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Abstract: We consider the compressible Euler equations in three space dimensions where heat conduction

is modeled by Cattaneo’s law instead of Fourier’s law. For the arising purely hyperbolic system, the

asymptotic behavior of discontinuous solutions to the linearized Cauchy problem is investigated. We give

a description of the behavior as time tends to infinity and, in particular, as the relaxation parameter

tends to zero. The latter corresponds to the singular limit and a formal convergence to the classical (i.e.

Fourier law for the heat flux - temperature relation) Euler system. We recover a phenomenon observed for

hyperbolic thermoelasticity, namely the dependence of the asymptotic behavior on the mean curvature

of the initial surface of discontinuity; in addition, we observe a more complex behavior in general.
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1 Introduction

The compressible Euler system with Cattaneo’s law for heat conduction consists of the equations

ρt + div (ρu) = 0, (1.1)

(ρu)t + div (ρu⊗ u+ ρI) = 0, (1.2)

(ρE)t + div ((ρE + p)u+ q) = 0, (1.3)

τqt +K∇e+ q = 0, (1.4)

where ρ, u = (u1, u2, u3)T , E, p, q = (q1, q2, q3)T , e represent density, velocity, total energy, pres-

sure, heat flux, and internal energy, respectively, cf. [2]. Functions depend on the time variable

t ∈ R+ and on the space variable x ∈ R3 (Cauchy problem). I is the identity matrix, K is

a given positive definite matrix which we assume to equal κ I with κ > 0, and τ > 0 is the

relaxation parameter. The relations

p = (γ − 1)ρe, E =
1

2
|u|2 + e (1.5)

are assumed to hold with a constant γ > 1 (polytropic gases). The case τ = 0 corresponds to

Fourier’s law of heat conduction, while τ > 0 represents Cattaneo’s law.
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We have initial conditions

ρ(t = 0) = ρ0, u(t = 0) = u0, e(t = 0) = e0, q(t = 0) = q0, (1.6)

and we shall be interested in the asymptotic behavior of solutions to the corresponding linearized

system (cf. (2.1) – (2.8) below) with initial data that may have jumps on an initial surface σ

given by

σ = { x ∈ Ω0 ⊂ R3 |Φ0(x) = 0 } (1.7)

as the level set of a C2-function

Φ0 : Ω0 ⊂ R3 −→ R3, (1.8)

with

|∇Φ0| ≡ 1 on Ω0, (1.9)

defined on an open set Ω0 ⊂ R3, which is a neighborhood of the surface σ. Assumption (1.9) is

made without loss of generality, Φ0 may be taken as the distance function Φ0(x) = dist (x, σ),

cp. [4].

The classical Euler system corresponding to τ = 0 has been widely investigated (see for

example [11, 3] and the references therein). We are interested in describing the propagation of

initial jumps in the data as time t tends to infinity, and, in particular, in giving information on

the behavior of the propagating jumps as τ → 0. That is, we shall describe the effect of the

singular limit of the hyperbolic system to the usual hyperbolic-parabolic one.

This kind of analysis has been carried out for the system of hyperbolic resp. hyperbolic-

parabolic thermoelasticity in [8] in one space dimension, and in [9] in three (or two) space

dimensions (for an extension to compressible Navier-Stokes equations cf. [6]). In the latter case,

an interesting relation between the geometry of the initial surface of discontinuity σ and the

asymptotic behavior was found saying that the behavior strongly depends on the mean curvature

of σ.

We shall demonstrate that, again, the mean curvature may determine the specific asymptotic

behavior; but, in addition, we shall investigate the, in general, more complex behavior. The

linearized system (2.1) – (2.8) is obviously more complicated. Indeed, the linearized equations

of thermoelasticity in [9] can be considered as a special case of (2.1) – (2.8) with u ≡ 0, under

the notation correspondence indicated in Section 3.2. However, it turns out that the dominating

terms describing the asymptotic behavior of the propagation of the initial jumps are basically

the same as the ones for thermoelasticity in [9], and the mean curvature of the surface of initial

discontinuities plays an important role.

In using expansions with respect to the relaxation parameter τ , we shall obtain that the jumps

evolving on the characteristic surfaces go to zero for the internal energy e (or, equivalently, the

temperature for polytropic gases) as τ → 0, a mirror of the singular limit and the approach of

the hyperbolic-parabolic system.

As in thermoelasticity [9], we notice that the decay of the jumps is faster for smaller heat

conductive coefficient which is similar to a phenomenon observed for discontinuous solutions to

the compressible Navier-Stokes equations by Hoff [5].
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We remark that our three-dimensional discussion immediately carries over to the one- and

two-dimensional cases. Of course, for the one-dimensional case, the initial singularity only lies

in the origin, so that there will be no mean curvature terms in the dominating terms describing

the asymptotic behavior, which is similar as in thermoelasticity [8].

The paper is organized as follows: In Section 2 we shall give the setting in a normalized form

of a first-order system, and Section 3 presents the discussion of the asymptotics, the main result

being summarized in Theorem 3.7.

2 Linearization and decomposition

We rewrite the equation for the conservation of energy (1.3), using (1.5), as

ρu∂tu+
1

2
|u|2∂tρ+ ∂t(ρe) +

1

2
|u|2div (ρu) +∇(

1

2
|u|2)ρu+

div (ρeu) + p div u+ u∇p+ div q = 0.

Using (1.1) and (1.2), we arrive at

∂t(ρe) + div (ρeu) + pdiv u+ div q = 0,

or

∂te+ u∇e+ (γ − 1)e div u+
1

ρ
div q = 0.

Now we linearize the equations (1.1) – (1.3) to the following system for the unknowns ρ̃, ũ, ẽ, q̃,

with (now) constant ρ, u, e, q:

∂tρ̃+ u1∂x1 ρ̃+ ρ∂x1 ũ1 + u2∂x2 ρ̃+ ρ∂x2 ũ2 + u3∂x3 ρ̃+ ρ∂x3 ũ3 = 0, (2.1)

∂tũ1 + u1∂x1 ũ1 + u2∂x2 ũ1 + u3∂x3 ũ1 + (γ − 1)
e

ρ
∂x1 ρ̃+ (γ − 1)∂x1 ẽ = 0, (2.2)

∂tũ2 + u1∂x1 ũ2 + u2∂x2 ũ2 + u3∂x3 ũ2 + (γ − 1)
e

ρ
∂x2 ρ̃+ (γ − 1)∂x2 ẽ = 0, (2.3)

∂tũ3 + u1∂x1 ũ3 + u2∂x2 ũ3 + u3∂x3 ũ3 + (γ − 1)
e

ρ
∂x3 ρ̃+ (γ − 1)∂x3 ẽ = 0, (2.4)

∂tẽ+ u1∂x1 ẽ+ u2∂x2 ẽ+ u3∂x3 ẽ+ (γ − 1)e(∂x1 ũ1 + ∂x2 ũ2 + ∂x3 ũ3)

+
1

ρ
(∂x1 q̃1 + ∂x2 q̃2 + ∂x3 q̃3) = 0, (2.5)

∂tq̃1 +
κ

τ
∂x1 ẽ+

1

τ
q̃1 = 0, (2.6)

∂tq̃2 +
κ

τ
∂x2 ẽ+

1

τ
q̃2 = 0, (2.7)

∂tq̃3 +
κ

τ
∂x3 ẽ+

1

τ
q̃3 = 0. (2.8)

We have the initial values

ρ̃(t = 0) = ρ̃0, ũ(t = 0) = ũ0, ẽ(t = 0) = ẽ0, q̃(t = 0) = q̃0, (2.9)

which may have jumps on the initial surface σ given by (1.8).
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Introducing the vector

V := (ρ̃, ũ1, ũ2, ũ3, ẽ, q̃1, q̃2, q̃3)T

we may rewrite equations (2.1) – (2.8) as the following first-order system

∂tV +A1∂x1V +A2∂x2V +A3∂x3V +A0V = 0, (2.10)

where

A1 :=



u1 ρ 0 0 0 0 0 0

(γ − 1) eρ u1 0 0 (γ − 1) 0 0 0

0 0 u1 0 0 0 0 0

0 0 0 u1 0 0 0 0

0 (γ − 1)e 0 0 u1
1
ρ 0 0

0 0 0 0 κ
τ 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0


,

A2 :=



u2 0 ρ 0 0 0 0 0

0 u2 0 0 0 0 0 0

(γ − 1) eρ 0 u2 0 (γ − 1) 0 0 0

0 0 0 u2 0 0 0 0

0 0 (γ − 1)e 0 u2 0 1
ρ 0

0 0 0 0 0 0 0 0

0 0 0 0 κ
τ 0 0 0

0 0 0 0 0 0 0 0


,

A3 :=



u3 0 0 ρ 0 0 0 0

0 u3 0 0 0 0 0 0

0 0 u3 0 0 0 0 0

(γ − 1) eρ 0 0 u3 (γ − 1) 0 0 0

0 0 0 (γ − 1)e u3 0 0 1
ρ

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 κ
τ 0 0 0


,

A0 :=



0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 1
τ 0 0

0 0 0 0 0 0 1
τ 0

0 0 0 0 0 0 0 1
τ


.

4



Finally, we decompose the vectors ũ := (ũ1, ũ2, ũ3)T and q̃ := (q̃1, q̃2, q̃3)T into their potential

and solenoidal parts,

ũ = ũp + ũs, q̃ = q̃p + q̃s,

with

∇× ũp = ∇× q̃p = 0, div ũs = div q̃s = 0.

Correspondingly, the initial data ũ0 and q̃0 are also decomposed,

ũ0 = ũ0,p + ũ0,s, q̃ = q̃0,p + q̃0,s.

Since u is a constant vector, we have the identities

∇× ((u · ∇)ũp) = (u · ∇)(∇× ũp) = 0, div ((u · ∇)ũs) = 0,

which imply a decomposition of the equations (2.1) – (2.8) into a system for (ρ̃, ũp, ẽ, q̃p) that

has exactly the same structure as (2.1) – (2.8), and the following system for (ũs, q̃s),

∂tũ
s + (u · ∇)ũs = 0, (2.11)

∂tq̃
s +

1

τ
q̃s = 0. (2.12)

As initial conditions we have

ρ̃(t = 0) = ρ̃0, ũp(t = 0) = ũ0,p, ẽ(t = 0) = ẽ0, q̃p(t = 0) = q̃0,p, (2.13)

and

ũs(t = 0) = ũ0,s, q̃s(t = 0) = q̃0,s. (2.14)

Since (2.12) is explicitly solvable, and since (2.11) is of a well-known type, cp. [1, 7, 10], the

propagation of the jumps of the solenoidal parts ũs and q̃s can be easily obtained. Thus we only

look at the system for (ρ̃, ũp, ẽ, q̃p) given in (2.1) – (2.8) (with (ũ, q̃) replaced by (ũp, q̃p)), with

the initial data (2.13).

Remark 2.1. The decomposition will be used in the analysis of possible discontinuities for the

eigenvalues λ = 0, ξ · u.

3 Asymptotic behavior as t→∞ or τ → 0

In order to obtain an appropriate representation of solutions V = (ρ̃, ũp, ẽ, q̃p)T to the first-order

system (2.10) that allows a detailed description of the asymptotic behavior of the solutions as

t→∞ or τ → 0, we first determine, as in [9], the eigenvalues and eigenvectors of the associated

matrix

Â(ξ) :=

3∑
j=1

ξjAj ,

where ξ = (ξ1, ξ2, ξ3)T ∈ R3. Then, expansions in the parameter τ will be given, followed by the

investigation of the evolution of jumps across the corresponding characteristic surfaces.
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3.1 The eigenvalues and their expansions in the parameter τ .

We compute the characteristic polynomial of Â(ξ),

P3(λ, ξ; τ) := det(λI − Â(ξ)) = det(λI −
3∑
j=1

ξjAj) (λ ∈ C). (3.1)

With ξu := ξ · u, we directly have that

λI −
3∑
j=1

ξjAj =



λ− ξu −ρξ1 −ρξ2 −ρξ3 0 0 0 0

−(γ − 1) eρξ1 λ− ξu 0 0 −(γ − 1)ξ1 0 0 0

−(γ − 1) eρξ2 0 λ− ξu 0 −(γ − 1)ξ2 0 0 0

−(γ − 1) eρξ3 0 0 λ− ξu −(γ − 1)ξ3 0 0 0

0 −(γ − 1)eξ1 −(γ − 1)eξ2 −(γ − 1)eξ3 λ− ξu −1
ρξ1 −1

ρξ2 −1
ρξ3

0 0 0 0 −κ
τ ξ1 λ 0 0

0 0 0 0 −κ
τ ξ2 0 λ 0

0 0 0 0 −κ
τ ξ3 0 0 λ


.

Let

B1 :=


λ− ξu −ρξ1 −ρξ2 −ρξ3 0

−(γ − 1) eρξ1 λ− ξu 0 0 −(γ − 1)ξ1

−(γ − 1) eρξ2 0 λ− ξu 0 −(γ − 1)ξ2

−(γ − 1) eρξ3 0 0 λ− ξu −(γ − 1)ξ3

0 −(γ − 1)eξ1 −(γ − 1)eξ2 −(γ − 1)eξ3 λ− ξu


and

B2 :=


λ− ξu −ρξ1 −ρξ2 −ρξ3

−(γ − 1) eρξ1 λ− ξu 0 0

−(γ − 1) eρξ2 0 λ− ξu 0

−(γ − 1) eρξ3 0 0 λ− ξu

 .
Then we have

P3(λ, ξ; τ) = λ3 detB1 − λ2 κ

ρτ
|ξ|2 detB2.

By a direct computation it follows that

detB1 = (λ− ξu)3{(λ− ξu)2 − γ(γ − 1)e|ξ|2}, (3.2)

and

detB2 = (λ− ξu)2{(λ− ξu)2 − (γ − 1)e|ξ|2}, (3.3)
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hence

P3(λ, ξ; τ) = λ2(λ− ξu)2
{
λ(λ− ξu)

(
(λ− ξu)2 − γ(γ − 1)e|ξ|2

)
−

κ

ρτ
|ξ|2
(
(λ− ξu)2 − (γ − 1)e|ξ|2

)}
:= λ2(λ− ξu)2Q(λ, ξ; τ). (3.4)

Remark 3.1. In the one- and two-dimensional cases, we have similar expressions for the cor-

responding characteristic polynomials Pd (d = 1, 2):

Pd(λ, ξ; τ) = λd−1(λ− ξu)d−1Q(λ, ξ; τ), (3.5)

where u, ξ ∈ Rd−1.

It is clear that the polynomial P3(λ, ξ; τ) in (3.4) has eight roots λj(j = 1, 2, · · · , 8) with

λ1 = λ2 = 0, λ3 = λ4 = ξu, and λ5, λ6, λ7, λ8 being the roots to the equation Q(λ, ξ; τ) = 0. We

observe that λ1, λ2, λ3, λ4 are independent of τ , while λ5, λ6, λ7, λ8 are not. So we turn to the

expansion of eigenvalues λ5, λ6, λ7, λ8 in terms of the parameter τ as τ → 0.

Let

F (λ, τ) := τQ(λ, ξ; τ) = τλ(λ− ξu){(λ− ξu)2 − (γ − 1)γe} − κ

ρ
{(λ− ξu)2 − (γ − 1)e}.

By letting τ = 0 and solving the equation

F (λ, 0) = −κ
ρ
{(λ− ξu)2 − (γ − 1)e} = 0,

we obtain the solution λ0
5,6 with

λ0
5 = ξu−

√
(γ − 1)e. λ0

6 = ξu+
√

(γ − 1)e.

Note that if (ξu)2 = (γ − 1)e, one of λ5 and λ6 is 0, which equals λ1 and λ2. Since

∂F

∂λ
(λ, 0) = −2κ

ρ
(λ− ξu),

we have
∂F

∂λ
(λ0

5,6, 0) = ±2κ

ρ

√
(γ − 1)e 6= 0.

By the implicit function theorem, we have λ5,6 = λ5,6(τ) near (λ0
5,6, 0) from the equation

F (λ, τ) = 0. Differentiating F (λ(τ), τ) = 0 with respect to τ , we get

∂F

∂λ
λ′(τ) +

∂F

∂τ
= 0.

Thus, we obtain

λ′(0) = −
∂F
∂τ (λ(0), 0)
∂F
∂λ (λ(0), 0)

.
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Since
∂F

∂τ
= λ(λ− ξu){(λ− ξu)2 − (γ − 1)γe}

we obtain
∂F

∂τ
(λ0

5, 0) = (γ − 1)2e
√

(γ − 1)e(ξu−
√

(γ − 1)e),

and
∂F

∂τ
(λ0

6, 0) = −(γ − 1)2e
√

(γ − 1)e(ξu+
√

(γ − 1)e).

Thus,

λ′5(0) = − ρ

2κ
(γ − 1)2e(ξu−

√
(γ − 1)e),

λ′6(0) = − ρ

2κ
(γ − 1)2e(ξu+

√
(γ − 1)e).

We conclude

λ5(τ) = λ0
5 + λ′5(0)τ +O(τ2)

= (ξu−
√

(γ − 1)e)− ρ

2κ
(γ − 1)2e(ξu−

√
(γ − 1)e)τ +O(τ2),

λ6(τ) = λ0
6 + λ′6(0)τ +O(τ2)

= (ξu+
√

(γ − 1)e)− ρ

2κ
(γ − 1)2e(ξu+

√
(γ − 1)e)τ +O(τ2).

To expand λ7 and λ8, we define, with Λ := 1
λ ,

G(Λ, τ) :=
1

λ4
F (λ, τ)

= τ(1− ξuΛ){(1− ξuΛ)2 − (γ − 1)γeΛ2} − κ

ρ
Λ2{(1− ξuΛ)2 − (γ − 1)eΛ2}.

Then G(0, 0) = 0 and ∂G
∂Λ (0, 0) = 0. Also, we have ∂G

∂τ (0, 0) = 1, hence, using the implicit

function theorem again, we get τ = τ(Λ) near (0, 0) from the equation G(Λ, τ) = 0, and we

conclude
∂G

∂Λ
+
∂G

∂τ
τ ′ = 0, hence τ ′(0) = 0,(∂2G

∂Λ2
+

∂2G

∂Λ∂τ
τ ′
)

+
∂G

∂τ
τ ′′ + τ ′

( ∂2G

∂τ∂Λ
+
∂2G

∂τ2
τ ′
)

= 0.

Since ∂2G
∂Λ2 (0, 0) = −2κ

ρ , we have τ ′′(0) = 2κ
ρ . Hence

τ(Λ) =
κ

ρ
Λ2 +O(Λ3),

and then
1

Λ2
=

κ

ρτ
(1 +O(Λ)),

that is,

λ2 =
κ

ρτ
(1 +O(

√
τ)),

and we have

λ7(τ) = −
√

κ

ρτ
+O(1), λ8(τ) =

√
κ

ρτ
+O(1).

Summarizing, we obtain the following lemma on the eigenvalues of the matrix Â(ξ).
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Lemma 3.2. Let τ > 0 be sufficiently small. Then the characteristic polynomial P3 (λ, ξ; τ) of

Â(ξ) has eight real roots, depending on τ , as below:

λ1(τ) = λ2(τ) = 0, (3.6)

λ3(τ) = λ4(τ) = ξu, (3.7)

λ5(τ) =
(
ξu−

√
(γ − 1)e

)
− ρ

2κ
(γ − 1)2e

(
ξu−

√
(γ − 1)e

)
τ +O(τ2), (3.8)

λ6(τ) =
(
ξu+

√
(γ − 1)e

)
− ρ

2κ
(γ − 1)2e

(
ξu+

√
(γ − 1)e

)
τ +O(τ2), (3.9)

λ7(τ) = −
√

κ

ρτ
+O(1), (3.10)

λ8(τ) =

√
κ

ρτ
+O(1). (3.11)

3.2 The right and left eigenvectors

Next, we compute the eigenvectors corresponding to the above eigenvalues of Â(ξ). First, we

determine the right eigenvectors x = (x1, . . . , x8)T satisfying the equation, assuming |ξ|2 = 1,

(λI −
3∑
j=1

ξjAj)x = 0. (3.12)

There are two cases.

Case 1. ξu = 0.

Then

P3(λ, ξ; τ) = λ4{λ2(λ2 − γ(γ − 1)e)− κ

ρτ
(λ2 − (γ − 1)e)}.

The characteristic polynomial and the matrix Â(ξ) coincide with those in the thermoelastic

situation in [9], in the sense of the following correspondence(the notations in the paper [9] are

placed on the left side of “∼”, and the ones for our equations are placed on the right):

div up ∼ − ρ̃
ρ
, upt ∼ ũp, θ ∼ ẽ, qp ∼ q̃p,

α2 ∼ (γ − 1)e, β ∼ γ − 1, δ ∼ (γ − 1)e, γ ∼ 1

ρ
.

Therefore, in order to focus on the new ingredients, we omit the right eigenvectors for this case.

Case 2. ξu 6= 0.

Then we have the eigenvalues λ1 = λ2 = 0, λ3 = λ4 = ξu, and λ5, λ6, λ7, λ8, which are

expressed by (3.8)—(3.11).

Case 2.1. For the multiple eigenvalues λ1 = λ2 = 0, we have x5 = 0 by the last three equations

of (3.12), and the first four equations of (3.12) read

−ξux1 −ρξ1x2 −ρξ2x3 −ρξ3x4 = 0,

−(γ − 1)eξ1x1 −ρξux2 = 0,

−(γ − 1)eξ2x1 −ρξux3 = 0,

−(γ − 1)eξ3x1 −ρξux4 = 0,
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hence

{(γ − 1)e− (ξu)2}x1 = 0.

Case 2.1.1. If (γ−1)e 6= (ξu)2, then x1 = 0 and, since ξu 6= 0, we have x2 = x3 = x4 = 0. This

implies, by the fifth equation in (3.12), that

ξ1x6 + ξ2x7 + ξ3x8 = 0.

Thus, denoting by Φτ1 , Φτ2 , ξ (thinking of ξ = ∇Φ0) an orthonormal basis of R3, we have the

right eigenvectors for λ1 = λ2 = 0 as follows:

~r1 = (~01×5,Φ
T
τ1)T , ~r2 = (~01×5,Φ

T
τ2)T .

Case 2.1.2. If (γ− 1)e = (ξu)2, then the multiplicity of the eigenvalue 0 is 3 and we have three

eigenvectors

~r1, ~r2, and ~r∗ = (ξu,−(γ − 1)
e

ρ
ξT , 0, (γ − 1)2e2ξT )T .

Case 2.2. Consider the eigenvalues λ3 = λ4 = ξu.

Then the equations (3.12) imply

ξ1x2 + ξ2x3 + ξ3x4 = 0,
e

ρ
ξx1 + ξx5 = 0⇒ e

ρ
x1 + x5 = 0,

ξ1x6 + ξ2x7 + ξ3x8 = 0,

−κ
τ
x5 · ξ + ξu

 x6

x7

x8

 = 0⇒ −κ
τ
|ξ|2x5 + ξu(ξ1x6 + ξ2x7 + ξ3x8︸ ︷︷ ︸

=0

) = 0,

hence, we have x1 = x5 = 0, and since ξu 6= 0, x6 = x7 = x8 = 0. Thus, the corresponding right

eigenvectors are

~r3 = (0,ΦT
τ1 ,
~01×4)T , ~r4 = (0,ΦT

τ2 ,
~01×4)T .

Case 2.3. Consider the last eigenvalues λ5, λ6, λ7, λ8 which satisfy the equation

Q(λ, ξ; τ) = λ(λ− ξu){(λ− ξu)2 − γ(γ − 1)e} − κ

ρτ
{(λ− ξu)2 − (γ − 1)e} = 0.

The first four equations in (3.12) yield

λ−ξu
ρ x1 − ξ1x2 − ξ2x3 − ξ3x4 = 0,

− (γ−1)
ρ |ξ|

2x1 + (λ− ξu)(ξ1x2 + ξ2x3 + ξ3x4)− (γ − 1)|ξ|2ξ5 = 0,

implying
1

ρ
{(λ− ξu)2 − (γ − 1)e}x1 − (γ − 1)x5 = 0. (3.13)

The last four equations yield

− (γ−1)e
ρ (λ− ξu)x1 + (λ− ξu)x5 − 1

ρ(ξ1x6 + ξ2x7 + ξ3x8) = 0,

−κ
τ |ξ|

2x5 + λ(ξ1x6 + ξ2x7 + ξ3x8) = 0,
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implying

−(γ − 1)e

ρ
(λ− ξu)x1 + (λ− ξu− κ

ρτλ
)x5 = 0. (3.14)

The determinant Γ corresponding to the linear system (3.13), (3.14) is

Γ = (λ− ξu){(λ− ξu)2 − γ(γ − 1)e} − κ

ρτλ
{(λ− ξu)2 − (γ − 1)e} = Q(λ, ξ; τ),

which equals 0 for the eigenvalues λ5, λ6, λ7, λ8.

Letting x1 = (γ − 1), we have x5 = 1
ρ{(λ− ξu)2 − (γ − 1)e}, thus

x2 =
(γ − 1)

ρ
(λ− ξu)ξ1,

x3 =
(γ − 1)

ρ
(λ− ξu)ξ2,

x4 =
(γ − 1)

ρ
(λ− ξu)ξ3,

x6 =
κ

λτ
ξ1x5 =

κ

ρτλ
{(λ− ξu)2 − (γ − 1)e}ξ1,

x7 =
κ

ρτλ
{(λ− ξu)2 − (γ − 1)e}ξ2,

x8 =
κ

ρτλ
{(λ− ξu)2 − (γ − 1)e}ξ3.

Hence, the right eigenvectors for λj(j = 5, 6, 7, 8) are

~rj =

(
γ − 1,

γ − 1

ρ
(λj − ξu)ξT ,

1

ρ
{(λj − ξu)2 − (γ − 1)e}, κ

ρτλj
{(λj − ξu)2 − (γ − 1)e}ξT

)T
.

One can verify that in case (γ − 1)e = (ξu)2, one of the above eigenvector coincides with ~r∗

we obtained already.

For the left eigenvectors y = (y1, ..., y8) satisfying y ·

λI − 3∑
j=1

ξjAj

 = 0, we carry out a

similar analysis and conclude as follows.

Case 1. ξu = 0.

As for the right eigenvectors, we have in this case again the same situation as in [9].

Case 2. ξu 6= 0.

Case 2.1. Consider the multiple eigenvalues λ1 = λ2 = 0.

Case 2.1.1. If (γ − 1)e 6= (ξu)2, the left eigenvectors are

~l1 = (~01×5,Φ
T
τ1), ~l2 = (~01×5,Φ

T
τ2).

Case 2.1.2. If (γ − 1)e = (ξu)2, we have three left eigenvectors,

~l1, ~l2, and ~l∗ = (ξu,−ρξT , 0, (γ − 1)
ρτ

κ
ξT ).

Case 2.2. For the multiple eigenvalues λ3 = λ4 = ξu, the corresponding left eigenvectors are

~l3 = (0,ΦT
τ1 ,
~01×4), ~l4 = (0,ΦT

τ2 ,
~01×4).
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Case 2.3. Consider λj(j = 5, 6, 7, 8).

The left eigenvectors are

~lj =
(
(γ−1)e, ρ(λj−ξu)ξT ,

ρ

(γ − 1)e
{(λj−ξu)2−(γ−1)e}, 1

(γ − 1)eλj
{(λj−ξu)2−(γ−1)e}ξT

)
.

Again one can verify that in case (γ−1)e = (ξu)2, one of the above left eigenvectors coincides

with ~l∗ already obtained previously.

Summarizing, we obtain the following lemma on the eigenvectors for the matrix Â(ξ).

Lemma 3.3. Suppose τ > 0 is sufficiently small such that the eigenvalues of Â(ξ) are expressed

as in Lemma 3.2. Then the right eigenvectors of Â(ξ) are

~r1 = (01×5,Φ
T
τ1)T ,

~r2 = (01×5,Φ
T
τ2)T ,

~r3 = (0,ΦT
τ1 , 01×4)T ,

~r4 = (0,ΦT
τ2 , 01×4)T ,

~rj =

(
γ − 1,

γ − 1

ρ
(λj − ξu)ξT ,

1

ρ
{(λj − ξu)2 − (γ − 1)e},

κ

ρτλj
{(λj − ξu)2 − (γ − 1)e}ξT

)T
, (j = 5, 6, 7, 8),

and the left eigenvectors are

~l1 = (01×5,Φ
T
τ1),

~l2 = (01×5,Φ
T
τ2),

~l3 = (0,ΦT
τ1 , 01×4),

~l4 = (0,ΦT
τ2 , 01×4),

~lj = Cj

(
(γ − 1)e, ρ(λj − ξu)ξT ,

ρ

(γ − 1)e
{(λj − ξu)2 − (γ − 1)e},

1

(γ − 1)eλj
{(λj − ξu)2 − (γ − 1)e}ξT

)
, (j = 5, 6, 7, 8),

where Cj(j = 5, 6, 7, 8) are chosen constants such that the following normalization condition

holds:

~lj ~rk =

{
1, j = k,

0, j 6= k,
(j, k = 5, 6, 7, 8).

Moreover, by substituting the expansion of λj(j = 5, 6, 7, 8) in terms of τ , we obtain, via a

12



direct computation, that

C5 =
1

2(γ − 1)2e
(1 +O(τ)) , (3.15)

C6 =
1

2(γ − 1)2e
(1 +O(τ)) , (3.16)

C7 =
(γ − 1)e

2

(ρτ
κ

)2 (
1 +O(

√
τ)
)
, (3.17)

C8 =
(γ − 1)e

2

(ρτ
κ

)2 (
1 +O(

√
τ)
)
. (3.18)

3.3 The evolution of the initial singularity

With the help of the matrices of left resp. right eigenvectors with ξ = ∇Φ0,

L :=


~l1
...
~l8

 = L(x), R := [~r1, . . . , ~r8] = R(x),

satisfying LR = I8×8 and depending on x (dependence on ∇Φ0), we transform the original

differential equation (2.10) for V into an equation for W := LV ,

∂tW +
3∑
j=1

(LAjR)∂xjW +


3∑
j=1

(LAj∂xjR) + LA0R

W = 0.

Defining

Ã0 := LA0R+

3∑
j=1

LAj∂xjR

and an initial value

W 0 := LV 0 = LV|t=0,

we may rewrite this as

∂tW +
3∑
j=1

(LAjR)∂xjW + Ã0W = 0, W|t=0 = W 0. (3.19)

In order to describe the evolution of jumps in the initial data, we need the evolution of the

initial surface σ, along which jumps are present, σ ≡ Σ0. This is given through the characteristic

surfaces,

Σ0 := {(t, x) |Φ0(t, x) := Φ0(x) = 0}, for the eigenvalues λ1,2,

Σ1 := {(t, x) |Φ1(t, x) := −ξu · t+ Φ0(x) = 0}, for the eigenvalues λ3,4,

Σk := {(t, x) |Φk(t, x) := −λk · t+ Φ0(x) = 0}, for the eigenvalues λk(k = 5, . . . , 8).

In case that ξu = 0, that is, λ1,2 = λ3,4, the right and left eigenvectors are the same as in the

paper [9], therefore the argument for the evolution of the singularities is also the same. In order
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to concentrate on the new ingredients, we omit the analysis of this part and refer the reader to

[9] for details.

Hereafter, we always assume that ξu 6= 0. We also assume that (ξu)2 6= (γ − 1)e to avoid

that λ5 or λ6 equals 0.

By [f ]Σj we denote the jump of f along Σj , i.e. the difference of the values of the function

f on both sides of the surface Σj , j = 0, 1, 5, 6, 7, 8. Then an analogous argument to the one in

[9] will lead us to the next two results.

Lemma 3.4. Let W be a bounded piecewise smooth solution to the Cauchy problem (3.19).

Then W1,2 are continuous on Σ1 ∪
(
∪8
k=5Σk

)
, W3,4 are continuous on Σ0 ∪

(
∪8
k=5Σk

)
, and

Wi(i = 5, 6, 7, 8) are continuous on Σ0 ∪ Σ1 ∪
(
∪8
k=5,k 6=iΣk

)
. That is,

[Wi]Σk
= 0, (i = 1, 2, k = 1), or (i = 3, 4, k = 0).

[Wi]Σk
= 0, (i = 1, 2, 3, 4, k = 5, 6, 7, 8).

[Wi]Σk
= 0, (i = 5, 6, 7, 8, k = 0, 1).

[Wi]Σk
= 0, (i, k = 5, 6, 7, 8, i 6= k).

This means that, for any i = 1, . . . , 8, the singularity of Wi can only propagate along the char-

acteristic surface corresponding to λi.

Lemma 3.5. W1,2 are continuous on Σ0, so are W3,4 on Σ1. That is,

[Wi]Σ0 = 0, i = 1, 2,

[Wi]Σ1 = 0, i = 3, 4.

Remark 3.6. To obtain this lemma, we exploit the property that ∇× ũp ≡ ∇× q̃p ≡ 0, which

comes from the decomposition ũ = ũp + ũs and q̃ = q̃p + q̃s. Therefore, we present the proof.

Proof. By definition, we have

W1 = q̃p · Φτ1 , W2 = q̃p · Φτ2 , W3 = ũp · Φτ1 , W4 = ũp · Φτ2 ,

where Φτ1 , Φτ1 and ∇Φ0 are unit vectors perpendicular to each other.

We only prove the continuity of W1,2 across Σ0:

[Wi]Σ0 = 0, i = 1, 2.

the continuity of W3,4 across Σ1 can be analogously verified.

We have, via the decomposition q̃ = q̃p + q̃s, that

∇× q̃p ≡ 0,

in the sense of distribution, and also classically away from Σ0. Therefore, for a bounded domain

G ⊂ R+ × R3 with G ∩ Σ0 6= ∅ and any ϕ ∈ (C∞c (Ω))3, we have∫
G
q̃p · (∇× ϕ) = 0,
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which implies ∫
G∩Σ0

(
[q̃p]Σ0 ×

(
∇Φ0

))
· ϕ = 0.

Hence, since ϕ is arbitrary, we obtain that

[q̃p]Σ0 ×
(
∇Φ0

)
= 0,

which yields that

[Wi]Σ0 = 0, i = 1, 2.

In view of the Lemmas 3.4 and 3.5, the remaining problem is to discuss the propagation of

the jumps of Wk on Σk for k = 5, 6, 7, 8.

The k-th equation (k = 5, 6, 7, 8) in (3.19) can be written as

∂tWk +

8∑
m=1

3∑
j=1

(LAjR)km∂xjWm = −
8∑

m=1

(Ã0)kmWm.

Since λk −

(
3∑
j=1

(LAjR)∂xjΦ
0

)
kk

= 0, we have that the operator ∂t +
3∑
j=1

(LAjR)kk∂xj is tan-

gential to Σk = {−λk · t + Φ0(x) = 0}. Analogously, since all entries in the k-th line of the

matrix λkI −
3∑
j=1

(LAjR)∂xjΦ
0 = λkI − Λ̃ vanish, we obtain that, when m 6= k, the vector

(0, (LA1R)km, (LA2R)km, (LA3R)km) is orthogonal to the normal direction
(
−λk, (∇Φ0)T

)
of

Σk, thus the operator
3∑
j=1

(LAjR)km∂xj is also tangential to Σk when m 6= k. Therefore, by ap-

plying Lemma 3.4 and Lemma 3.5, we obtain that the jumps [Wk]Σk
(k = 5, 6, 7, 8) are governed

by the the following transport equations:∂t +

3∑
j=1

(LAjR)kk∂xj + (Ã0)kk

 [Wk]Σk
= 0, (3.20)

with initial conditions: [Wk]Σk |t=0 = [W 0
k ]{Φ0(x)=0}.

Thus, to determine the behavior of [Wk]Σk
, it is essential to study

(
Ã0

)
kk

with Ã0 =

LA0R+
3∑
j=1

LAj∂xjR.

We first look at the part LA0R.

For k = 5, . . . , 8, we have

(LA0R)kk =
1

τ

8∑
j=6

lkjrjk =
1

τ
Ck

1

(γ − 1)eλk
{(λk − ξu)2 − (γ − 1)e}2 κ

ρτλk
,
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Thus, by (3.8)—(3.11) and (3.15)—(3.18), we have

(LA0R)55 =
1

2(γ − 1)2e
(1 +O(τ))

κ

(γ − 1)eρτ2λ2
5

·

{(λ5 − ξu+
√

(γ − 1)e)(λ5 − ξu−
√

(γ − 1)e)}2

=
1 +O(τ)

2(γ − 1)2e

κ

(γ − 1)eρτ2λ2
5

·{(
− ρ

2κ
(γ − 1)2e(ξu−

√
(γ − 1)e)τ

)
(−2

√
(γ − 1)e)(1 +O(τ))

}2

=
ρ

2κ
(γ − 1)2e(1 +O(τ)),

and similarly

(LA0R)66 =
ρ

2κ
(γ − 1)2e(1 +O(τ)).

Also

(LA0R)77 =
(γ − 1)e

2

(ρτ
κ

)2
(1 +O(

√
τ)

κ

(γ − 1)eρτ2λ2
7{(

−
√

κ

ρτ
+O(1)

)2 − (γ − 1)2e

}2

=
1

2

ρ2τ(1 +O(
√
τ))

κ2

{
κ

ρτ
(1 +O(

√
τ)) + (γ − 1)e

}2

=
1

2τ
(1 +O(

√
τ)),

and similarly

(LA0R)88 =
1

2τ
(1 +O(

√
τ)).

Now we turn to the second part

(
3∑
j=1

(LAj∂xjR)

)
kk

for k = 5, 6, 7, 8.

Direct computations follow that

~lkA1∂x1~rk = (ρlk1 + u1lk2 + (γ − 1)elk5)∂x1r2k + u1lk3∂x1r3k + u1lk4∂x1r4k

+
(
(γ − 1)lk2 + u1lk5 +

κ

τ
lk6

)
∂x1r5k +

1

ρ
lk5∂x1r6k,

~lkA2∂x2~rk = u2lk2∂x2r2k + (ρlk1 + u2lk3 + (γ − 1)elk5)∂x2r3k + u2lk4∂x2r4k

+
(
(γ − 1)lk3 + u2lk5 +

k

τ
lk7

)
∂x2r5k +

1

ρ
lk5∂x2r7k,

~lkA3∂x3~rk = u3lk2∂x3r2k + u3lk3∂x3r3k +
(
ρlk1, u3lk4 + (γ − 1)elk5

)
∂x3r4k

+
(
(γ − 1)lk4 + u3lk5 +

κ

τ
lk8

)
∂x3r5k +

1

ρ
lk5∂x3r8k.
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Thus
3∑
j=1

(LAj∂xjR)kk = ~lkA1∂x1~rk +~lkA2∂x2~rk +~lkA3∂x3~rk

=
(
ρlk1 + (γ − 1)elk5

)
(∂x1r2k + ∂x2r3k + ∂x3r4k)

+
1

ρ
lk5(∂x1r6k + ∂x2r7k + ∂x3r8k) +

u1(lk2∂x1r2k + lk3∂x1r3k + lk4∂x1r4k) +

u2(lk2∂x2r2k + lk3∂x2r3k + lk4∂x2r4k) +

u3(lk2∂x3r2k + lk3∂x3r3k + lk4∂x3r4k) +

(γ − 1)(lk2∂x1r5k + lk3∂x2r5k + lk4∂x3r5k) +

lk5(u1∂x1r5k + u2∂x2r5k + u3∂x3r5k) +
κ

τ
(lk6∂x1r5k + lk7∂x2r5k + lk8∂x3r5k).

To get more details on the expressions involving derivatives above, we recall that, for k, j =

5, 6, 7, 8, we have  r2k

r3k

r4k

 =
γ − 1

ρ
(λk − (∇Φ0)u)∇Φ0,

r5k =
1

ρ
{(λk − (∇Φ0)u)2 − (γ − 1)e)}, r6k

r7k

r8k

 =
k

ρτλk
{(λk − (∇Φ0)u)2 − (γ − 1)e}∇Φ0.

and

~lj = Cj

(
(γ − 1)e, ρ(λj − ξu)ξT ,

ρ

(γ − 1)e
{(λj − ξu)2 − (γ − 1)e}, 1

(γ − 1)eλj
{(λj − ξu)2 − (γ − 1)e}ξT

)
.

We consider first k = 5:

λ5 −∇Φ0u = −
√

(γ − 1)e− ρ

2κ
(γ − 1)2e(∇Φ0u−

√
(γ − 1)e)τ +O(τ2),

and, for i, j = 1, 2, 3,

∂xir(j+1)5 = ∂xi

{
γ − 1

ρ

(
−
√

(γ − 1)e− ρ

2κ
(γ − 1)2e(∇Φ0u−

√
(γ − 1)e)τ +O(τ2)

)
∂xjΦ

0

}
= −γ − 1

ρ

√
(γ − 1)e∂xixjΦ

0(1 +O(τ)),

for i = 1, 2, 3,

∂xir55 = ∂xi

{
1

ρ

((
−
√

(γ − 1)e− ρ

2κ
(γ − 1)2e(∇Φ0u−

√
(γ − 1)e)τ +O(τ2)

)2 − (γ − 1)e
)}

=
1

κ

√
(γ − 1)e(γ − 1)2e(∇(∂xiΦ

0)u)τ(1 +O(τ))

= O(τ).
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moreover, for i, j = 1, 2, 3,

∂xir(j+5)5 = ∂xi

{
κ

ρτλ5

(
(λ5 −∇Φ0u)2 − (γ − 1)e

)
· ∂xjΦ0

}
=

κ

ρτλ5
{
(
λ5 −∇Φ0u

)2 − (γ − 1)e}∂xixjΦ0

−κ∂xiλ5

ρτλ2
5

{
(
λ5 −∇Φ0u

)2 − (γ − 1)e}∂xjΦ0

2κ

ρτλ5
(λ5 −∇Φ0u)

(
∂xiλ5 −∇+ (∂xiΦ

0)u
)
∂xjΦ

0

=
√

(γ − 1)e(γ − 1)2e ∂xixjΦ
0(1 +O(τ))

−
√

(γ − 1)e(γ − 1)2e
∇(∂xiΦ

0)u

∇Φ0u−
√

(γ − 1)e
∂xjΦ

0(1 +O(τ))

+
√

(γ − 1)e(γ − 1)2e
∇(∂xiΦ

0)u

∇Φ0u−
√

(γ − 1)e
∂xjΦ

0(1 +O(τ))

=
√

(γ − 1)e(γ − 1)2e ∂xixjΦ
0(1 +O(τ)).

Thus, with the expression (3.15),

(ρlk1 + (γ − 1)elk5)(∂x1r2k + ∂x2r3k + ∂x3r4k)

=C5

(
ρ(γ − 1)e+ ρ{(λ5 −∇Φ0u)2 − (γ − 1)e}

)
·
(
−γ − 1

ρ

√
(γ − 1)e∆Φ0

)(
1 +O(τ)

)
=−

√
(γ − 1)e

2
∆Φ0

(
1 +O(τ)

)
,

1

ρ
lk5(∂x1r6k + ∂x2r7k + ∂x3r8k)

=C5
1

ρ
· ρ

(γ − 1)e
{(λ5 −∇Φ0u)2 − (γ − 1)e}

(√
(γ − 1)e(γ − 1)2e∆Φ0

) (
1 +O(τ)

)
=O(τ),

3∑
j=1

uj(lk2∂xjr2k + lk3∂xjr3k + lk4∂xjr4k)

=C5ρ(λ5 −∇Φ0u)
(
− γ − 1

ρ

√
(γ − 1)e

) 3∑
i=1

∂xiΦ
0
(
u1∂x1xiΦ

0 + u2∂x2xiΦ
0 + u3∂x3xiΦ

0
) (

1 +O(τ)
)

=
1

2
(∇Φ0)T (D2Φ0)u+O(τ)

=O(τ),

where the last equality holds because
∣∣∇Φ0

∣∣ ≡ 1 and

(∇Φ0)T (D2Φ0) =

(
∇
(

1

2

∣∣∇Φ0
∣∣2))T = ~0.
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Finally,

(γ − 1)(lk2∂x1r5k + lk3∂x2r5k + lk4∂x3r5k)

= C5(γ − 1)ρ(λ5 −∇Φ0u)∇Φ0O(τ)

= O(τ),

lk5(u1∂x1r5k + u2∂x2r5k + u3∂x3r5k)

= C5
ρ

(γ − 1)e
{(λ5 −∇Φ0u)2 − (γ − 1)e}uO(τ)

= O(τ),
κ

τ
(lk6∂x1r5k + lk7∂x2r5k + lk8∂x3r5k)

= C5
κ

τ

1

(γ − 1)eλ5
{(λ5 −∇Φ0u)2 − (γ − 1)e}∇Φ0O(τ)

= O(τ).

Hence, concluding the above computation, we obtain, for k = 5, that

3∑
j=1

(LAj∂xjR
)

55
= −

√
(γ − 1)e

2
∆Φ0 +O(τ). (3.21)

For k = 6, with the expression (3.16), we obtain similarly that, for i, j = 1, 2, 3,

λ6 −∇Φ0u =
√

(γ − 1)e− ρ

2κ
(γ − 1)2e(∇Φ0u+

√
(γ − 1)e)τ +O(τ2),

∂xir(j+1)6 =
γ − 1

ρ

√
(γ − 1)e ∂xixjΦ

0(1 +O(τ)),

∂xir56 = −
(γ − 1)2e

√
(γ − 1)e

κ
∇(∂xiΦ

0)uτ(1 +O(τ)),

∂xir(j+5)6 = −(γ − 1)2
√

(γ − 1)e ∂xixjΦ
0(1 +O(τ))

and
3∑
j=1

(LAj∂xjR
)

66
=

√
(γ − 1)e

2
∆Φ0 +O(τ). (3.22)
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For k = 7, we have, for i, j = 1, 2, 3,

λ7 = −
√

κ

ρτ
+O(1),

∂xir(j+1)7 = ∂xi

{
γ − 1

ρ
(λ7 −∇Φ0u)∂xjΦ

0

}
= ∂xi

{
−
√

κ

ρτ

γ − 1

ρ
∂xjΦ

0
(
1 +O(

√
τ)
)}

= −
√

κ

ρτ

(γ − 1)

ρ
∂xixjΦ

0
(
1 +O(

√
τ)
)
,

∂xir57 = ∂xi

{
1

ρ

(
(λ7 −∇Φ0u)2 − (γ − 1)e

)}
= ∂xi

{
1

ρ

κ

ρτ

(
1 +O(

√
τ)
)}

,

= O

(
1√
τ

)
∂xir(5+j)7 = ∂xi

{
κ

ρτλ7

(
(λ7 −∇Φ0u)2 − (γ − 1)e

)
∂xjΦ

0

}
= ∂xi

{
κ

ρτ

(
−
√
ρτ

κ

)(
1 +O(

√
τ)
) κ
ρτ

(
1 +O(

√
τ)
)
∂xjΦ

0

}
= −

( κ
ρτ

) 3
2∂xixjΦ

0
(
1 +O(

√
τ)
)
.

Thus, with the expression (3.17),

(ρlk1 + (γ − 1)elk5)(∂x1r2k + ∂x2r3k + ∂x3r4k)

=C7

(
ρ(γ − 1)e+ ρ{(λ7 −∇Φ0u)2 − (γ − 1)e}

)
·
(
−γ − 1

ρ

√
κ

ρτ
∆Φ0

)(
1 +O(

√
τ)
)

=− (γ − 1)2e

2

√
ρτ

κ
∆Φ0

(
1 +O(

√
τ)
)
,

1

ρ
lk5(∂x1r6k + ∂x2r7k + ∂x3r8k)

=C7
1

ρ
· ρ

(γ − 1)e
{(λ7 −∇Φ0u)2 − (γ − 1)e}

(
(−1)

(
κ

ρτ

) 3
2

∆Φ0

)(
1 +O(

√
τ)
)

=− 1

2

(
κ

ρτ

) 1
2

∆Φ0
(
1 +O(

√
τ)
)
,

3∑
j=1

uj(lk2∂xjr2k + lk3∂xjr3k + lk4∂xjr4k)

=C7ρ(λ7 −∇Φ0u)

3∑
i=1

(
−γ − 1

ρ

√
κ

ρτ

)
∂xiΦ

0(u · ∇x)(∂xiΦ
0)
(
1 +O(

√
τ)
)

=O(τ).
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Finally,

(γ − 1)(lk2∂x1r5k + lk3∂x2r5k + lk4∂x3r5k)

= C7(γ − 1)ρ(λ7 −∇Φ0u)∇Φ0O

(
1√
τ

)
= O(τ),

lk5(u1∂x1r5k + u2∂x2r5k + u3∂x3r5k)

= C7
ρ

(γ − 1)e
{(λ7 −∇Φ0u)2 − (γ − 1)e}uO

(
1√
τ

)
= O(

√
τ),

κ

τ
(lk6∂x1r5k + lk7∂x2r5k + lk8∂x3r5k)

= C7
κ

τ

1

(γ − 1)eλ7
{(λ7 −∇Φ0u)2 − (γ − 1)e}∇Φ0O

(
1√
τ

)
= O(1).

Hence, concluding the above computation, we obtain, for k = 7, that

3∑
j=1

(LAj∂xjR
)

77
= −1

2

(
κ

ρτ

) 1
2

∆Φ0
(
1 +O(

√
τ)
)
. (3.23)

For k = 8, with the expression (3.18), we obtain similarly that, for i, j = 1, 2, 3,

λ8 =

√
κ

ρτ
+O(1),

∂xir(j+1)8 =

√
κ

ρτ

(γ − 1)

ρ
∂xixjΦ

0
(
1 +O(

√
τ)
)
,

∂xir58 = O

(
1√
τ

)
,

∂xir(5+j)8 =
( κ
ρτ

) 3
2∂xixjΦ

0
(
1 +O(

√
τ)
)

and
3∑
j=1

(LAj∂xjR
)

88
=

1

2

(
κ

ρτ

) 1
2

∆Φ0
(
1 +O(

√
τ)
)
. (3.24)

Summarizing, we have obtained the asymptotic expansions

(Ã0)kk =


ρ

2κ
(γ − 1)2e∓

√
(γ − 1)e

2
∆Φ0 +O(τ), for k = 5, 6,

1

2τ
∓ 1

2

( κ
ρτ

) 1
2 ∆Φ0

(
1 +O(

√
τ)
)
, for k = 7, 8.

(3.25)

For any x0 ∈ σ = {x ∈ R3 |Φ0(x) = 0}, let

t 7→ (t, x(k)(t; 0, x0)) = (t, x
(k)
1 (t; 0, x0), x

(k)
2 (t; 0, x0), x

(k)
3 (t; 0, x0))
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describe the characteristic line of the operator ∂t +
∑3

j=1(LAjR)kk∂xj passing through (0, x0),

which lies on the characteristic surface Σk for k = 5, 6, 7, 8:
∂x

(k)
j (t; 0, x0)

∂t
= (LAjR)kk(t, x1, x2, x3),

x
(k)
j (0; 0, x0) = x0

j , j = 1, 2, 3,

and define

[Wk]Σk(t) := [Wk]Σk
(t, x(k)(t; 0, x0)).

For k = 5, 6, 7, 8, let

Dk(t; τ) =

∫ t

0
(Ã0)kk(x

(k)(s; 0, x0))ds,

that is, in view of (3.25),

D5(t; τ) =
(γ − 1)2

2κ
ρet−

√
(γ − 1)e

2

∫ t

0

(
∆Φ0(x(5)(t; 0, x0)) +O(τ)

)
ds, (3.26)

D6(t; τ) =
(γ − 1)2

2κ
ρet+

√
(γ − 1)e

2

∫ t

0

(
∆Φ0(x(6)(t; 0, x0)) +O(τ)

)
ds, (3.27)

D7(t; τ) =
1

2τ
t− 1

2

(
κ

ρτ

) 1
2
∫ t

0

(
∆Φ0(x(7)(t; 0, x0)) +O(

√
τ)
)
ds, (3.28)

D8(t; τ) =
1

2τ
t+

1

2

(
κ

ρτ

) 1
2
∫ t

0

(
∆Φ0(x(8)(t; 0, x0)) +O(

√
τ)
)
ds. (3.29)

Then we conclude from (3.20) and (3.25) that, for k = 5, 6, 7, 8,

[Wk]Σk(t) = [W 0
k ]σ exp

{
−
∫ t

0
(Ã0)kk(~x(s; 0, x0))ds

}
= [W 0

k ]σ · e−Dk(t;τ). (3.30)

Remembering the relation V = RW , we compute V = (ρ̃, ũp, ẽ, q̃p)T as

ρ̃ = (γ − 1)

8∑
j=5

Wj ,

ũp = Φτ1 ·W3 + Φτ2 ·W4 +∇Φ0 ·
8∑
j=5

γ − 1

ρ
(λj −∇Φ0u)Wj ,

ẽ =
8∑
j=5

1

ρ
{(λj −∇Φ0u)2 − (γ − 1)e}Wj ,

q̃p = Φτ1 ·W1 + Φτ2 ·W2 +∇Φ0 ·
8∑
j=5

κ

ρτλj
{(λj −∇Φ0u)2 − (γ − 1)e}Wj .
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Therefore, in view of Lemma 3.4, we have

[ρ̃]Σk
= (γ − 1)[Wk]Σk

, for k = 5, 6, 7, 8,

[ũp]Σk
=

 ∇Φ0 γ−1
ρ (∓

√
(γ − 1)e)(1 +O(τ))[Wk]Σk

, for k = 5, 6,

∇Φ0 γ−1
ρ

(
∓
√

κ
ρτ

)
(1 +O(

√
τ))[Wk]Σk

, for k = 7, 8,

[ẽ]Σk
=

 ± (γ−1)2e
√

(γ−1)e

κ

(
∇Φ0u∓

√
(γ − 1)e

)
τ(1 +O(τ))[Wk]Σk

, for k = 5, 6
κ
ρ2τ

(1 +O(
√
τ))[Wk]Σk

, for k = 7, 8,

[q̃p]Σk
=

{
∇Φ0

(
± (γ − 1)2

√
(γ − 1)e

)
(1 +O(τ))[Wk]Σk

for k = 5, 6,

∇Φ0
(
∓
(
κ
ρτ

) 3
2
)
(1 +O(

√
τ))[Wk]Σk

for k = 7, 8.

Since W = LV , we have

[W 0
k ]0 = [LV 0]0, Wk = lk1ρ̃+

∑
j=2

lkj ũj + lk5ẽ+

8∑
j=8

lkj q̃j .

Thus we compute, for k = 5, 6:

Wk =
1

2(γ − 1)2e
(1 +O(τ))

{
(γ − 1)eρ̃+ ρ(λk −∇Φ0u)(∇Φ0ũp) +

ρ

(γ − 1)e
·

·{(λk −∇Φ0u)2 − (γ − 1)e}ẽ+
1

(γ − 1)eλk
{(λk −∇Φ0u)2 − (γ − 1)e}(∇Φ0q̃p)

}
=

( 1

2(γ − 1)
ρ̃∓

ρ
√

(γ − 1)e

2(γ − 1)2e
∇Φ0ũp

)
(1 +O(τ)) +O(τ)ẽ+O(τ)(∇Φ0q̃p),

=
1

2(γ − 1)

(
ρ̃∓ ρ√

(γ − 1)e
∇Φ0 · ũp

)(
1 +O(τ)

)
,

and for k = 7, 8:

Wk =
(γ − 1)e

2

(ρτ
κ

)2
(1 +O(

√
τ))

{
(γ − 1)eρ̃+ ρ(λk −∇Φ0u)(∇Φ0ũp) +

ρ

(γ − 1)e
·

·{(λk −∇Φ0u)2 − (γ − 1)e}ẽ+
1

(γ − 1)eλk
{(λk −∇Φ0u)2 − (γ − 1)e}(∇Φ0q̃p)

}
=

(γ − 1)2e2

2

(ρτ
κ

)2
ρ̃(1 +O(

√
τ))∓ (γ − 1)eρ

2

(ρτ
κ

) 3
2∇Φ0ũp(1 +O(

√
τ))

+
ρ

2

(ρτ
κ

)
ẽ(1 +O(

√
τ))∓ 1

2

(ρτ
κ

) 3
2∇Φ0q̃p(1 +O(

√
τ)),

=

(
1

2

ρ2τ

κ
ẽ∓ 1

2

(ρτ
κ

) 3
2 ∇Φ0 · ((γ − 1)ρeũp + q̃p) +

1

2
(γ − 1)2e2

(ρτ
κ

)2
)

(1 +O(
√
τ))

=
1

2

ρ2τ

κ
ẽ(1 +O(

√
τ)).
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Hence,

[W 0
k ]σ =


1

2(γ − 1)

(
[ρ̃0]σ ∓

ρ√
(γ − 1)e

[∇Φ0 · ũp0]σ

)(
1 +O(τ)

)
, k = 5, 6.

1

2

ρ2τ

κ
[ẽ0]σ(1 +O(

√
τ)), k = 7, 8.

Thus we have

[ρ̃]Σk
= (γ − 1)[Wk]Σk

= (γ − 1)[W 0
k ]σ · e−Dk(t;τ)

=


1

2

(
[ρ̃0]σ ∓

ρ√
(γ − 1)e

[∇Φ0 · ũp0]σ

)(
1 +O(τ)

)
· e−Dk(t;τ), k = 5, 6,

1

2

ρ2τ

κ
[ẽ0]σ(1 +O(

√
τ)) · e−Dk(t;τ), k = 7, 8.

[ũp]Σk
=

 ∇Φ0 γ−1
ρ (∓

√
(γ − 1)e)(1 +O(τ))[Wk]Σk

, k = 5, 6,

∇Φ0 γ−1
ρ

(
∓
√

κ
ρτ

)(
1 +O(

√
τ)
)
[Wk]Σk

, k = 7, 8,

=



∇Φ0 ·
√

(γ − 1)e

2ρ

(
∓[ρ̃0]σ +

ρ√
(γ − 1)e

[∇Φ0 · ũp0]σ

)(
1 +O(τ)

)
· e−Dk(t;τ),

k = 5, 6,

∇Φ0 ·
(
∓γ − 1

2

√
ρτ

κ

)
[ẽ0]σ

(
1 +O(

√
τ)
)
· e−Dk(t;τ),

k = 7, 8,

[ẽ]Σk
=

 ± (γ−1)2e
√

(γ−1)e

κ

(
∇Φ0u∓

√
(γ − 1)e

)
τ(1 +O(τ))[Wk]Σk

, k = 5, 6,
κ
ρ2τ

(
1 +O(

√
τ)
)
[Wk]Σk

, k = 7, 8,

=

{
O(τ) · e−Dk(t;τ), k = 5, 6,
1
2 [ẽ0]σ

(
1 +O(

√
τ)
)
· e−Dk(t;τ), k = 7, 8.

[q̃p]Σk
=

{
∇Φ0

(
± (γ − 1)2

√
(γ − 1)e

)
(1 +O(τ))[Wk]Σk

, k = 5, 6,

∇Φ0
(
∓
(
κ
ρτ

) 3
2
)(

1 +O(
√
τ)
)
[Wk]Σk

, k = 7, 8,

=



∇Φ0 ·
(γ − 1)

√
(γ − 1)e

2

(
±[ρ̃0]σ −

ρ√
(γ − 1)e

[∇Φ0ũp0]σ

)
(1 +O(τ)) · e−Dk(t;τ)

k = 5, 6,

∇Φ0 ·
(
∓ρ

2

√
κ

ρτ

)
[ẽ0]σ

(
1 +O(

√
τ)
)
· e−Dk(t;τ),

k = 7, 8.
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Summarizing we obtain the following characteristic behavior of the evolving jumps along Σk.

Theorem 3.7. Suppose that the initial data of V0 = (ρ̃0, ũ
p
0, ẽ0, q̃

p
0)T for the system (2.10) may

have jumps on σ =
{

Φ0(x) = 0
}

with
∣∣∇Φ0(x)

∣∣ = 1. Then the jumps will propagate along the

characteristic surfaces Σk(k = 5, 6, 7, 8) and the propagation is given by

[ρ̃]Σk
=


1

2

(
[ρ̃0]σ ∓

ρ√
(γ − 1)e

[∇Φ0 · ũp0]σ

)(
1 +O(τ)

)
· e−Dk(t;τ), k = 5, 6,

O(τ) · e−Dk(t;τ), k = 7, 8.

[ũp]Σk
=


∇Φ0 ·

√
(γ − 1)e

2ρ

(
∓[ρ̃0]σ +

ρ√
(γ − 1)e

[∇Φ0 · ũp0]σ

)(
1 +O(τ)

)
· e−Dk(t;τ),

k = 5, 6,

∇Φ0 ·O(
√
τ) · e−Dk(t;τ), k = 7, 8.

[ẽ]Σk
=

 O(τ) · e−Dk(t;τ), k = 5, 6,
1

2
[ẽ0]σ

(
1 +O(

√
τ)
)
· e−Dk(t;τ), k = 7, 8.

[q̃p]Σk
=


∇Φ0 ·

(γ − 1)
√

(γ − 1)e

2

(
±[ρ̃0]σ −

ρ√
(γ − 1)e

[∇Φ0ũp0]σ

)
(1 +O(τ)) · e−Dk(t;τ),

k = 5, 6,

∇Φ0 ·
(
∓ρ

2

√
κ

ρτ

)
[ẽ0]σ

(
1 +O(

√
τ)
)
· e−Dk(t;τ), k = 7, 8.

where Dk(t; τ) with k = 5, 6, 7, 8 is given as in (3.26)—(3.29). That is, as t→∞ or τ → 0, the

propagation of the jumps of V = (ρ̃, ũp, ẽ, q̃p)T depends on the parameters of the coefficients of

the equations (2.10) and the mean curvature

H =
4Φ0

2

of the initial surface σ:

1. On the characteristic surfaces Σ5 and Σ6, as τ → 0, the jumps of ρ̃, ũp, q̃p will remain while

the jumps of ẽ will vanish of order O(τ), which shows a smoothing effect in the system

(2.10) when τ → 0.

2. On the characteristic surfaces Σ5 ( or Σ6 resp.), as t → ∞, the jumps of ρ̃, ũp, q̃p will

decay exponentially as long as (γ−1)2ρe
κ −

√
(γ − 1)e4Φ0 ( or (γ−1)2ρe

κ +
√

(γ − 1)e4Φ0

resp.) are positive.

3. On the characteristic surfaces Σ7 and Σ8, the jumps of V will decay exponentially as τ → 0

or t→∞ for a fixed small τ > 0.
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Remark 3.8. The key terms describing the asymptotical behaviors in Theorem 3.7 are similar

to the ones for the equations of thermoelasticity with second sound in [9]. Hence, it would be

possible to add nonhomogeneous terms or semilinear terms on the right-hand side of the equa-

tions (2.1) – (2.8) and carry out a similar analysis as in [9].
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