form

d

dt
L (k) (t) + c1

(
‖∂kxθx‖2

H1 + ‖∂kxzx‖2
2 + ‖∂kxv‖2

H1 + ‖∂kxux‖2
2

)
≤ c2

(
‖∂kxy‖2

H2 + ‖∂kxw‖2
H2

)
+R

(k)
1 + α3(R

(k)
2 +R

(k+1)
2 ), (4.31)

where c1 and c2 are two positive constants.

Thus, the estimate (4.31) can be written as

d

dt
L (k) (t) + c3

(
‖∂kxθx‖2

H1 + ‖∂k+1
x U‖2

2 + ‖∂kxv‖2
H1

)
≤ c̃2

(
‖∂kxy‖2

H2 + ‖∂kxw‖2
H2

)
+R

(k)
1 + α3(R

(k)
2 +R

(k+1)
2 ), ∀t ≥ 0, (4.32)

where c̃2 and c3 are two positive constants. On the other hand, it is easy to see that there
exists a constant c4 > 0, such that

|L (k) (t) | ≤ c4‖∂kxU (t) ‖2
H2 , ∀t ≥ 0. (4.33)

Also, as in [13], we have the following estimates

R
(k)
1 ≤ C‖z‖L∞‖∂k+1

x z‖2
2, R

(k)
2 ≤ C‖z‖L∞‖∂kxv‖2‖∂k+1

x z‖2. (4.34)
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Now, multiplying (4.32) by (1 + t)µ and integrating with respect to t and exploiting (4.33)
and (4.34), we arrive at∫ t

0

(1 + s)µ
(
‖∂kxθx (s) ‖2

H1 + ‖∂k+1
x U (s) ‖2

2 + ‖∂kxv (s) ‖2
H1

)
ds

≤ C‖∂kxU0‖2
H2 + C(1 + t)µ‖∂kxU (t) ‖2

H2 + Cµ

∫ t

0

(1 + s)µ−1‖∂kxU (s) ‖2
H2ds (4.35)

+C

∫ t

0

(1 + s)µ
(
‖∂kxy (s) ‖2

H2 + ‖∂kxw (s) ‖2
H2

)
ds

+C

∫ t

0

(1 + s)µ‖z‖L∞
(
‖∂k+1

x z (s) ‖2
2 + ‖∂kxv (s) ‖2‖∂k+1

x z (s) ‖2

+‖∂k+1
x v (s) ‖2‖∂k+2

x z (s) ‖2

)
ds

for all t ≥ 0 and for 0 ≤ k ≤ s−2. Taking the summation in (4.35) over k with 0 ≤ k ≤ s−2,
we get ∫ t

0

(1 + s)µ
(
‖∂xθ (s) ‖2

Hs−1 + ‖∂xU (s) ‖2
Hs−2 + ‖∂kxv (s) ‖2

Hs−1

)
ds

≤ C‖U0‖2
Hs + C(1 + t)µ‖U (t) ‖2

Hs + Cµ

∫ t

0

(1 + s)µ−1‖U (s) ‖2
Hsds (4.36)

+C

∫ t

0

(1 + s)µ
(
‖y (s) ‖2

Hs + ‖w (s) ‖2
Hs

)
ds

+C

∫ t

0

(1 + s)µ‖z‖L∞
(
‖∂xz (s) ‖2

Hs−2 + ‖v (s) ‖Hs−1‖∂xz (s) ‖Hs−1

)
ds.

Now, let λ > 0 be a small positive constant, then computing (4.10)+λ(4.36) and choosing λ
small enough, we arrive at the following estimate:

(1 + t)µ ‖U (t)‖2
Hs +

∫ t

0

(1 + s)µ
(
‖y (s)‖2

Hs + ‖w (s)‖2
Hs + ‖∂xθ (s) ‖2

Hs−1

)
ds

+

∫ t

0

(1 + s)µ
(
‖∂xU (s) ‖2

Hs−2 + ‖v (s) ‖2
Hs−1

)
ds

≤ C ‖U0‖2
Hs + Cµ

∫ t

0

(1 + s)µ−1 ‖U (s)‖2
Hs ds

+C

∫ t

0

(1 + s)µ ‖∂xU (s)‖L∞ ‖∂xU (s)‖2
Hs−1 ds

+Cλ

∫ t

0

(1 + s)µ‖z‖L∞
(
‖∂xz (s) ‖2

Hs−2 + ‖v (s) ‖Hs−1‖∂xz (s) ‖Hs−1

)
ds

(4.37)

where C is a generic positive constant depending on λ.
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It is obvious from the estimate (4.37), and for µ = 0, that the term
∫ t

0
‖∂xU (s) ‖2

Hs−2ds on

the left-hand side of (4.37) is not enough to control
∫ t

0
‖∂xU (s)‖L∞ ‖∂xU (s)‖2

Hs−1 ds appear-
ing on the right-hand side of (4.37). Indeed, classical methods suggest that the nonlinearity
in (4.37) can be estimates as (for example)∫ t

0

‖∂xU (s)‖L∞ ‖∂xU (s)‖2
Hs−1 ds ≤ sup

0≤s≤t
‖∂U (s)‖L∞

∫ t

0

‖∂xU (s)‖2
Hs−1 ds.

However, the term
∫ t

0
‖∂xU (s)‖2

Hs−1 ds on the right-hand side can not be controlled by∫ t
0
‖∂xU (s) ‖2

Hs−2ds on the left-hand side. To overcome this difficulty, we have to use the
time weighted energy method with negative weights. That is, we have to take µ < 0 in
(4.37). (see also [10, 13] and [15] for more details). This procedure allows us to get the term
µ
∫ t

0
(1 + t)µ−1 ‖U (s)‖2

Hs ds, which can control the term
∫ t

0
(1 + t)µ ‖∂xU (s)‖2

Hs−1 ds as long
as µ < 0.

For λ sufficiently small and for µ = −1/2, the estimate (4.37) takes the form

(1 + t)−1/2 ‖U (t)‖2
Hs +

∫ t

0

(1 + s)−1/2 (‖y (s)‖2
Hs + ‖w (s)‖2

Hs + ‖∂xθ (s) ‖2
Hs−1

)
ds

+

∫ t

0

(1 + s)−1/2 (‖∂xU (s) ‖2
Hs−2 + ‖v (s) ‖2

Hs−1

)
ds+ C

∫ t

0

(1 + s)−3/2 ‖U (s)‖2
Hs ds

≤ C ‖U0‖2
Hs + C

∫ t

0

(1 + s)−1/2 ‖∂xU (s)‖L∞ ‖∂xU (s)‖2
Hs−1 ds

+Cλ

∫ t

0

(1 + s)−1/2 ‖z‖L∞
(
‖∂xz (s) ‖2

Hs−2 + ‖v (s) ‖Hs−1‖∂xz (s) ‖Hs−1

)
ds.

(4.38)
The last two terms in the right-hand side of (4.38) can be estimated as∫ t

0

(1 + s)−1/2 ‖∂xU (s)‖L∞ ‖∂xU (s)‖2
Hs−1 ds ≤ M1 (t)

∫ t

0

(1 + s)−3/2 ‖∂xU (s)‖2
Hs−1 ds

≤ M1 (t)D2 (t) . (4.39)

Furthermore, exploiting the estimate ‖z (t) ‖L∞ ≤ C (1 + t)−1/2M0 (t), we get (cp. the esti-
mate (4.34) in [13])∫ t

0

(1 + s)−1/2 ‖z‖L∞
(
‖∂xz (s) ‖2

Hs−2 + ‖v (s) ‖Hs−1‖∂xz (s) ‖Hs−1

)
ds

≤ CM0 (t)

∫ t

0

(1 + s)−1 (‖∂xz (s) ‖2
Hs−2 + ‖v (s) ‖Hs−1‖∂xz (s) ‖Hs−1

)
ds

≤ CM0 (t)D2 (t) . (4.40)

Thus, plugging the estimates (4.39) and (4.40) into (4.38), then (3.20) holds true for j = 0.
It is sufficient to use induction on j to show that (3.20) is fulfilled. Assume that (3.20) is
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satisfied for j − 1; we will show that (3.20) is also valid for j. Indeed, taking µ = j − 1/2 in
(4.9), and taking the summation over k such that j ≤ k ≤ s− j, with j ≤ [s/2], we get

(1 + t)j−1/2 ‖∂jxU (t) ‖2
Hs−2j + α

∫ t

0

(1 + s)j−1/2 ‖∂jxy (s) ‖2
Hs−2jds

+
δ

τ 0

∫ t

0

(1 + s)j−1/2 ‖∂jxw (s) ‖2
Hs−2jds

≤ C‖∂jxU0‖2
Hs−2j + C

∫ t

0

(1 + s)j−3/2 ‖∂jxU (s) ‖2
Hs−2jds

+C

∫ t

0

(1 + s)j−1/2 ‖∂xU (s)‖L∞ ‖∂
j
xU (s) ‖2

Hs−2jds.

(4.41)

Similarly, letting µ = j − 1/2 in (4.35), and taking the summation over k so that j ≤ k ≤
s− j − 2 with j ≤ [s/2]− 1, we find∫ t

0

(1 + s)j−1/2
(
‖∂jxθx (s) ‖2

Hs−2j−1 + ‖∂j+1
x U (s) ‖2

Hs−2j−2 + ‖∂jxv (s) ‖2
Hs−2j−1

)
ds

≤ C‖∂jxU0‖2
Hs−2j + C(1 + t)j−1/2‖∂jxU (t) ‖2

Hs−2j

+C

∫ t

0

(1 + s)j−3/2‖∂jxU (s) ‖2
Hs−2jds (4.42)

+C

∫ t

0

(1 + s)j−1/2
(
‖∂jxy (s) ‖2

Hs−2j + ‖∂jxw (s) ‖2
Hs−2j

)
ds

+C

∫ t

0

(1 + s)j−1/2‖z‖L∞
{
‖∂j+1

x z (s) ‖2
Hs−2j−2

+‖∂jxv (s) ‖Hs−2j−2‖∂j+1
x z (s) ‖Hs−2j−2

+‖∂j+1
x v (s) ‖Hs−2j−2‖∂j+2

x z (s) ‖Hs−2j−2

}
ds.

As above, and for 1 ≤ j ≤ [s/2]− 1, then (4.41)+λ̂(4.42) gives for λ̂ sufficiently small,

(1 + t)j−1/2 ‖∂jxU (t) ‖2
Hs−2j + C

∫ t

0

(1 + s)j−1/2 (‖∂jxy (s) ‖2
Hs−2j + ‖∂jxw (s) ‖2

Hs−2j

)
ds

+C

∫ t

0

(1 + s)j−1/2
(
‖∂jxθx (s) ‖2

Hs−2j−1 + ‖∂j+1
x U (s) ‖2

Hs−2j−2 + ‖∂jxv (s) ‖2
Hs−2j−1

)
ds

≤ C‖∂jxU0‖2
Hs−2j + C

∫ t

0

(1 + s)j−3/2 ‖∂jxU (s) ‖2
Hs−2jds

+C

∫ t

0

(1 + s)j−1/2 ‖∂xU (s)‖L∞ ‖∂
j
xU (s) ‖2

Hs−2jds

+C

∫ t

0

(1 + s)j−1/2‖z‖L∞
{
‖∂j+1

x z (s) ‖2
Hs−2j−2 + ‖∂jxv (s) ‖Hs−2j−2‖∂j+1

x z (s) ‖Hs−2j−2

+ ‖∂j+1
x v (s) ‖Hs−2j−2‖∂j+2

x z (s) ‖Hs−2j−2

}
ds

(4.43)
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where C is depending on λ̂. Since we assume that (3.20) holds for j − 1 (hence (4.43) holds
for j − 1 instead of j), the second term in the right-hand side of (4.43) can be estimated as
follows: ∫ t

0

(1 + s)j−3/2 ‖∂jxU (s) ‖2
Hs−2jds ≤ C ‖U0‖2

Hs + C (M0 (t) +M1 (t))D2 (t) .

Since (4.41) holds also for j = [s/2], then from (4.38), (4.41), (4.43) and in order to show
(3.20), it is suffices to prove the following two estimates:∫ t

0

(1 + s)j−1/2 ‖∂xU (s)‖L∞ ‖∂
j
xU (s) ‖2

Hs−2jds ≤ CM1 (t)D (t)2 , for 1 ≤ j ≤ [s/2],

(4.44)
and∫ t

0

(1 + s)j−1/2‖z‖L∞
{
‖∂j+1

x z (s) ‖2
Hs−2j−2 + ‖∂jxv (s) ‖Hs−2j−2‖∂j+1

x z (s) ‖Hs−2j−2

+ ‖∂j+1
x v (s) ‖Hs−2j−2‖∂j+2

x z (s) ‖Hs−2j−2

}
ds ≤ CM0 (t)D (t)2 , for 1 ≤ j ≤ [s/2]− 1.

(4.45)
The estimate (4.44) is obvious. Let us show (4.45). Indeed, we have∫ t

0

(1 + s)j−1/2‖z‖L∞‖∂j+1
x z (s) ‖2

Hs−2j−2ds ≤ CM0 (t)

∫ t

0

(1 + s)j−1‖∂j+1
x z (s) ‖2

Hs−2j−2ds

≤ CM0 (t)

∫ t

0

(1 + s)j−1‖∂j+1
x U (s) ‖2

Hs−2j−2ds

≤ CM0 (t)D (t)2 .

On the other hand and as in [13], we have for 1 ≤ j ≤ [s/2]− 1,∫ t

0

(1 + s)j−1/2‖z‖L∞
{
‖∂jxv (s) ‖Hs−2j−2‖∂j+1

x z (s) ‖Hs−2j−2

+ ‖∂j+1
x v (s) ‖Hs−2j−2‖∂j+2

x z (s) ‖Hs−2j−2

}
ds ≤ CM0 (t)D (t)2 .

Thus, the proof of Lemma 3.9 is completed. �

4.2 Proof of Lemma 3.10

In order to prove (3.21), it is suffices to show the estimate∥∥∂kxU (s)
∥∥
L2 ≤ CE0 (1 + t)−1/4−k/2 + C

(
M (t)2 +M0 (t)E (t)

)
(1 + t)−1/4−k/2 , (4.46)

for 0 ≤ k ≤ [s/2]− 2.
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By virtue of the Duhamel principle, the solution of problem (3.1) can be written as an
integral equation of the form

U (t) = etΦU0 +

∫ t

0

e(t−τ)ΦG (U)x (τ) dτ , (4.47)

where (
etΦω

)
(x) := F−1

[
etΦ̂(iξ)ω̂ (ξ)

]
(x)

with Φ̂ (iξ) := − (iξA+ L) and G (U) := (0, 0, 0, g (z) , 0, 0).

The arguments used to prove the estimate (4.46) are very similar to ones employed by Ide
and Kawashima [13], so many of the details will therefore be omitted.

Taking the L2 norm of (4.47), we conclude

∥∥∂kxU (t)
∥∥

2
≤

∥∥∂kxetΦU0

∥∥
2

+

∫ t

0

∥∥∂k+1
x e(t−τ)ΦG (U)

∥∥
2
dτ

= I1 + I2. (4.48)

Since etΦU0 is the solution of the linear problem, then from (3.5), we get for l = k + 1

I1 ≤ CE0 (1 + t)−1/4−k/2 . (4.49)

The estimate of I2 is standard. Let us split it into two parts:

I2 =

∫ t/2

0

∥∥∂k+1
x e(t−τ)ΦG (U (τ))

∥∥
2
dτ +

∫ t

t/2

∥∥∂k+1
x e(t−τ)ΦG (U (τ))

∥∥
2
dτ

= J1 + J2,

and applying (3.5), with l = k + 1, we infer that

J1 ≤ C

∫ t/2

0

(1 + t− τ)−3/4−k/2 ‖G (U (τ))‖L1 dτ

+C

∫ t/2

0

(1 + t− τ)−1/2−k/2 ∥∥∂k+1
x G (U (τ))

∥∥
L2 dτ

≤ C

∫ t/2

0

(1 + t− τ)−3/4−k/2 ‖U (τ)‖2
L2 dτ

+C

∫ t/2

0

(1 + t− τ)−1/2−k/2 ∥∥∂2k+1
x G (U (τ))

∥∥
L2 dτ

≤ CM (t)2

∫ t/2

0

(1 + t− τ)−3/4−k/2 (1 + τ)−1/2 dτ (4.50)

+C

∫ t/2

0

(1 + t− τ)−1/2−k/2 ∥∥∂2k+1
x G (U (τ))

∥∥
L2 dτ .
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The first term in the right-hand side of (4.50) can be estimated as

CM (t)2

∫ t/2

0

(1 + t− τ)−3/4−k/2 (1 + τ)−1/2 dτ ≤ CM (t)2 (1 + t)−1/4−k/2 .

Also, following [13], we have∫ t/2

0

(1 + t− τ)−1/2−k/2 ∥∥∂2k+l
x G (U (τ))

∥∥
L2 dτ ≤ CM0 (t)E (t) (1 + t)−1/4−k/2 .

Thus, we get

J1 ≤ CM (t)2 (1 + t)−1/4−k/2 + CM0 (t)E (t) (1 + t)−1/4−k/2 .

On the other hand,

J2 =

∫ t

t/2

∥∥∂xe(t−τ)Φ∂kxG (U (τ))
∥∥

2
dτ

≤ C

∫ t

t/2

(1 + t− τ)−3/4
∥∥∂kxG (U (τ))

∥∥
L1 dτ + C

∫ t

t/2

(1 + t− τ)−1/2
∥∥∂k+2

x G (U (τ))
∥∥
L2 dτ .

This implies that for k ≤ [s/2]− 1 we have (cp. [13])∫ t

t/2

(1 + t− τ)−3/4
∥∥∂kxG (U (τ))

∥∥
L1 dτ ≤ CM (t)2 (1 + t)−1/4−k/2 .

Furthermore, for k ≤ [s/2]− 2, we have

C

∫ t

t/2

(1 + t− τ)−1/2
∥∥∂k+2

x G (U (τ))
∥∥
L2 dτ

≤ CM (t)E (t)

∫ t

t/2

(1 + t− τ)−1/2 (1 + τ)−k/2−5/4

≤ CM0 (t)E (t) (1 + t)−k/2−3/4 ,

where we have used the fact that
∥∥∂k+2

x G (U (τ))
∥∥
L2 ≤ C ‖U‖L∞

∥∥∂k+2
x U

∥∥
L2 and the inequal-

ity ∥∥∂k+2
x U

∥∥
L2 ≤

∥∥∂k+2
x U

∥∥
Hs−2k−4 ≤ E (t) (1 + t)−k/2−3/4 ,

which holds for k ≤ [s/2]− 2. Consequently, we obtain from above that

J2 ≤ CM (t)2 (1 + t)−1/4−k/2 + CM0 (t)E (t) (1 + t)−k/2−3/4 .

Plugging all the above estimates into (4.48), we get∥∥∂kxU (t)
∥∥

2
≤ CE0 (1 + t)−1/4−k/2 +

(
CM (t)2 + CM0 (t)E (t)

)
(1 + t)−1/4−k/2 ,

for 0 ≤ k ≤ [s/2] − 2. The remaining part of the proof is standard. We omit it. Thus the
proof of Lemma 4.2 is completed. �
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4.3 Proofs of Lemma 3.8 and of Theorem 3.3

First, we prove Lemma 3.8. Using the following interpolation inequality,

‖U‖L∞ ≤
√

2 ‖U‖1/2

L2 ‖∂xU‖1/2

L2 , (4.51)

we can easily see that
M0 (t) ≤ CM (t) ,

provided that [s/2]− 2 ≥ 1, which leads to s ≥ 6. Similarly, applying inequality (4.51), with
Ux instead of U , we get for [s/2]− 2 ≥ 2 (that is, for s ≥ 8)

M1 (t) ≤ CM (t) .

Thus, for s ≥ 8, and from (3.20) and (3.21), we get by exploiting the above two inequalities

(E (t) +D (t) +M (t))2 ≤ CE2
0 + C (E (t) +D (t) +M (t))3 (4.52)

for all t ∈ [0, T ]. By standard arguments we conclude (cf. [31]), that for sufficiently small
E0, we have

E (t) +D (t) +M (t) ≤ Ĉ, ∀t ∈ [0, T ]. (4.53)

Indeed, let x = (E (t) +D (t) +M (t))2 and h(x) = C
(
E2

0 + x3/2
)
− x. Therefore, (4.52)

implies h (0) = CE2
0 and f (x) ≥ 0. On the other hand, we have

h′(x) =
3

2
Cx1/2 − 1 ≤ −1

2
,

for x small enough, say 0 ≤ x ≤ 1/ (9C2) . From the identity f (x) = f (0) +
∫ t

0
f ′ (x) dx, we

deduce that f changes its sign in [0, 2CE2
0 ]. Let Ĉ be the first zero of the function h, then

from above we deduce that (4.53) holds. This proves Lemma 3.8. �

Finally, we prove Theorem 3.3. Multiplying the third equation in (3.1) by σ(z/a)/a, we may
rewrite (3.3) as a symmetric-hyperbolic system, for which standard existence theorems (cp.
[31]) yield, for U0 ∈ Hs, a unique local solution

U ∈ C([0, T ], Hs(R) ∩ C1([0, T ], Hs−1(R))

to (3.3), where T = T (‖U0‖Hs) > 0 only depends on the Hs-norm of U0. Lemma 3.8 now
gives the desired a priori estimate for the Hs-norm ‖U(t)‖Hs for 0 ≤ t ≤ T , allowing the
usual continuation argument for a local solution. �
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