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Abstract: We consider the compressible Euler equations in three space dimensions where heat conduction
is modeled by Cattaneo’s law instead of Fourier’s law. For the arising purely hyperbolic system, the
asymptotic behavior of discontinuous solutions to the linearized Cauchy problem is investigated. We give
a description of the behavior as time tends to infinity and, in particular, as the relaxation parameter
tends to zero. The latter corresponds to the singular limit and a formal convergence to the classical (i.e.
Fourier law for the heat flux - temperature relation) Euler system. We recover a phenomenon observed for
hyperbolic thermoelasticity, namely the dependence of the asymptotic behavior on the mean curvature

of the initial surface of discontinuity; in addition, we observe a more complex behavior in general.
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1 Introduction
The compressible Euler system with Cattaneo’s law for heat conduction consists of the equations

pe+div(pu) = 0 (1.1

(pu)¢ +div (pu @ u+pI) = 0, (1.2
(pE)¢ +div ((pE+p)u+q) = O, (1.3
Tt + KVe+q = 0 (1.4

i

)

where p,u = (u1,us,u3)’, E,p,q = (q1,q2,q3)", e represent density, velocity, total energy, pres-
sure, heat flux, and internal energy, respectively, cf. [2]. Functions depend on the time variable
t € Ry and on the space variable z € R? (Cauchy problem). I is the identity matrix, K is
a given positive definite matrix which we assume to equal kI with k > 0, and 7 > 0 is the

relaxation parameter. The relations
1
p=(=1pe, E= fuf+e (1.5)

are assumed to hold with a constant v > 1 (polytropic gases). The case 7 = 0 corresponds to

Fourier’s law of heat conduction, while 7 > 0 represents Cattaneo’s law.



We have initial conditions
pt=10)=p°% u(t=0) =1 et =0)=¢" q(t=0)=¢°, (1.6)

and we shall be interested in the asymptotic behavior of solutions to the corresponding linearized

system (cf. (2.1) — (2.8) below) with initial data that may have jumps on an initial surface o

given by
c={zeQCR®@2)=0} (1.7)
as the level set of a C2-function
P Qy C R — R3, (1.8)
with
V®?| =1 on Q, (1.9)

defined on an open set €y C R, which is a neighborhood of the surface o. Assumption (1.9) is
made without loss of generality, ®° may be taken as the distance function ®°(z) = dist (z, o),
cp. [4].

The classical Euler system corresponding to 7 = 0 has been widely investigated (see for
example [11, 3] and the references therein). We are interested in describing the propagation of
initial jumps in the data as time t tends to infinity, and, in particular, in giving information on
the behavior of the propagating jumps as 7 — 0. That is, we shall describe the effect of the
singular limit of the hyperbolic system to the usual hyperbolic-parabolic one.

This kind of analysis has been carried out for the system of hyperbolic resp. hyperbolic-
parabolic thermoelasticity in [8] in one space dimension, and in [9] in three (or two) space
dimensions (for an extension to compressible Navier-Stokes equations cf. [6]). In the latter case,
an interesting relation between the geometry of the initial surface of discontinuity o and the
asymptotic behavior was found saying that the behavior strongly depends on the mean curvature
of 0.

We shall demonstrate that, again, the mean curvature may determine the specific asymptotic
behavior; but, in addition, we shall investigate the, in general, more complex behavior. The
linearized system (2.1) — (2.8) is obviously more complicated. Indeed, the linearized equations
of thermoelasticity in [9] can be considered as a special case of (2.1) — (2.8) with u = 0, under
the notation correspondence indicated in Section 3.2. However, it turns out that the dominating
terms describing the asymptotic behavior of the propagation of the initial jumps are basically
the same as the ones for thermoelasticity in [9], and the mean curvature of the surface of initial
discontinuities plays an important role.

In using expansions with respect to the relaxation parameter 7, we shall obtain that the jumps
evolving on the characteristic surfaces go to zero for the internal energy e (or, equivalently, the
temperature for polytropic gases) as 7 — 0, a mirror of the singular limit and the approach of
the hyperbolic-parabolic system.

As in thermoelasticity [9], we notice that the decay of the jumps is faster for smaller heat
conductive coeflicient which is similar to a phenomenon observed for discontinuous solutions to

the compressible Navier-Stokes equations by Hoff [5].



We remark that our three-dimensional discussion immediately carries over to the one- and
two-dimensional cases. Of course, for the one-dimensional case, the initial singularity only lies
in the origin, so that there will be no mean curvature terms in the dominating terms describing
the asymptotic behavior, which is similar as in thermoelasticity [8].

The paper is organized as follows: In Section 2 we shall give the setting in a normalized form
of a first-order system, and Section 3 presents the discussion of the asymptotics, the main result

being summarized in Theorem 3.7.

2 Linearization and decomposition
We rewrite the equation for the conservation of energy (1.3), using (1.5), as
Lo Lo Lo
pudu-+ 3 |ul*dup + Dulpe) + 3 v (o) + 9 (5 uf?)puct

div (peu) + p div u + uVp +div ¢ = 0.

Using (1.1) and (1.2), we arrive at
O(pe) + div (peu) + pdiv u + div ¢ = 0,

or
1

oe +uVe+ (v — 1ediv u+ —div ¢ = 0.
p

Now we linearize the equations (1.1) — (1.3) to the following system for the unknowns p, u, €, q,

with (now) constant p, u, e, g:

6,5,54- u18x1;7+ p@xlﬂl + UanZﬁ—i— p@mﬂg + U3(913ﬁ+ p&msﬂg = 0, (21)
~ - ~ ~ (& ~ ~
Oy + w10z, U1 + U204, U1 + u30ypsu1 + (77 — 1);8$1p +(y—1)0,€e = 0, (2.2)
~ ~ . - e -
O + 10z, Uz + U204, U + u30z5U2 + (7 — 1);8$2p + (y—1)0e = 0, (2.3)
~ _ . ~ e ~
O3 + w10z, U3 + U204, Uz + u30zsus + (7 — 1);8333;) + (y—1)0e = 0, (2.4)
0€ + 110z, € + U20z,€ + uz0y,€ + (v — 1)e(0z, U1 + gyt + Opyus)
1 _ - -
+;(3x1q1 + 05,q2 + 023G3) = 0, (2.5)
. K o1
oq1 + —0né+—-q1 = 0, (2.6)
T T
- K. - 1_
8#12 + *811326 + —q2 = Oa (27)
T T
- K. - 1.
03 + —0gs€+ =Gz = 0. (2.8)
T T
We have the initial values
pit=0)=7p u(t=0)=a’ et=0)=2 git=0) =7, (2.9)

which may have jumps on the initial surface o given by (1.8).



Introducing the vector

)T

p,u1,u2,u3,¢€,q1,42,43

(

we may rewrite equations (2.1) — (2.8) as the following first-order system

(2.10)

oV + Alé?le + Agamv + A3613V + AgV = 0,

where
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Finally, we decompose the vectors u := (u1, u2, u3)” and q := (q1,q2,¢3)" into their potential
and solenoidal parts,

P=@E, =T
with

Vxa?=Vxg =0, diva® = divg® = 0.

Correspondingly, the initial data 2% and ¢° are also decomposed,
70 = 70P 4 70, G =" + .
Since u is a constant vector, we have the identities
VX ((u-V)uP)=(u-V)(VxuP)=0, div ((u - V)u®) =0,

which imply a decomposition of the equations (2.1) — (2.8) into a system for (p,uP?,¢€,qP) that

has exactly the same structure as (2.1) — (2.8), and the following system for (u*,q*),

o’ + (u-V)u' = 0, (2.11)
XG + %as = 0. (2.12)
As initial conditions we have
pit=0)=7° @t =0)=a"", et=0)=2", @t=0) =", (2.13)
and
st =0) =a", F(t=0)=g"" (2.14)

Since (2.12) is explicitly solvable, and since (2.11) is of a well-known type, cp. [1, 7, 10], the
propagation of the jumps of the solenoidal parts u® and ¢° can be easily obtained. Thus we only
look at the system for (p,uP,e€,qP) given in (2.1) — (2.8) (with (u, q) replaced by (u?,¢P)), with
the initial data (2.13).

Remark 2.1. The decomposition will be used in the analysis of possible discontinuities for the

etgenvalues A =0, £ - u.

3 Asymptotic behavior as t — oo or 7 — 0

In order to obtain an appropriate representation of solutions V' = (p, ", €, ¢?)” to the first-order
system (2.10) that allows a detailed description of the asymptotic behavior of the solutions as
t — oo or T — 0, we first determine, as in [9], the eigenvalues and eigenvectors of the associated

matrix ,
A() =) &4,
j=1

where & = (£1,&2,&3)7 € R3. Then, expansions in the parameter 7 will be given, followed by the

investigation of the evolution of jumps across the corresponding characteristic surfaces.



3.1 The eigenvalues and their expansions in the parameter 7.

We compute the characteristic polynomial of A(£),

3
Py(X, &7) = det(A] — A(€)) = det(A — > &A;)

With &u := £ - u, we directly have that

Let

Bl =

and

Then we have

3
A=) A =
j=1

—p&1 —pk2
\—&u 0
0 A—E&u
0 0
—(y—De&s —(y— ek
0 0
0 0
0 0
A—&u —p&1
—(y-1 A-fu
—(r 15k 0
—(v =158 0
0 —(vy—1e&
A—E&u
By = —(y— 1)%51
—(v - 1)%52
(v =15

j=1

—p&3

0
0

A—E&u
—(v —1)egs

0
0
0

—(y = 1)es

—p&1
A—&u
0
0

—p&2
0

A—E&u
0

(A€ Q).

0 0 0
—(y=-1& 0 0
—(y-1& 0 0
—(y-1& 0 0

Aot i lg
-8 A 0
—2& 0 A
—2&3 0 0
—pE3 0 |

0 —(v=1D&

0 —(v=1)&

A—&u —(v—=1)&
—(v=1efs  A—¢&u
—p&s
0
0
A—&u

Py(\, € 7) = A3 det By — A2pi\§|2 det Bs.
T

By a direct computation it follows that

and

det By = (A — &u)®{(A — &u)? — y(v — D)el¢|},

det By = (A — €u)?{(A — €u)? — (v — De|é]?},

(3.1)

|
> © O™ O © © O
o




hence

PG = N =) A0 - ) (A= €u)? = 2(y = DeléP?) -
PO~ e — (= yelél?) |
= A=)\ & 7). (3.4)

Remark 3.1. In the one- and two-dimensional cases, we have similar expressions for the cor-

responding characteristic polynomials Py (d =1,2):

Py(\&7) = 2T = gu) T QN & 7). (3.5)
where u, & € R&1,

It is clear that the polynomial P3(\,§;7) in (3.4) has eight roots \j(j = 1,2,---,8) with
A1 = A2 =0, A3 = Ay = &u, and X5, A, A7, Ag being the roots to the equation Q(\, §;7) = 0. We
observe that A1, Ao, A3, A4 are independent of 7, while As, Ag, A7, Ag are not. So we turn to the

expansion of eigenvalues A5, Ag, A7, Ag in terms of the parameter 7 as 7 — 0.
Let

FOAT) :=71Q\&7) = TAN = Eu){(A — €u)? — (v — 1)ye} — g{(A —&u)® = (y = 1)e}.
By letting 7 = 0 and solving the equation
FO0) = = {(A = u)? = (v~ e} =0,

we obtain the solution )\gﬁ with

M =¢u—+/(y - 1e. A = u+ /(v = 1e.

Note that if (€u)? = (v — 1)e, one of A5 and )¢ is 0, which equals A\; and \g. Since

S(00) =

O\

oF —2ff()\—£U),

we have

OF 2k
a()‘gﬁvo) = i?\/ (v =1)e #0.

By the implicit function theorem, we have As6 = A56(7) near (AJg,0) from the equation
F (X, 7) = 0. Differentiating F'(\(7),7) = 0 with respect to 7, we get

OF OF

- ! - =
Y N(T) + o 0.
Thus, we obtain
oF
S=(A(0),
)\/(0):_87(() )



Since

o =M - (A~ €u — (7~ e}
we obtain OF
5-08,0) = (v = D%/ (v = De(€u = V(v = D),
and
00,0 =~y ~ 1%ev/& — Delu+ Vi~ o)
Thus,
X(0) = (v - Pe(éu— /(7 - Do),
No(0) = —L-(y—1e(u+ /(7= De

We conclude
As(T) = A+ M (0)T + O(7?)
= (u—+V(y—1)e) - (—1)26(€u— (v = De)T +0(r?),
Xe(T) = Ao+ N(0)7 +0(72)

= (Eu++/(y—1)e) 2— (v — 1)%e(€u+ /(v — 1)e)T + O(7?
To expand A7 and Ag, we define, with A := %
1
GA, 1) = FF()\,T)

— (1 = Cul){(1 — Euh)® — (v — 1)yeh’} — %A?{(l — tuh)? — (v — 1)eA?}.

Then G(0,0) = 0 and g—f(0,0) = 0. Also, we have %—f(0,0) = 1, hence, using the implicit

function theorem again, we get 7 = 7(A) near (0,0) from the equation G(A,7) = 0, and we

conclude G oG
A + ET’ =0, hence 7'(0)=0,
(62G+ oG ’>+8—G " re oG, ) =0
oA2 " anor ) T ar T T T \araA T or2 '
Since gQTCQ;(O,O) = —27"“, we have 77(0) = 27“. Hence
r(A) = %A2 +O(AY),
and then )
K
ke E(l + O(A)),
that is,

A2 = p%(l +0(V7)),

M (1) = —\/p?T—i- O(1), (1) = \/p?T—i- o(1).

Summarizing, we obtain the following lemma on the eigenvalues of the matrix E(g ).

and we have

8



Lemma 3.2. Let 7 > 0 be sufficiently small. Then the characteristic polynomial Ps (X, &;T) of

A\(f) has eight real roots, depending on T, as below:

A
A

Xs(7) = (u= V(7 =De) = L=y = 1% (su— V(7= De) 7+ O(?),
(ﬁu ++(y— 1)6) - i(’y —1)% <£u + (v — 1)e> T+ 0(7%),

Ar(7) —\/Z+ 0(1), (3.10)
As(7) = \/i* 0(1). (3.11)

3.2 The right and left eigenvectors

Next, we compute the eigenvectors corresponding to the above eigenvalues of A({) First, we

determine the right eigenvectors = = (x,... ,xg)T satisfying the equation, assuming [£]? = 1,
3
(M =) Az =0. (3.12)
j=1

There are two cases.
Case 1. &u=0.
Then

P06 7) = AN (N2 = y(y — 1)e) — p%w — (v - 1)e)}.

The characteristic polynomial and the matrix fl(§) coincide with those in the thermoelastic
situation in [9], in the sense of the following correspondence(the notations in the paper [9] are

placed on the left side of “~”, and the ones for our equations are placed on the right):

divu? ~ _87 'LLI; ~ ﬁpv 6~ é; qp ~ q‘p,
p
1
a2N(7_1)e> ﬂN’Y_l) 6’\"(7_1)67 v~

p
Therefore, in order to focus on the new ingredients, we omit the right eigenvectors for this case.
Case 2. &u # 0.

Then we have the eigenvalues \; = Ao = 0, A3 = Ay = &u, and A5, g, A7, Ag, which are
expressed by (3.8)—(3.11).
Case 2.1. For the multiple eigenvalues Ay = A2 = 0, we have x5 = 0 by the last three equations
of (3.12), and the first four equations of (3.12) read

—{uxy —p&rze  —plaws  —p&zry =0,
—(y—=1)e&1z1  —p&uxs =0,
— (v — 1)e&az1 —pSuzs =0,
—(y — 1)egza —pluxy =0,



hence
{(y = De = (¢u)*}z1 = 0.
Case 2.1.1. If (y—1)e # (u)?, then x1 = 0 and, since &u # 0, we have x9 = 3 = x4 = 0. This
implies, by the fifth equation in (3.12), that
§1w6 + Sow7 + §378 = 0.

Thus, denoting by ®,,, ®,,,¢ (thinking of ¢ = V®Y) an orthonormal basis of R?, we have the

right eigenvectors for A\; = Ao = 0 as follows:
7 = (61><5,(I)77_1)T7 75 = (61><5,(I)77_;)T,

Case 2.1.2. If (y — 1)e = (€u)?, then the multiplicity of the eigenvalue 0 is 3 and we have three
eigenvectors

- . e

r1,72, and Ts = (Eua _(7 - 1);§T7 07 (7 - 1)262£T)T‘

Case 2.2. Consider the eigenvalues A3 = Ay = &u.
Then the equations (3.12) imply

§roe + &ex3 + 324 = 0,

e e

—&x1+€xs = 0= —x1+ 25 =0,

P P

§1we + &7 +E328 = O,
T
K K
—;$5'§+§U x7 = 0= —;\§|2$5+§U(€1$6+§2$7+§3$8) =0,

s =0

hence, we have 1 = x5 = 0, and since {u # 0, g = x7 = xg = 0. Thus, the corresponding right
eigenvectors are
7= (0,07, 0ixa)", 75 = (0,07, 01xa)”

Case 2.3. Consider the last eigenvalues A5, Ag, A7, Ag which satisfy the equation
K
QAET) = M = Eu){(A = €u)? —v(y = 1)e} — E{(’\ —&u)? — (y = 1)e} = 0.

The first four equations in (3.12) yield
A;£u$1 — &1z — §ow3 — L34 = 0,
_@H%l + (A= &u)(&1mz + Eaws + &3xa) — (v = 1)|EPE = 0,
implying
1
;{()\ —&u)? — (y = De}xy — (v — Das = 0. (3.13)
The last four equations yield
—@(A —&u)zy + (A — Eu)ws — %(511‘6 + &7 + &) = 0,
—E[Eas + M&rwe + Soar + Eas) = 0,

10



implying
—”_pl)e(A — eu)ar + O\ — Eu— p%)xg) = 0. (3.14)

The determinant I' corresponding to the linear system (3.13), (3.14) is
K
L=\ =& {(A—E&u)* —y(y —1e} — pT)\{()‘ —&u)’ = (v = e} = QN &),

which equals 0 for the eigenvalues As, Ag, A7, Ag.
Letting 1 = (v — 1), we have x5 = %{()\ —¢u)? — (y — 1)e}, thus

= 0,

= 0

Ty = b ; 2, (A = &u)&s,

v = s = (- 6w = (= el
o= S0P - - el

5 = é%(k—@f—twﬂkka

Hence, the right eigenvectors for A\;(j = 5,6,7,8) are

A
pPTA;

One can verify that in case (7 — 1)e = (£u)?, one of the above eigenvector coincides with 77,

T
= (=1 IR0 - €€ (0 = 0 - (= D), {0y - 0 - (- el )

we obtained already.
3
For the left eigenvectors y = (y1, ..., yg) satisfying y - | \[ — Z@Aj = 0, we carry out a
j=1

similar analysis and conclude as follows.

Case 1. &u=0.

As for the right eigenvectors, we have in this case again the same situation as in [9].
Case 2. &u #0.

Case 2.1. Consider the multiple eigenvalues A\ = Ao = 0.

Case 2.1.1. If (v — 1)e # (£u)?, the left eigenvectors are

I1 = (O1x5,@%), 1o = (015, @L).
Case 2.1.2. If (v — 1)e = (€u)?, we have three left eigenvectors,
I, I3, and I = (§u,—p”,0, (v = 1) 22eT).
Case 2.2. For the multiple eigenvalues A3 = A\y = &u, the corresponding left eigenvectors are

l;: = (0> (1)3—1761X4)a lz = (qu);l—;aﬁlxll)-

11



Case 2.3. Consider \;(j = 5,6,7,8).
The left eigenvectors are

. p 1
lj = ((’Y— De, p(A; —Eu)e, W{O\j —&u)?—(y—1)e}, m{@j —&u)?—(vy— 1)€}§T)‘

Again one can verify that in case (y—1)e = (£u)?, one of the above left eigenvectors coincides
with [, already obtained previously.

Summarizing, we obtain the following lemma on the eigenvectors for the matrix A(ﬁ ).

Lemma 3.3. Suppose 7 > 0 is sufficiently small such that the eigenvalues of A({) are expressed
as i Lemma 3.2. Then the right eigenvectors of A(E) are

71 (015, ®2)T,
7 = (O1x5, ®L)7,
7= (0,9],01x4)",
o= (0, <1>Z2,01X4)T,

i = (7—1 TR0 - )€, 110 — 6w — (7 - el

T
AN @ = (=D)L G=56.7.8),

and the left eigenvectors are

Ii = (01x5,® )7
l; - (01><57 )
5 = (0, L 01x4),

ZZ == (qu)7-2701><4)7

P
5= G (= Deply — €07, L0y — 60 - (- ek
1

EE WIS 1>e}sT)  (=5.6.7.9)

where Cj(j = 5,6,7,8) are chosen constants such that the following normalization condition
holds:
o 1 i =k
Gre= 0T ik =5,67.8).
0, j#k,

Moreover, by substituting the expansion of \j(j = 5,6,7,8) in terms of T, we obtain, via a

12



direct computation, that

Cs = 50—y, (10, (3.15)
Co = M (1+40(r)), (3.16)
Cr = (7_21)6 (%)2 (1+0(/7), (3.17)
Cy = (7_21)6 (%)2 (1+0(v7). (3.18)

3.3 The evolution of the initial singularity

With the help of the matrices of left resp. right eigenvectors with ¢ = V®©,

satisfying LR = Igxs and depending on x (dependence on V®), we transform the original
differential equation (2.10) for V into an equation for W := LV,

3 3
W + 3 (LAR)O,W + > (LA;j05,R) + LAR ¢ W = 0.
Jj=1 j=1

Defining
3
Ag:=LAR+Y LA;j0, R
j=1
and an initial value

W0 =LV = LV},

we may rewrite this as

3
AW +> (LAR)O,, W + AW =0,  Wjmg = W°. (3.19)
j=1
In order to describe the evolution of jumps in the initial data, we need the evolution of the

initial surface o, along which jumps are present, ¢ = Y. This is given through the characteristic

surfaces,

={(t,z) | Po(t,z) := ®°(x) = 0}, for the eigenvalues A 2,
{( )| ®1(t,z) = —Eu -t + ®O(x) = 0}, for the eigenvalues A3 4,
Y = {(t,z) | Pr(t,z) := =g -t + ®%(z) = 0}, for the eigenvalues A\x(k =5,...,8).

In case that {u = 0, that is, A; 2 = A3 4, the right and left eigenvectors are the same as in the

paper [9], therefore the argument for the evolution of the singularities is also the same. In order

13



to concentrate on the new ingredients, we omit the analysis of this part and refer the reader to
9] for details.

Hereafter, we always assume that éu # 0. We also assume that (£u)? # (7 — 1)e to avoid
that A5 or Ag equals 0.

By [f]s, we denote the jump of f along ¥, i.e. the difference of the values of the function
f on both sides of the surface ¥;, j =0,1,5,6,7,8. Then an analogous argument to the one in

[9] will lead us to the next two results.

Lemma 3.4. Let W be a bounded piecewise smooth solution to the Cauchy problem (3.19).
Then W12 are continuous on X U (U2:5Ek), W34 are continuous on g U (U2:5Zk), and
W;(i = 5,6,7,8) are continuous on Yo U 31 U (Uz:&k#Z‘k). That is,

(Wils, =0, (i=1,2, k=1), or (i=23,4, k=0).
[Wils, =0, (i=1,23,4, k=5,6,7,8).
[Wils, =0, (i=5,6,7,8, k=0,1).
[Wils, =0, (i,k =5,6,7,8, i # k).

This means that, for any i =1,...,8, the singularity of W; can only propagate along the char-

acteristic surface corresponding to ;.

Lemma 3.5. Wy are continuous on g, so are W34 on 1. That is,

Remark 3.6. To obtain this lemma, we exploit the property that V x uP =V x ¢P = 0, which

comes from the decomposition u = uP + u® and ¢ = ¢° + ¢°. Therefore, we present the proof.
Proof. By definition, we have
leqp'q)Tp WZZ(}p'@TQa W3:ﬂp'(1)7'17 W4:ap-<1>7_2’

where ®,,, ®,, and V®° are unit vectors perpendicular to each other.

We only prove the continuity of W o across Xo:
[Wils, =0, 1=1,2.

the continuity of W3 4 across ¥; can be analogously verified.

We have, via the decomposition § = ¢P + ¢°, that

in the sense of distribution, and also classically away from 4. Therefore, for a bounded domain
G CRT x R? with G N # 0 and any ¢ € (C°(2))?, we have

/qu-<va0>=0,

14



which implies
[ (@ x (739) -0 =0
GNXo

Hence, since ¢ is arbitrary, we obtain that

which yields that

O

In view of the Lemmas 3.4 and 3.5, the remaining problem is to discuss the propagation of
the jumps of Wy, on ¥, for £ =5,6,7,8.
The k-th equation (k = 5,6,7,8) in (3.19) can be written as

(LAjR)kmarj Wm = — Z (go)kam
1 m=1

8
oWy, + Z

3 8
m=1 j=

Since A\ — (il(LAjR)axj @0) = 0, we have that the operator d; + f:l(LAjR)kké?xj is tan-
gential to E;:: {=\k -t + <I>0(§ck) = 0}. Analogously, since all entriesjin the k-th line of the
matrix Mgl — i(LAjR)aqu)O = M1 — A vanish, we obtain that, when m # k, the vector
(0, (LAlR)km,](;AgR)km, (LA3R)jym,) is orthogonal to the normal direction (—Xg, (V®%)T) of
Yk, thus the operator 23: (LA;R)m0y; is also tangential to ¥ when m # k. Therefore, by ap-
plying Lemma 3.4 andjfémma 3.5, we obtain that the jumps [Wy]s, (k = 5,6,7,8) are governed

by the the following transport equations:

3
O + Z(LAjR)kkaa:j + (Ao)kk | Wi, =0, (3.20)
=1

with initial conditions: [Wi]s, 1m0 = [W§]{a0(z)=0}-

Thus, to determine the behavior of [Wy]y,, it is essential to study (g()) o with ﬁo =

3
LAoR+ Y7 LA;O.; R.
j=1
We first look at the part LAgR.

For k=5,...,8, we have

v
(v — 1eAg

K

8
(LAoR) = = 3 lijr = ~Ch [ — €w)* = (7 — 1)e)?

15



Thus, by (3.8)—(3.11) and (3.15)—(3.18), we have

1 K
(LAoR)ss = W(I—FO(TDW.

{0 = cut+ V= Do) (s — u— V(3 = De))?

14+ O(T) K '

2(y —1)2%e (y — 1)epr2A2

{(= Z(r = 1%e(gu— Vi = Do) (~2v/(7 = De)(1 + O(7)) }

= (= 11+ 0(),

2

and similarly

(LAoR)es = i(’y —1)%e(1+ O(7)).

Also
K

(v — 1)epr?A3
2

(LAoR)77 = w;l)e(p;y(lJrO(\ﬁ)

K

{(=/Z o)~ - 1]

pT
= TR o+ (-1

2 K2 pT

1

= - (1+0(),

and similarly
1
(LAoR)gs = 5

T

(1+0(VT)).

3
Now we turn to the second part [ > (LAj(?ij)> for k=5,6,7,8.
kk

j=1
Direct computations follow that

A1, T = (pler + urlpa + (v — 1)elrs )y ok + trlpadi, T3k + w1 lpaOy Tak
+((v = 1)k + urlys + glkG)aa:lTSk + ll)lk58x1?”6k,

1. A205, 7 = ualgaayTon + (plit + ualis + (v — 1)elis)DuyTar + ualiaOuyrag
+((v = Dlig + ualis + élkﬁ)axzr% + ;lk58x27"7k7

:A300, T = uslgaOusror + usliaOusrar + (plit, uslia + (v — 1)elys) Dpyrar

K 1
+((v = 1)lka + uslys + ;lks)axs%k + ;lkE)axsTSk-
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Thus

(LAjOy, R)pe = 1 A100, T + 1p A2y, P, + 1 A3Dyy T

3

<
[y

= (pler + (v — Delis) (Ou, r2k + Opy 3k + OpsTar)
+[1)lk5(8xlr6k + Oy 7k + OzyTsi) +
u1 (k202 T2k + k302,731 + l3aOy Tag) +
u2 (20, ok + U302y T3k + lkaOryrak) +
u3(lk20zsmok + 302373k + lraOrsTar) +
(v = D) (Ik20z, 5k + 30y 5k + ljaOry7si) +
Ik (U105, 15k + U202, 75k + u30375k) +
g(lkﬁacm 75k + U7 Oy sk + kg Oy Tsk)-

To get more details on the expressions involving derivatives above, we recall that, for k,j =
5,6,7,8, we have

T2k 1
ran | = %(M—(W‘J)u)wbo,

T4k

ro = ;{uk—(vcp‘])u)?—w—l)e)},

T6k k

| = A0 (V8 - (- e

T8k
and
[ = C; —1e S — ‘—u2——671 = &u)? — (v —1)ede?
=5 (0= e py €067 L0 = €02 = (= e - (O — €0 = (- Dele? ).

We consider first £ = 5:

o= Ve = =/ =De— L (3= 1%e(Ve'u— /[y = De)r + 0(r?),
and, for 7,5 =1,2,3,

—1
Oz, T(j+15 = O {Vp (— (y—1)e— %(7 — 1)26(V¢>0u —V(y=1e)T+ 0(72)) 8xj®0}

L T, 870+ 00,

fort=1,2,3,

Op;T55 = O, {; (( —V(y=1e— %(7 — 1)2€(V<I>0u —V(y=1e)r + 0(7—2))2 (- 1)6)}
= VO ey — D2e(V(2,,8)u)r(1 +O(r)
= O(7).

17



moreover, for i,j =1,2,3,

Ou;T(j+5)5 = O {;}\5(()\5 — V%) — (v — 1)e) &qu)o}
= PT/{)\5{()‘5 — V@Ou)Q — (7 = 1)e} Dy, ®°
_K;?:;\)ég){()\g, - V<I>0u)2 — (7 = 1)e}d,, "
pii,, (A5 — VOu) (05, A5 — V + (0, %)) 0, @°

= B el — 1% B, 31+ 0(7))
_ el — 1)% V (0, ®%)u 0 -
V= Dely = et — (7_1)68%‘1’ (14 0(7))
V (0, ®%)u
VOOu — /(v —1)e
= V(v = Dely = 1)%€ 85,0,2°(1 + O(7)).

+v/ (v = De(y — 1)%e 92,9°(1 4 O(7))

Thus, with the expression (3.15),
(pli1 + (v — 1)elis) (Opy T2k + Oy T3k + OpgTar)
=i (ply = Ve {0 = T80 — (3 = )e)) - (=15 Dedd?) (1-4.0(r)
@A@O(l +0(1)),

1
;lk5(8x1T6k + Opy 7k + Opy78k)

1 P
—C-= .7
s (v—1e

=0(7),

{(As — VO'u)2 — (v — 1)e} ( (v — De(y — 1)26M>0) (1+0(7))

3
Z Uy (lk28-'ﬂ]‘ Tok + lk-gam]- T3k + lk4azjr4k)

j=1
3
-1
=C5p(A5 — V@OU)( — PYT\/ (v — 1)6) Z 8:,31.(1)0 (uﬁwlxifbo + ugﬁmzmiéo + u;;@msxiq)o) (1 + 0(7'))
i=1
:%(VQO)T(D2<I>O)U +0(7)
=0(1),

where the last equality holds because ‘V@O‘ =1 and

(Vo) (D2@0) = (V (; \vqﬂﬁ))T —0.
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Finally,

(v = D) (k202,758 + 30,75k + lkaOzy5k:)
= Cs5(y—1)p(As — VO u)VE O(7)
= O(7),
Uk (w1 0y 5k + U205, 75k + U302575k)
= G _”Uem — Ve u)? — (7 — 1)e}uO(r)
= O(7),

K
;(lkaﬁxﬁsk + 702y 5k + 118025751

K 1
57 (v = Ders
= O(7).

{(As = V%)% — (y = 1)e}V®°O(1)

Hence, concluding the above computation, we obtain, for k = 5, that

3
> (LA;0,R),, = —Wmo + O(1). (3.21)
j=1

For k = 6, with the expression (3.16), we obtain similarly that, for i, = 1,2, 3,

o=V = /(7= De—2-(y—172e(Veu+ /(7 = De)r + 0(r?),

-1
8mir(j+1)6 = 77 V (7 - 1)6 arirj (I)O(l + O(T))7

(v — 1)26 (y—1e

Op,T56 = — V (0, <I>0)u7'(1 + O(1)),
aa;ir(j+5)6 = — - 1 \/ — 1 &wy 1 + O( ))
and
3 (v —1e
> (LA;0.R), #AQO + O(7). (3.22)
7j=1

19



For k =7, we have, for 7,5 =1,2,3,

A= ==+ 0(1)
p

Y
-

Ou,T(j11yr = Oa, {7 (A7 — V&u) 8%@0}
K

P

\/7781]@] 1+0(f))}

_ 7(’7 0 =
= \/:T p mcb 1+0(V7)),

Op,T57 = ar{ (A7 — V@°u) —(7—1)6)}
= 0, { p% (1+0(/7 }
o)
T (5457 = O {PT A
= 0, {: ) (1+0(vm) = (1+0(ﬁ))aqu>0}
)’

pT
K
= -

3
0
Oz, @0 (1 4+ O(VT)).
Thus, with the expression (3.17),

= 0,

1
P
1
p
1

(A7 — V)2 — (v — 1)e)arj<1>0}

(plg1 + (v — 1)elys)(0z, T2k + OuyTak + OpsTak)

04 (p(y — Ve + p{(\r — V) — (3 — 1)e}) - (—H\/ZMO) (1+0(s7)

p
—1)% T
__ (=1 21) 1 /%A@O(l +O0(V7)),

1
;lk5(ax1 76k + Oy 77k + OsTsk)

=0 (e - VO (- 1)) ((1) (£) A@“) (1 +0(7)
I : 0 pm
—5(2) aea+ o).

3
Z W (Ik20u; 72k + (k302,731 + lkaOz ;T4
j=1

3
~Crnl = V)Y (<18 ) 0,00 90,901+ 0(V)

i=1 p
=0(7).
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Finally,

(7 — 1) (lg202, 755 + k302,58 + a0 751

= Oy —1)p(A\r — V&) VPO (\%)
= O(7),

lk5(U18$17'5k + U28$27"5k + U3a;537’5k)

_ P V)2 — (v — 1etu L
= O(7),
g(lkﬁamrf)k‘ + lk73x27"5k; + lksaxsr5k)
_ f# —Voou)2 — (y - 1)e °0 (5=
_ 0(1).

Hence, concluding the above computation, we obtain, for £ = 7, that

- 1/r\2
;(LA]-%R)77 - (m> AB(1 + O(/T) o

For k = 8, with the expression (3.18), we obtain similarly that, for i, 7 = 1,2, 3,

Ay =

W@”(HO(I))

Oz, T(j+1)8 =

[ o
s

Ouitsn = (w)
o)

axz"r(5—i-j)8 = ( ) ax (1+O(f))
and
3 1/ kK 2
> (LA;j0w,R) gy = 3 (m) AP (14 O(v7)). (3.24)
j=1

Summarizing, we have obtained the asymptotic expansions

p 2 (v —1De 50
~ —(y—1)eF Y———AD" +0O(7), fork=25,6,
(Aowe=9 % 1 » 2 f (3.25)
JE— 2 =
2T¢2(p7) A®° (14 O(V7)), or k=71,8.

For any 2V € 0 = {z € R? | ®%(x) = 0}, let

tes (8, 2™ (:0,29) = (¢, 27 (£:0,2°), 2 (£;0,29), 20 (£;0, 2°))
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describe the characteristic line of the operator 9; + Z?zl(LAjR) kk0Oz; passing through (0, z0),

which lies on the characteristic surface ¥ for £k =5,6,7,8:
6x§-k)(t; 0,2°)
T = (LA R)kk(t, 21, 22, 23),
210,029 = 29, j=1,2,3
and define
(Wil = Wils (2% (£0,29)).
For k =5,6,7,8, let
t ~
Dy(t; ) = / (Ao)in(@® (5:0,2%))ds,
0

that is, in view of (3.25),

Ds(t;7) = (v = 1)2pet /(= Ve / A‘PO )(£;0,2%)) + O(T)) ds,

2K

Dg(t;T) = (v = pet—l— : fy_ / A<I>O )(t;0,x ))—1—0(7‘)) ds,

2K
1
DA LA 02 (4: 0. 20
D) = gt 3 ()" [ (206 0:0.4) + () ds
1
1 1/ k\2 [!
Dt _ - A A@O (8) (4. 0 .
s(h7) = 5 +2(m) /0( (#(t:0,2°)) + O(v/7)) ds
Then we conclude from (3.20) and (3.25) that, for k = 5,6,7,8,

(Wilso) = [W;?}anP{—/O (Ao)in(&(5; 0, ))ds} = [W], - e~ Drltm),

Remembering the relation V = RW, we compute V = (p,uP, ¢, ¢?)" as

8
po= (y-1)>_ W,

=5

W = D Wit Oy Wy + VO 27 (A — VOOu)W;,

7=5
* 1
e = Y Oy = Vu)’ — (v —1)e}w;,
— P
J
8
0 K 0,12
P o= O Wi+, Wo+ VY {0y = Veu)® — (v = e}w;.
j=5 J

22

(3.26)
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Therefore, in view of Lemma 3.4, we have

e, = (y—1)[Wilg,, fork=25,6,738,
Py - VOO (F/(v = 1)e)(1+ O(7))[Wils,,  for k = 5,6,
Py, = VOOl (% \/pZT)u +O(7)[Wils,, fork=71,8,

K

_ iM(VQ)Ou F(v—1e)r(1+O(7)[Wils,, fork=25,6
51+ 0(/7)[Wils,, for k=738,

Pls, = { VO (£ (y —31)2\/W)(1 +O(7)) W]y, for k=5,6,

TCT ) Ve (7 (£) )1+ OWA) W, for k=78

Since W = LV, we have

8
Wilo =1LV %0,  Wi=1Iap+ Y lkjlly + e + Y lnjs-

j=2 J=8
Thus we compute, for k = 5, 6:
1 ~ P P
Wi = gy (0D (= Dt ol = T0u(Va) 4 L
(= VP = (3 = 1efe + s = V) = (3 - 1>e}<v¢>°ap>}
_ (2(71_ 57 ”QV( vq>0~p) 14 0(r)) + O(1)E + O(r) (VI'F),
= 1 0 p 0. P T
= D (pq: - 1)6% > (1+0m),
and for k =7, 8:
we = DD o {i - vep o - Vatuvate) + L

L — VO )2 — (v — 1)e}e + Ao — V)2 — (y — 1)6}(vq>ﬂap)}

1
(v = Dex H

- i (p;)2~(1+0(f))$<7 _21>6p(’:)3v<1>0ap(1+0(ﬁ))

1
_|_
1
2

2
( ™) 1+o<ﬁ>>¢5(&;>%v¢0ap<1+0<ﬁ>>,
O L (D)2 00 (= 1) + )+ 2~ 1% (f)2> (1+0(/7)

p
2
1
2
0>

ZTE1+ 0(/T)).
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Hence,

Thus we have

[/AﬂEk =

[azk =

1 _ , )
I BTy <[:00]U ¥ (Wp_ 1)e[vq>o : u0]0> (1 + 0(7)>, k=56
%%[’50]0(1 +0(V7)), F—178

(v = )Wl = (v = )W), - e~ Peltin)

1 ~ P ~ =Dy (t;7 _
5 [:00]0 + \/W[V‘I)O ’ ugL") (1 + O(T)> e D )a k=5,6,
3 E T oo (1 4+ O(/m)) - e PHE), k=178

Ve I (F /(v = De) (1 + O(n)[Wils,, k=56,

var VI UE (g, 4 (Ve -, ) (1+0(m) -e7Prn
p (y—=1)e
k=56,
| k=17.8,

i@(vqﬁu FV( = De)r(1+O(1)) [Wils,,  k=5,6,
(14 0LV Wils,. e

B { O(r) - e~ Dr(tim), k=56,

s, = {

el (L+O0(y/7)) e Drtn k=178

VO (£ (y—1)3/(v—1e)(1+O(1))[Wils,, k=25,6,

Ve (F <%)%) (1+0(/7) Wils,., k=18,

veo. =DV = e <i[po] 4 W@%> (1+0(r)) - & D7)
2 (v =1

k=25,6,

o (o5 bt -

k=1,8.
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Summarizing we obtain the following characteristic behavior of the evolving jumps along Y.

Theorem 3.7. Suppose that the initial data of Vo = (po, b, ¢o,q5)% for the system (2.10) may
have jumps on o = {<I>O(ac) = O} with ’V@O(az)’ = 1. Then the jumps will propagate along the
characteristic surfaces L (k =5,6,7,8) and the propagation is given by

1 -~ — T
Py, = 3 ([pO]a T (yp )e[V<I>0 P, ) (1 +O(T)) DRt 56,
L= =
O(r) - e Prlt), k=1,8.

s, = v ot
T ) k=5,6,

V. O(/7) - e Prlt) - k=78
O(r) - e Prltir) k=5,6,

[é]zk = 7[ ]g( —i—O(\f)) —Dk(tT)7 k=18
var 0D (iwg— £ _[ve’ ])( +0(r)) - PR

(v—1e
"]z = k=56

where Dy (t;7) with k = 5,6,7,8 is given as in (3.26)—(3.29). That is, ast — oo or 7 — 0, the
propagation of the jumps of V. = (p,uP,¢,q")" depends on the parameters of the coefficients of
the equations (2.10) and the mean curvature
AP0

2

H =

of the initial surface o:

1. On the characteristic surfaces X5 and 3¢, as 7 — 0, the jumps of p, uP, q¥ will remain while
the jumps of € will vanish of order O(1), which shows a smoothing effect in the system
(2.10) when T — 0.

2. On the characteristic surfaces 25 ( or ¥g resp.), as t — oo, the jumps of p,uP, qP will

decay exponentially as long as 1) Le /(v —1)eAd’ ( or (=1)?pe + /(7 = 1)eAd?

resp.) are positive.

3. On the characteristic surfaces 7 and Xg, the jumps of V will decay exponentially as T — 0
ort — oo for a fized small T > 0.
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Remark 3.8. The key terms describing the asymptotical behaviors in Theorem 3.7 are similar

to the ones for the equations of thermoelasticity with second sound in [9]. Hence, it would be

possible to add nonhomogeneous terms or semilinear terms on the right-hand side of the equa-

tions (2.1) — (2.8) and carry out a similar analysis as in [9].
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