Global existence and decay property of the Timoshenko
system in thermoelasticity with second sound
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Abstract

Our main focus in the present paper is to study the asymptotic behavior of a
nonlinear version of the Timoshenko system in thermoelasticity with second sound. As
it has been already proved in [38], the linear version of this system is of regularity-loss
type. It is well known ([10], [13], [19]) that the regularity-loss property of the linear
problem creates difficulties when dealing with the nonlinear problem. In fact, the
dissipative property of the problem becomes very weak in the high frequency region
and as a result the classical energy method fails. To overcome this difficulty and
following [13] and [14], we use an energy method with negative weights to create an
artificial damping which allows us to control the nonlinearity. We prove that for 0 <
k < [s/2] — 2 with s > 8, the solution of our problem is global in time and decays as
|05U ()|, < C (1 +)""**2  provided that the initial datum Up € H*(R) N L'(R).
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1 Introduction

In this paper, we consider the dissipative Timoshenko system in thermoelasticity of second

sound
(P — (o —¥), =0,
Uy = (U)o — (0r — ) + B0 + atp, = 0,
01 + Ko + By, =0,
( Toqt +0q + Kb, = 0.

(1.1)
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where ¢ € (0, 00) denotes the time variable and x € R is the space variable, the functions ¢
and ¢ are the displacement of the solid elastic material, the function 6 is the temperature
difference, ¢ = ¢(t,x) € R is the heat flux, and v, 79,0, x and [ are positive constants, and
o is a smooth function such that o’(n) > 0, for any n > 0, with

o'(0) = a®
defining a > 0. We consider the following initial conditions

{ 90('70) = 900(:”)7 @t('?o) = 901<x)7 ¢(’O) = ’17/)0(93),
77Z)t('70) =¢1($)» ‘9(70) = 0o (:L'), q(.,O) = 4o (ZL’)

Before going on, let us recall some other works related to the problem we address. In the
classical theory of thermoelasticity, the behavior of an elastic heat body can be described
by a coupled system of hyperbolic-parabolic type, where the classical Fourier model of heat
conduction is used. This law assumes the flux ¢ to be proportional to the gradient of the
temperature # at the same time t,

(1.2)

q+rVo =0, (1.3)

where £ > 0 is the thermal conductivity depends on the properties of the material. This
hyperbolic-parabolic system is interesting due to its large applications in mechanics, physics
and engineering problems.

Modeling heat conduction with the so-called Fourier law, which assumes the flux ¢ to be
proportional to the gradient of the temperature V0 at the same time ¢ as in (1.3), leads
to the paradox of infinite heat propagation speed. That is, any local thermal disturbance
can have an instantaneous effect everywhere in the medium. In other words, it is clear that
equation (1.3) together with the energy equation of the heat conduction

p30¢ + odivg =0 (1.4)
yields the classical heat transport equation (of parabolic type)
ps3br — koAO = 0, (1.5)

allows an infinite speed for thermal signals. To overcome this drawback, a number of modi-
fications of the basic assumption on the relation between the heat flux and the temperature
have been made, such as: Cattaneo law, Gurtin and Pipkin theory, Jeffreys law, Green and
Naghdi theory and others. The common feature of these theories is that all lead to hyper-
bolic differential equation and permit transmission of heat flow as thermal waves at finite
speed, see [5, 18] for more details.

Here, we consider the Cattaneo law,

Toqr +q + kVO =0, (10 > 0, relatively small)!, (1.6)

!The constant 7o represents the time lag needed to establish the steady state of the heat conduction in an
element of volume when a temperator gradient is suddenly imposed on that element. See the survey paper
[4] for more details. Moreover, and as it was shown in [6], in real solid materials the constant 7¢ is likely to
be extremely small compared with time lengths.



replacing the Fourier law (1.3).

Equation (1.6) was proposed by Cattaneo in [3] in order to correct the paradox of instanta-
neous propagation of thermal disturbances predicted by Fourier’s theory of heat conduction.
Also, formula (1.6) is the most obvious and simplest generalization of Fourier’s law that
gives rise to finite speeds of propagation. Indeed, from (1.4) and (1.6), we get the telegraph
equation

K
P30 — N0+ @Qt =0, (1.7)
To To
which is an equation of hyperbolic type and predicts a finite speed equals to (gr/ (p37'0))1/ 2
for the heat propagation.

The classical thermoelastic systems has been investigated by many authors (cf. the book
[17]). The system of equations describing the coupling of elastic and thermal behavior of a
body, where the heat flux obeys Cattaneo’s law, is given (in the linear one dimensional case)

by
Ut — by, +790, =0,
O + Kgs + Yuw =0, (1.8)
Toqt +0q+ k0, =0,

where b, 7, k,0 and T¢ are positive constants.

Problems related to (1.8) have been studied in recent years, see [25, 32, 33, 34, 36, 41].
In most of these papers, it has been proved that the behavior of problem (1.8) is similar to
the behavior of the classical® thermoelastic system (i.e. system (1.8) with 79 = 0), cf. the
survey [34].

The Timoshenko system with heat conduction of Cattaneo’s law, problem (1.1), is partic-
ularly interesting since the behavior of the Timoshenko system in thermoelasticity of second
sound is different from the one in classical thermoelasticity. In fact the first example in this
direction has been given in [8]. There, Ferndndez Sare and Racke investigated the system

p1Py — k(p, + 1) =0,

p39t + e + 51/]1595 = 07
Toqt+q+/£9z :O,

(1.9)

where (z,t) € (0,L) x (0,00) and ¢ = ¢(t, z) is the displacement vector, ¢ = (¢, x) is the
rotation angle of the filament, § = 0(t,z) is the temperature difference, ¢ = ¢(t,x) is the
heat flux vector, p;, ps, ps, b, k, 7, 0, K, p, To are positive constants. They showed that this
system is no longer exponentially stable even if the wave speeds of the first two equations in

2By classical we mean the Fourier law of heat conduction.



(1.9) are equal, that is
E b
Lo (1.10)
Pr o P2
In contrast, the Timoshenko system with Fourier’s law (i.e. 79 = 0 in (1.9)) is exponentially
stable provided that (1.10) is fulfilled. This later result has been proved by Mufioz Rivera

and Racke in [27].

An even more surprising result is that the Cattaneo coupling even “destroys” exponential
stability. More precisely, Mufioz Rivera and Ferndndez Sare [37] and Messaoudi and Said-
Houari [23], considered a Timoshenko type system with past history acting only in one
equation. They looked into the following problem

P1Pu — k(%% + 1), =0,

= (1.11)

together with homogenous boundary conditions in a bounded domain, and showed that the
dissipation given by the history term is strong enough to stabilize the system exponentially
if and only if (1.10) holds and ¢ decays exponentially. Also a polynomial decay result has
been shown in [23] for g decaying polynomially. It has been proved the exponential stability
of the system in [37], while the Cattaneo law “destroys” this property, as it has been shown
in [8]. For this reason some additional damping terms might be necessary to restore the
exponential stability of system (1.9). This situation has been studied by Messaoudi et al.

[22], where a nonlinear version of (1.9) has been also considered and a damping term of the
form u¢p, has been introduced. Namely, they looked at the following problem

P19y — 0(0p, V)e + o, = 0,

P30 + @z + 00, = 0,
Toq: +q+ kb, =0,

(1.12)

where (z,t) € (0, L)% (0,00), > 0, and the nonlinear function o is assumed to be sufficiently
smooth and satisfies

0, (0,0) = 04(0,0) =k
and
U%%(O, O) = 0%1/,(0, 0) = 0'1/,111 = O

Several exponential decay results for both linear and nonlinear cases have been established
without the assumption (1.10).

3This condition is significant only from the mathematical point of view since in practice the velocities of
waves propagations are always different.



According to what we have explained before, the presence of the linear damping term ),
in (1.1) is justified and seems necessary to preserve the decay rate of the pure Timoshenko
system.

For the pure Timoshenko system (i.e. without heat conduction) in bounded domain, there
is an extensive literature. The interested reader is referred to [1, 21, 24, 28, 29, 40] for the
Timoshenko systems with frictional damping and to [2, 9, 26, 37] for Timoshenko systems
with viscoelastic damping.

It is well known that the proof of the stability results of the Timoshenko systems in a
bounded domain is somehow based on the Poincaré inequality and the type of the boundary
conditions. But in the whole space R there are only few results, to our knowledge.

In [12], Ide, Haramoto and Kawashima investigated the problem

o (1 1) = (@, =), (8, 2) =0, (t,z) € RT xR,
Uy (8 2) — a1y, (t2) = (0, — ) (8, 2) + i, (t,2) =0, (t,z) ERT xR, (1.13)
(§07 Sot’l/}7¢t) (O,ZE) = (900’%:1#0:%): YIS R7

where t denotes the time variable and x is the space variable, the function ¢ and 1 are the
displacement and the rotation angle of the beam respectively, a and p are positive constants.
They used Fourier analysis to obtain precise decay rates for spacial L?-norm of solutions to
the linear problem (1.13). More precisely, they proved that if @ = 1, then the solution of
(1.13) decays like:

105U (1)]], < C (1 + )2 U ||y + Cemt || 05T |

(1.14)

2 )
where U = (¢, — 1, ¢, ath,,¥,)". While if a # 1, then system (1.13) is of regularity-loss
type and the solutions decay as:

losU @), < € (1 +0) Ul + O (1 1) as+ Uy

(1.15)

27

where the parameters k and [ in (1.14) and (1.15) are non-negative integers, and C' and ¢
are positive constants.

Estimate (1.15) indicates that system (1.13) is of regularity-loss type, which means that
the decay rate (1 4+ ¢)~/47%/2 can be obtained only under the additional assumption that
[ > 1/2 + k more derivates of Uy exist.

The work in [12] was followed by [13] where Ide and Kawashima generalized the above
decay results to a nonlinear version, where they considered o (1, ), instead of a®,, in (1.13)
where o(n) is a smooth function of 7 such that ¢’(n) > 0. In fact, they combined weighted
energy estimates with the result of [12] to establish global existence for the nonlinear problem.
They also obtained precise decay rates for the solutions, under the smallness condition on
the initial data in H* N L' with suitably large s, (in fact for s > 6).

In [35], we analyzed system (1.13) with a nonlinear term of the form [¢)|P, (p > 1) acting
on the right hand side of the second equation. We extended the decay results obtained in [12]

5



so that, for initial data Uy € H* (R)N LY (R) with a suitably large s and ~y € [0, 1], solutions
decay faster than those given in [12]. In addition, we proved a global existence result and
some decay estimates of the semilinear system for p > 12. Recently, Said-Houari and Kasi-
mov [38] proved that, for the Cauchy problem, the coupling of the linear Timoshenko system
with the Fourier law preserves the decay properties (1.14) and (1.15). While for the Cattaneo
law, they proved that the regularity-loss type estimate (1.15) appears independently on the
wave speed a.

It is the purpose of this paper to extend the result in [13] to the initial value problem
(1.1)-(1.2). Since, the dissipative property of the problem becomes very weak in the high
frequency region and as result the classical energy method fails. To overcome this difficulty
and following [13] and [14], we use an energy method with negative weights to create an ar-
tificial damping which allows us to control the nonlinearity. Here, a substantial modification
of the energy functionals resp. the Lyapunov functional will be necessary. We prove that for
0 <k <[s/2] -2 with s > 8, the solution U = (¢, — ¥, ¢,, ath,, ¥, 0, Toq)T of our problem is
global in time and decays as ||05U (t) ||2 < C(1+8)"Y**2 provided that the initial datum
Up € H*(R) N LY(R).

This paper is organized as follows: In section 2, we fix notations and for the convenience
of the reader, we recall without proofs some useful technical Lemmas. In section 3, we state
our main result, while section 4 is devoted to the proof of our main result.

2 Preliminaries

In this section, we introduce some notations and some technical lemmas to be used through-
out this paper. Throughout this paper, ||.||, and ||.|| g stand for the L¢(R)-norm (1 < ¢ < c0)
and the H'(R)-norm. Also, for v € [0, 00), we define the weighted function space LP7(R) as
follows: u € LPY(R)iffu € L? (R) and

[ullp,, = /R(l + |2])7 Ju(z)|Pdz < .
Let us also denote by f = F (f) the Fourier transform of f with inverse F1:
FO=F©= [ fa)e
R

Next, we introduce the following lemma, which can be found, for example in [20, 39], cp.
also Lemma 7.4 in [31].

Lemma 2.1 Let a >0 and b > 0 be constants. If max(a,b) > 1, then
t
/ (14t—s)"(1+5)"ds <C(1+t) mn@) (2.1)
0

6



If max (a,b) =1, then
t
/ (L4t — )" (14 8)ds < C (148 ™@D 1 (2 4¢). (2.2)
0
If max (a,b) < 1, then

/t (I4+t—5)"1+s) " ds<CA+1t)", (2.3)

Furthermore, the next Lemma has been proved for instance in [10, Lemma 4.1].

Lemma 2.2 Let 1 <p,q, r<oo and 1/p=1/q+ 1/r. Then, we have
185 (o) lp < C(llullpllO5vllr + llvllo|OFul,), & >0, (2.4)

and
1108, w)vzlly < ClllualplO5vllr + l[vallgllOfull,), &> 1. (2.5)

3 Main results

In this section, we present the results on the global existence and the asymptotic decay of the
solutions of problem (1.1)-(1.2). To this end, we write our system (1.1)-(1.2) as a first-order
system. Indeed, we introduce the following variables:

U= (‘Ox - w’ U= gpt? Z = a’w.m Yy = wta W = Toq,

where we recall that a® = ¢/(0). Consequently, system (1.1) can be rewritten as the following
first-order hyperbolic system:
(v, —u, + y =0,

up — vy =0,

2 — ayy = 0,

ye =0 (z/a), —v+ay+ 50, =0, (3.1)

KR
0t+_wx+ﬁyzzoa
To

)
wy+ —w—+ kO, =0
\ To

and the initial conditions (1.2) take the form
(U7 u, 2,9, 67 U)) ('ru O) = (U07 U0, 205 Yo, 007 wO) (32>

7



where
Yo = Yoz — w07 Ug = wla 20 = C“%,;y Yo = wla Wo = To4qo-

System (3.1)-(3.2) is equivalent to the first-order system

(3.3)

U+ F(U),+ LU =0,
U(iU,O) = Uo.

T
where U := (v,u,z,y,&,w)T, F(U):=—- (u,v,ay,a (z/a) — (6, _ B By, —/<;9) and L

To
is defined as

0 0010 0
0 00 0O0 O
L'_oooooo
] =100 « 0 0 |’
0 00 0O0 0
ooooo%

and Uy = (vo, to, 20, Yo, 0o, wo) " . Tt is clear that UTLU = ay? + %uﬂ > 0. Thus, L is a
non-negative definite but it is not real symmetric.

The linearized problem of (3.3) can be obtained by taking the Jacobian of F' in U = 0.
Thus, we get the problem

Uy + AU, + LU = 0,
(3.4)

U (a:,()) = Uo.

where the matrix A is defined as

010 0 0 0
100 0 0 0
000 a 0 0

A=DyF0)==100a 0 -8 0
000 -3 0 =

To
000 0 &k 0

The six real eigenvalues of A are

1 2
A1j2314 = :|:§\/ —/ M £ /M Asjg = %1,
To
where
m=a'to+ K+ B10, = (a0 — #7) + 207575 + 2625770 + 575,

Consequently, system (3.4) is a hyperbolic system in the main part U; + AU, = 0 with a
damping term LU. This late system has been investigated in [38], where the following result
has been proved.



Theorem 3.1 (/38]) Let s be a nonnegative integer and assume that Uy € H*(R) N L}(R).
Then the solution U of problem (3.4) satisfies the following decay estimates:

5T @)[l, < © (14 6) G+ € (147 a5 Uy

(3.5)

27

Moreover, if Uy € H*(R) N LY (R), with v € [0,1], then the solution U of problem (3.4)
satisfies the following decay estimates:

5T @, < €+ RGO (L4877 05T,

/R Up (x) dx

where k and | are non-negative integers satisfying k +1 < s and C' and ¢ are two positive
constants.

+C (14 ) /AH2 , (3.6)

The estimate in (3.6) becomes optimal under the condition [, Uy (x) dz = 0.

Remark 3.2 For vy € N and Uy € H*(R) N LY20FD(R) satisfying

/ U (x)de =0, m=0,...,2y,
R
one has the following decay estimate with stronger decay,

[O5U ()], < Ot (HUoHme + HUOHLW)
+O (L+ )7 ||, (3.7)

where k and | are non-negative integers satisfying k +1 < s and C' and ¢ are two positive

constants. This can be proved using [16, Lemma 2.3] and the estimate for the Fourier image,
given in [38],

. 2 2

‘U({, t)‘ < Cemerlét , (3.8)

U(.0)

where p(&) = €2/(1 4 €*)? and, C,c are two positive constants.

Now, we present the results on the global existence and on the asymptotic stability of the
nonlinear problem (3.3). In order to state our main result, and led by [13], we introduce the
time weighed energy norm FE(t) and the corresponding dissipation norm D(t) as follows:

[s/2]
E(t) = Z sup (1+ T)j_% ||8$U(7')‘

=0 0<r<t

2
Hs—2j

(3.9)



and

[s/2]

z/ A4y iU (), dr
[s/2]— o

+ Z/ (17 (020 o + 038, () ) - (310)
[s/2] o )

+Z/ (14 7Y (o2 )y + 10 (7)) i

Our main result reads as follows:

Theorem 3.3 Assume that o'(n) > 0. Let Uy € H*(R) N L' (R) with s > 8 and put Ey :=
|Uoll s + |Uol| ;1 Then, there ezists a positive constant 69 > 0 such that if Ey < d¢, then
problem (3.3) has a unique global solution U satisfying

U € C([0,00); H(R)) N C'([0,00) s H*'(R)). (3.11)
Moreover, the solution satisfies the weighted energy estimate
E*(t) + D*(t) < CEg, (3.12)

and the decay estimate
|0EU ()|, < CEy (1 +1)" /M2, (3.13)

where C' is a positive constant and 0 < k < [s/2] — 2.

Remark 3.4 The assumption Uy € L*(R) in Theorem 3.3 is needed only to prove the decay
estimate (3.13). To prove the global existence, the requirement Uy € H*(R) with the smallness
assumption on ||Up|| s is sufficient.

Remark 3.5 A similar result to Theorem 3.3 has been proved recently in [13] for the pure
Timoshenko system (without heat conduction). Introducing the heat conduction of Cattaneo’s
law, renders the analysis more difficult. Moreover, for the pure Timoshenko system, the result
of Theorem 3.3 holds for s > 6. Qur requirement on s here is s > 8, since it is not obvious
to get the better decay estimate from [13, Corollary 2.1] in our case.

Remark 3.6 As we have explained in the introduction, if we consider the pure heat conduc-
tion of Cattaneo’s law, we get the telegraph equation

pgett — %AQ + &et == O,
7o To (3.14)
0(z,0)=0p(x),  0,(x,0) =0 ().

10



The decay rate of (3.14) is of the form (see [20])
16 @), < C+6)", (3.15)

provided that (0y,0,) € (HY(RN)NLYRN)) x (L2 (RN)NLYRY)). Consequently, we conclude
that the Timoshenko part is responsible for the reqularity-loss property.

On the other hand, the Fourier law yields the parabolic equation

{ p3@t — koG =0,

6(x,0) = 6. (3.16)

It is well known that the solution of (3.16) decays with the same rate as in (3.15) and the
norm of the difference H@ — éH , decays even better like (1 + 15)7]\[/471 if 0y = 0y + 0,. See
L

[42]. Consequently, it is natural to expect that the characteristic behavior should be also the
same in connection with elastic systems. However, this is not always the case. Recently
it has been proved in [8] that for the Timoshenko systems in bounded domain, exponential
stability is lost when substituting the Fourier law of heat conduction by Cattaneo’s law, and
the behavior of the two systems are different. The same conclusion holds for the coupling
with the plate equation [30].

Remark 3.7 The smallness assumption on the initial data in Theorem 3.3 seems necessary
to prove the global existence of solutions. Globally defined solution should not be expected
for large initial data. This is still an interesting open problem. In fact this is also an open
problem even for the Cauchy problem associated to system (1.8). For the Cauchy problem in
classical thermoelasticity, Hrusa and Messaoudi [11] have shown that if the initial data are
large enough, then the solution will develop singularities in finite time. (See also [7] for a
similar result).

To prove Theorem 3.3, we use the same method as in [13] with the necessary modifications
imposed by the nature of our problem. The proof will be a direct consequence of Lemma

3.8.
Let us first define the quantities

My (t) = sup (1+7)2||U (7)o,
0<r<t

My (t) = sup (1+7)][0U (7)1 -
0<r<t

and inspired by the estimates (3.5), we define

[s/2]—2
M () = 1+ )42 i ().
(t) ]Z:; Sup (147) |20 (7],

We have the following Lemma.

11



Lemma 3.8 Assume that the conditions of Theorem 3.3 hold. Let T > 0 and s > 2 and let
U be a solution to the problem (3.3) satisfying

UeC(0,T]; H¥(R) N C*0,T]; H~Y(R).
Then we have the a priori estimates

EXT)+ D*T) < CEZ (3.17)
M(T) < CE,, (3.18)

where Ey is given in Theorem 3.3 and C' is a positive constant independent of T'.

The local existence theorem needed in Lemma 3.8 can be proved by standard methods for
symmetric-hyperbolic systems, see subsection 4.3. The global existence is based on a priori
estimates that can be used to continue a local solution globally in time.

So, let T > 0 and consider solutions to the problem (3.3) which are defined on the time
interval [0, 7] and satisfy the regularity mentioned in Lemma 3.8.

Thanks to the assumption s > % + 1 (where N is the space dimension which is one in our
case), it follows from the Sobolev embedding theorem that

sup U (Dl + sup 10U (7)1 < U D).

0<7<t
We shall derive the energy estimates under the a priori assumption

sup |[U (1| <@ (3.19)

0<t<T

where @ is a fixed small number, independent of 7T'.

In order to prove Lemma 3.8, we have to use Proposition 3.9 and Lemma 3.10 below.
Proposition 3.9, will be proved in subsection 4.1, while subsection 4.2 is devoted to the proof
of Lemma 3.10. Lemma 3.8 and Theorem 3.3 will be proved in subsection 4.3.

Proposition 3.9 Suppose that the assumptions in Theorem 3.3 hold. Let T > 0 and s > 2,
and let U be the solution of problem (5.1)-(3.2) satisfying (3.11) and (3.19). Then, the
estimate

E () + D ()" < C Ul + C (Mo () + My (1)) D* (1), (3.20)
holds true for allt € [0,T], where C is a positive constant which is independent of T'.

Lemma 3.10 Under the same assumptions as in Proposition 3.9, and supposing that Uy €
H*(R) N LYR) with s > 2, we have

M (t) < CEy+ CM (t)* + CM, (t) E (t) (3.21)

for allt € [0,T], where C is a positive constant which is independent of T, and Ey is given
i Theorem 3.35.

12



4 Proof of the main results

In this section, we prove our main results presented in section 3.

4.1 Proof of Proposition 3.9

We proceed with the basic energy estimate by multiplying the first equation in (3.1) by v,
the second equation by u, the third by (o(z/a) — ¢(0))/a, the fourth by y, the fifth § and
the sixth equation by %w, respectively, adding the resulting equations, and integrating with
respect to x over R, we obtain

GEO O+ alyll+ 5 ol =0 (4.)
where
BO (@)1= 5 (1015 + Nl + ol + = Il + 1613) + [ P e @)
and

z/a
F(z):= 2/0 (0 (s) — o (0))ds.

To obtain the energy estimates on higher-order terms, applying, for k& > 1, 9% to (3.1), we
get

( OFv, — OFFlu 4+ 0Fy = 0,
Okuy — Oy = 0,
Ok z — a0y = 0,
Oy — o' (z/a) OF (z/a) — O%v + adky + BOF6 = [0F, 0’ (2/a)] (2/a), (4.3)
o+ Eoto s oty o,

4]
Ofwy + —0kw + k10 = 0
To

\

where we have used the notation [0%, A]B := 0F (AB) — AdkB.

Now, define the energy associated to system (4.3) as
1 1
B )= 5 (ol + ol + ool + Josull + S atoll) + [ Porae a)

where

PR (2) = %a'(z/a)@;;z/a)?.

Now, we try to find a Lyapunov functional and appropriate multipliers. To do so, some
nonlinear terms may arise and we treat these non-linear terms as perturbations of the energy

13



terms. The proof somehow imitates the energy estimates in the Fourier space derived for
the linear problem in [38].

Thus, multiplying the first equation in (4.3) by d¥v, the second equation by d¥u, the third
by (1/a?) (¢'(z/a)0k2), the fourth by 9%y, the fifth equation by 9@ and the sixth equation
by Tiofﬂfw, respectively, adding the resulting equations, and integrating with respect to x, we
obtain J

" +a||a’“y||2+—zua’f > = RS, (45)

where
Ry = /R {%a (z/a), (05z/a)” — o’ (z/a), (9kz/a) Oy + Oy [0, 0" (2/a)] (z/a)m} da.
Using the assumption (3.19) and as in [13], we get
e o/ 1l [082]° + 120l [052] |05 + 0] 0%, o (2/a)] | |2l

where C' = C(@) with @ from (3.19). This implies that, by using Lemma 2.2 (see [13] for
details),

B < 010U 02U (4.6)

On the other hand, recalling (3.19), we deduce that there exist two positive constants [,
and 3, depending on @, such that

B 110U < B* (1) < B, ||08U|Fs . k0. (4.7)

Consequently, multiplying (4.1) by (1 +¢)", with u € R (later to be chosen as p = —1/2),
and integrating with respect to ¢ and using (4.7) we get

(Hﬁﬂwwﬁﬁwl(HwWW@ﬁ%+%AU+ﬂWwM@%

t
< |\U0Hi2+u/o (14 8)“ LU (s)]% ds. (4.8)

Similarly, for & > 1, the estimates (4.6), (4.7) together with (4.5) yield, after a multiplication
by (1 + ¢)" and integration with respect to ¢ over (0,t)

t
(407 [0 O+ [ (15 [0k (5) s
#2510k ) s

<CW6wp+u/<uww*wmmgﬁmS

+C/’1+suav<mwwm (5) [|2.ds.
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Adding the estimate (4.8) to (4.9) and taking the summation for 1 < k < s, we get the main
estimate

2
s ds

(L+6)" U (t)I7- +a/0 (1+5)"ly (s)]

t

+%~0u+@wm@n

2
s ds
7o

(4.10)
< C||Us|

2
s ds

;+MA<me*wuw
+oA<r+wme@wmwmvwn

Our goal now is to control the second term in the right-hand side of (4.10). To do so, we
have to get a dissipative term of the form f(f |U ()||,« on the left-hand side of (4.10).

Applying 9* to system (3.1) and put OF (u,v, z,y,0,w) = (@, 0, Z, 7, é,ﬁ)), system (3.1) can
be rewritten as

2
s—1 ds.

(

U — Uy +y =0,

Uy — Uy = 0,

Z — ayy = 0,

G — aZy — 0+ af + 00, = g (2), (4.11)

~ ’{/’v -
9t+_wx+ﬁy1‘:07
To

5 _
wt—l——w—i—/ﬁ%:(),
\ To

where ¢ (2) := o (z/a) — o (0) — 0’ (0) 2/a = O (2*) near z = 0.

In the calculations that follow, we make repeated use of the Young inequality

|db| < ed* + C(e)V?,

where C'(e) here and in the sequel will denote possibly different values in different places
(and can be easily determined explicitly).

First, multiplying the first equation in (4.11) by —,, the second equation by v, and adding
the resulting equations, we get

— (Vi )¢ + (91), + @2 — 07 — U § = 0. (4.12)

Similarly, multiplying the third equation in (4.11) by 9., and the fourth equation by Z,, and
subtracting the two equations, we obtain

() = (G2 + a2} — af + (0 = af)Ze = P02 = —20;9 (2), - (4.13)
Now, we add the equalities (4.12) and (4.13), and we obtain
— (Vg + §Z5), + (0l + Z)2 + U2 + aZ]
( )t ( t t ) i <4‘14)

15



Using Young’s inequality, we get for any € > 0
U, — (00— af)z, <e (@ +22) +C(e) (0° + 7% (4.15)

and

B0,2, < 32+ C (e) 0o (4.16)
Now, plugging the inequalities (4.15) and (4.16) into (4.14), and integrating the result

with respect to z, we get

d.F®(t)
T (1= ) [0 + (@ = 26) |0k i

< () (||oko]l5 + 08wl ) + € () |0kl + R
where

FW) (1) = — / (0FvdFu, + OFydtz,) de,  RY = / 052, [0 g (2),| de. (4.18)
R R

Also, multiplying the fifth equation in (4.11) by @,, and the sixth equation by 0, and
subtracting the two resulting equations, we find
. s 2 K, o o _~
<—9wx> + (040), + kO, — —W; — By, + —wl, = 0. (4.19)
t To To
Young’s inequality gives
5 - _
Bliats + — 0, < € (gg + ei) + O (e) (@2 +w?) . (4.20)
To
Now, inserting the inequality (4.20) into (4.19) and integrating the result with respect to x,

we get

d
AN (1) + (5= ))100: 15 < el Opuall; + C () (105wl13 + 195 wall3) (4.21)

where

NP (1) = — / OO0k w,dx.
R

Next, multiplying the first equation in (4.11) by —g and the fourth equation by —o and
adding the two results, we obtain

—(09)e + 0° = §* + Ul + aZ0 — afid — f0,0 = —9%g (2) (4.22)

T

Similarly, multiplying the second equation in (4.11) by —aZ, the third equation by —at
and adding the two equations, we find

—(aZi); + aZv, + a*ug, = 0. (4.23)
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Subtracting the equation (4.23) from (4.22), we find
— (0 — aZit), — a(@if), + 0% — §* = ((1 — a®)iiy§ + i + ﬁéxﬁ) — 0 (2), . (4.24)

Applying Young’s inequality to the first term in the right-hand side of (4.24), we obtain for
any € > 0

(gt + $0,7) < e7* + C () (gf + Z)i) . (4.25)

Consequently, inserting (4.25) into (4.24) and integrating the result with respect to the x
variable, we get

d
X (0 + (1= ) [|ok

2 ) . (4.26)
<@ (2]} + 1050 3) + (1~ o) /Ramgdx + Rl

where
A B () = / (—0Fvdly + adf20fu) de RYY = / |0kv||0Fg (2), | (4.27)
R R,

Of course, the above estimates (4.17), (4.21) and (4.26) hold for every 0 < k < s — 1.
It is clear that from (4.17), (4.21) and (4.26) we get, for any 0 < k < s —2

d
220 (1) + {as (= ) = 01C () = asC () J11050. 5 + a1 (a = 26) |05
+{as (1= €)= aiC (e) PIakold + ar (1 = ) a3

IN

{a1C () + asC (€) + are |0ky|3: + axC (€) D3 (4.28)
+as(1l — cﬂ)/ (OFu, 0y + 08 u,0Ey) da + ng) 4 ag(ng) n Rékﬂ))

R
where

LB () = ZO) + ag( AP (1) + 4 ED (1)) + ag( B (t) + 2 FHD (1)),

and g, a3 > 0 have to be determined appropriately below. The last integral term in (4.28)
can be estimated as follows:

(1—a?) / (OruOFy + 5 u, 08 y) da
R

= (- / O, (OFy — ) do
R
210, 2+ C @) 195 1. (4.20)

IN

17



Plugging the estimate (4.29) into (4.28), we find

d
220 (1) + {as (= ) = 01C () = asC () J11050. 5 + a1 (a = 26) |04
+{as (1= €)= i€ (e) plokulE + {ou (1= ) — age 105wl 3 (4.30)

IN

{a1C (&) + asC (€) + aze + asC (&) J105yl3 + a2C (€) Okl
+RF + g (RF + R,

Now, we fix the constants in the above estimate as follows: First, we fix ¢ small enough such

that
. (k. a
€ < min (—, 1, —> .
2" 4

After that, we choose s and a3 large enough such that

Once, the above constants are fixed, we choose € small enough such that
(1-6)-0&3%>0.
Consequently, for any 0 < k < s — 2, the estimate (4.30) takes the form
d
Eiﬂ(’“) () + 1 (10507 + 10522115 + 195 0l30 + [[05ue13)
< e (195ylhe + 105 wllze) + B + as(RSY + YY), (431)

where ¢; and ¢y are two positive constants.

Thus, the estimate (4.31) can be written as
d
720 ) + e (1050230 + 107 UNE + N07vll3n)
< & (|08yl2e + |0Fw]%e) + RY + ag(RY + RYY), vt >0, (4.32)

where ¢, and c3 are two positive constants. On the other hand, it is easy to see that there
exists a constant ¢4 > 0, such that

LB ()| < eallObU () |17, VE=0. (4.33)
Also, as in [13], we have the following estimates

RY < Oll2llps||0EF 2)2, RY < O||zl|nw[|0F0] ]| 0522 o (4.34)
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Now, multiplying (4.32) by (1 + ¢)* and integrating with respect to t and exploiting (4.33)
and (4.34), we arrive at

t
/ (14 ) (19560, (5) |0 + 95720 (5) I3+ 050 (s) [Py dis
0
t
< OlIOETOIRy + C(1 + /105U (1) IPye + C / (1+ 8|05 (s) |Ppods (4.35)
0
t
‘c / (14 50 (105 (5) [0 + 05w (5) %2) ds

t
+C/ (L4 9)" Izl (105772 () 113 + 1070 (5) [12[10 2 (5) |12
0
H|05 v (5) 12110522 (5) [12) ds

forall t > 0 and for 0 < k < s—2. Taking the summation in (4.35) over k with 0 < k < s—2,
we get

fro1 + 110U (8) ez + 1950 (5) |

i]sfl) ds

/O (1+ )" (10.6(5))

t
< C||U0|§{5+O(1+t)“||U(t)|§,S+CM/ (14 )7 YU (s) ||%.ds (4.36)
0

+C/0 L+ )" (lly () 7o + llw (5) 17+) ds

w2+ v (s) |

gs-1]]022 (s) |

+c/0 (1 + ) |2ll e (1022 (5) | pre) ds.

Now, let A > 0 be a small positive constant, then computing (4.10)+X\(4.36) and choosing A
small enough, we arrive at the following estimate:

0 10 O+ [ 0 (U e+ T O+ 10.00) ) s

—l—/ot(l + )" (10:U (5) 702 + |[v () [|Fe-1) ds

< 0l + o [ (149 U 6y s (137
+0 [0+ 100 6 1000 () e s

+ON [ 5 el (1002 6 s+ 105 1002 ) ) s

where C' is a generic positive constant depending on A.
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It is obvious from the estimate (4.37), and for y = 0, that the term fot 10U (s) |

the left-hand side of (4.37) is not enough to control f(f 10U (5)]| oo 1|02U (5)]|37s—1 dss appear-
ing on the right-hand side of (4.37). Indeed, classical methods suggest that the nonlinearity
in (4.37) can be estimates as (for example)

2e—ads on

2
s—1 ds.

t t
[ 100 @l 0.0 ()1 ds < sup 00 (5)l [ 0.0 ()
0 0<s<t 0
However, the term fot 10U (5)||%+-1 ds on the right-hand side can not be controlled by
fg 10.U (5) ||375-2ds on the left-hand side. To overcome this difficulty, we have to use the
time weighted energy method with negative weights. That is, we have to take p < 0 in
(4.37). (see also [10, 13] and [15] for more details). This procedure allows us to get the term
,uf(f (14 t)* " ||U (s)|3- ds, which can control the term fot (1+6)"]0.U (s)]
as pu < 0.

For X sufficiently small and for y = —1/2, the estimate (4.37) takes the form

2
7s—1 ds as long

(L+ )7 U (¢)] e+ 1w ()= + 110:6 (5) |

2 4 / L+ )7 (Jly (3)

%.Isfl) ds

w2+ [0 (s) |

t t
[ (0.0 )] ) s+ C [ (L5 U () ds
0 0

< C|Uy|

2
Hs—1 dS

t
e / 1+ )2 10U ()] 10U (5)]

¢
+C>\/0 (L4 )7 Ylzllzee (1052 (5) [zrems + 110 (5) o1 1022 (5) llsre-1) ds.
(4.38)
The last two terms in the right-hand side of (4.38) can be estimated as
t t
[ @ 10U Gl 100 (9 emrds < M) [ (145 0,0 (5) s s
0 0
< M, (t)D*(t). (4.39)

Furthermore, exploiting the estimate ||z (¢) ||z~ < C (14 ¢)"/* My (t), we get (cp. the esti-
mate (4.34) in [13])

w2+ [[0(8) lrre-1]102z (5) | et ) dls

/O (L4972 2l (102 (5)|

IN

e+ v (s) |

My (0 [ (1457 (j0:2 ()] o105 (5) o1 ds

< CM,(t)D*(t). (4.40)

Thus, plugging the estimates (4.39) and (4.40) into (4.38), then (3.20) holds true for j = 0.
It is sufficient to use induction on j to show that (3.20) is fulfilled. Assume that (3.20) is
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satisfied for j — 1; we will show that (3.20) is also valid for j. Indeed, taking p =7 —1/2 in
(4.9), and taking the summation over k such that j <k <s— j, with j < [s/2], we get
t
s b [ (1972 ol (5)
0

(L+ 025U (1) | o2 s

t . .
2 [ 00 (5) s
7o Jo t (4.41)
< C0inlfems +C [ (14 5P [V (5) o
0

2
Hs—2j dS.

t ) )
0 [ U (5 02U (5)]
0

Similarly, letting 4 = j — 1/2 in (4.35), and taking the summation over k so that j < k <
s —j—2with j <[s/2] — 1, we find

t
/ (14 8) 72 (10502 (5) 37— + 071U (5) |
0

Fea + C(L+ 02| 00U () |70

%{s—2j—2 -+ H@iv (S) ’

%{s—Qj—l) ds

< C|ojUy|

t
4 [ ) RN (5) o (4.42)
0

-2 + 100w (s)

?{572j) ds

e / (L4 512 (|00 (s) |

2
Hs—2j—2

t
e / (14 59 72||2  {1052 (s) |
0

1090 (5) -2 [0 (5) -
+H(‘3§“v (S) ’ H572j72Ha§+22 (S) ‘ H572j72} ds.

As above, and for 1 < j < [s/2] — 1, then (4.41)+A(4.42) gives for A sufficiently small,

(U700 0 e+ C (U7 (1020 6) s + 1080 5) ) s
+O [0 7 (10282 (6) By 10110 6 s+ 1000 6) o) ds
< Ny +C [ (1571020 ) s
+0 [ 100 9l 120 6 o
+O [0 el {1012 6) s+ 1080 () 25712 6 s
1010 (5) l-21-2 9322 (5) [l -2 s

(4.43)
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where C' is depending on A. Since we assume that (3.20) holds for j — 1 (hence (4.43) holds
for j — 1 instead of j), the second term in the right-hand side of (4.43) can be estimated as
follows:

t ) )
/ (L+ ) 7 PUOIU (5) Iga-asds < Cl|Uoll 3o + C (Mo (8) + My () D* (8).
0

Since (4.41) holds also for j = [s/2], then from (4.38), (4.41), (4.43) and in order to show
(3.20), it is suffices to prove the following two estimates:

2 o;ds < CM, (t) D (t)?, for 1 < j < [s/2],
(4.44)

t . .
/ (14 572 0,U (3)] e 102U (5) |
0
and

o212 10572 (5) o212

%{5—2]'72 + ||8£U (8) |

t
[ sl {jore )
0

+ 105" v (s) |

ms-2-2(|0 22 (s) |

Hs,Qj,Q}ds <OMy(t)D(t)?, for1<j<[s/2 —1.

(4.45)
The estimate (4.44) is obvious. Let us show (4.45). Indeed, we have
t ‘ , t . .

/ (14 8)7 72| 2| 2o |0 2 (8) ||302s2ds < C'My (t)/ (14 8) 7107 2 (8) ||Fo-2s-2ds
0 0
t

< OMy(0) [+ 91020 6) omsads
0

< CMy(t)D(t)*.

On the other hand and as in [13], we have for 1 < j <[s/2] — 1,

o220 2 (s) |

Hs—2i—2

[+ sz {1020 6))

+ 107 0 (8) 20210722 (s) |

R }ds < OM, (t) D (t)°.

Thus, the proof of Lemma 3.9 is completed. [

4.2 Proof of Lemma 3.10

In order to prove (3.21), it is suffices to show the estimate
05U (5)|| o < CEo (L 48) 2 10 (M () + My (1) E (£)) (1 +8)" 2 (4.46)

for 0 <k <[s/2] —2.
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By virtue of the Duhamel principle, the solution of problem (3.1) can be written as an
integral equation of the form

U(t) = Uy + / t I G(U), (1) dr, (4.47)

where

(e"w) (z) == F ! [et&(i@d) (5)] (x)
with @ (i€) := — (i€A + L) and G (U) := (0,0,0, ¢ (2),0,0).

The arguments used to prove the estimate (4.46) are very similar to ones employed by Ide
and Kawashima [13], so many of the details will therefore be omitted.

Taking the L? norm of (4.47), we conclude
v ol, < okl + [ k26 @), 0
— I +1,. ' (4.48)
Since e'®Uj is the solution of the linear problem, then from (3.5), we get for [ = k + 1
I < CEy(1+t) Y4&k2, (4.49)
The estimate of I is standard. Let us split it into two parts:
t/2 ¢
L= [ e w @, dr+ [ (o6 W )], dr
= J(l) + Ja, t/Q

and applying (3.5), with [ = k + 1, we infer that
t/2
ho< e[t IR U ) dr
0

t/2
+0/ (L+t—7) 220G (U ()] o dr
0

IN

t/2
o AR O

0
t/2
+c/ (L+t—7) 220G (U ()| . dr
0
t/2

IA

CM (1) / (14t —7) 3R (1 )12 gy (4.50)
0
/2
+0/ (1+t—7) 222G (U (7)) . dr
0
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The first term in the right-hand side of (4.50) can be estimated as
t/2
CM (t)2/ I+t —7) 24 ) dr < OM (8% (1 + ) Y4H2,
0
Also, following [13], we have

t/2
/ (1 Lt 7_)—1/2—k/2 ||8§k+lG (U (7_))HL2 dr < CM, (t)E(t) (1 —I—t)_1/4_k/2.
0

Thus, we get
J < CM () (146" 2 L CMy (8) E (1) (1 +8) /442
On the other hand,

t
Jy = / |0,el=%05G (U (1)), dr
t/2
t t
< c/ L+t—7)okG (U ()], d¢+c/ L+t —7) 252G (U (1)) . dr.
t/2 t/2
This implies that for & < [s/2] — 1 we have (cp. [13])

/t L+t —7)HEG (U ()|, dr < OM (8)* (1 + )"/ H2,
t/2

Furthermore, for k < [s/2] — 2, we have
t
C/ (I+t— T)_1/2 H@f”G (U (7’))HL2 dr
t/2
t
< CM (1) E(t)/ L+t —7) 214 r) 250
t/2
< CMy () E(t) (1+1)27,
where we have used the fact that | 057G (U (1))|| , < C[|U||  ||05T2U]||,, and the inequal-
ity
105720 2 < 105720 | yoa < B () (14 1)1,
which holds for k£ < [s/2] — 2. Consequently, we obtain from above that

Jo < CM (t)2 (1+ t)_1/4_k/2 +CMy(#)E(t) (1+ t)_k/2_3/4,
Plugging all the above estimates into (4.48), we get
|50 @), < OB (1467472 4+ (OM (0 + CMy (§) B (1)) (1+8)7 /7472,

for 0 < k < [s/2] — 2. The remaining part of the proof is standard. We omit it. Thus the
proof of Lemma 4.2 is completed. [J
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4.3 Proofs of Lemma 3.8 and of Theorem 3.3
First, we prove Lemma 3.8. Using the following interpolation inequality,

U] < V2NUS 10U 15 (4.51)

L2 >

we can easily see that

provided that [s/2] —2 > 1, which leads to s > 6. Similarly, applying inequality (4.51), with
U, instead of U, we get for [s/2] —2 > 2 (that is, for s > 8)

M (t) < CM (t).
Thus, for s > 8, and from (3.20) and (3.21), we get by exploiting the above two inequalities
(E(t)+ D)+ M) <CE+C(E(t)+ D(t)+ M (1))’ (4.52)

for all ¢ € [0,7]. By standard arguments we conclude (cf. [31]), that for sufficiently small
Ey, we have R
EX)+D({t)+M(t) <C, vt e [0,T]. (4.53)
t

Indeed, let = = (E(t) + D (t) + M (t))* and h(z) = C (EZ + 2*?) — 2. Therefore, (4.52)
implies i (0) = CEZ and f (z) > 0. On the other hand, we have

3 1
hl _ 2 1/2_1 < _Z
(x) 2090 < -3

for z small enough, say 0 < z < 1/(9C?). From the identity f (z) = f (0) + fo f' (z)dz, we

deduce that f changes its sign in [0,2CE?3]. Let C be the first zero of the function h, then
from above we deduce that (4.53) holds. This proves Lemma 3.8. [J

Finally, we prove Theorem 3.3. Multiplying the third equation in (3.1) by o(z/a)/a, we may
rewrite (3.3) as a symmetric-hyperbolic system, for which standard existence theorems (cp.
[31]) yield, for Uy € H?®, a unique local solution

U € ([0, T], H*(R) N C*([0, T], H*"\(R))

o (3.3), where T' = T'(||Us||g=) > 0 only depends on the H®*-norm of Uy. Lemma 3.8 now
gives the desired a priori estimate for the H*-norm ||U(t)||gs for 0 < t < T, allowing the
usual continuation argument for a local solution. []
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