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Abstract

We consider the one-dimensional Cauchy problem in nonlinear thermoelasticity with second sound,
where the heat conduction is modeled by Cattaneo’s law. After presenting decay estimates for solutions
to the linearized problem, including refined estimates for data in weighted Lebesgue-spaces, we prove
a global existence theorem for small data together with improved decay estimates, in particular for
derivatives of the solutions.
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1 Introduction

We consider the following nonlinear initial-value problem in thermoelasticity:

utt − (σ (ux))x + βθx = 0,

θt + ηqx + δutx = 0,

τqt + q + κθx = 0,

u (x, 0) = u0, ut (x, 0) = u1,

θ (x, 0) = θ0, q (x, 0) = q0,

x ∈ R, t ≥ 0 (1.1)

where σ(η) is a smooth function of η such that σ′(η) > 0 and σ′(0) = a > 0. The parameters β, η, δ, τ, and
κ are positive constants. The system describes the propagation of nonlinear elastic waves in the presence of
thermoelastic effects. The evolution of the deformation, u, is coupled to the temperature field, θ, through the
dependence of the stress on the temperature, as seen in the first equation in (1.1): the stress is σ− βθ, where
β is the coefficient of thermal expansion. The second equation in (1.1) is the equation of heat conduction,
where η is the heat conduction coefficient, q is the heat flux, and the last term represents the thermal effects
of deformation. The third equation in (1.1) is a constitutive law for heat conduction. It is simply the Fourier
law, if the relaxation time vanishes: i.e., if τ = 0. If τ > 0, the equation (also called Cattaneo’s law [3]) is
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a model of hyperbolic heat conduction. Since Cattaneo’s law introduces the extra speed of propagation in
addition to the elastic wave speed, the model is called “thermoelasticity with second sound”. For reviews of
related work, see [4, 5, 13, 25].

In this work, we establish the global existence of small and smooth solutions of (1.1), i.e. solutions in
Hs(R) with s ≥ 2, by using weighted energy estimates. In addition, we obtain the following decay rates of
the solution: ∥∥∥∂k

xU (t)
∥∥∥

2 ≤ C (‖U0‖1 + ‖U0‖Hs) (1 + t)−1/4−k/2 , (1.2)

where C is a positive constant, 0 ≤ k ≤ s − 1, and s ≥ 3; see Theorems 4.5 and 4.8.

For the linearized version of (1.1), we first establish the following decay rates in Theorem 3.3:∥∥∥∂k
xU (t)

∥∥∥
2 ≤ C (1 + t)−1/4−k/2 ‖U0‖1 + Ce−ct

∥∥∥∂k
xU0

∥∥∥
2 , for 0 ≤ k ≤ s,∥∥∥∂k

xU (t)
∥∥∥
∞
≤ Ct−1/2−k/2

(
‖U0‖1 +

∥∥∥∂k+1
x U0

∥∥∥
2

)
, for 0 ≤ k ≤ s − 1,

(1.3)

where U0 = (u1, ux (0) , θ0, q0) ∈ Hs(R) ∩ L1(R).

The linear decay estimates above can be improved as follows (see Theorems 3.4 and 3.7):∥∥∥∂k
xU (t)

∥∥∥
2 ≤ C (1 + t)−1/4−k/2−γ/2 ‖U0‖1,γ + Ce−ct

∥∥∥∂k
xU0

∥∥∥
2 , for 0 ≤ k ≤ s,∥∥∥∂k

xU (t)
∥∥∥
∞
≤ Ct−1/2−k/2−γ/2

(
‖U0‖1,γ +

∥∥∥∂k+1
x U0

∥∥∥
2

)
, for 0 ≤ k ≤ s − 1,

(1.4)

if U0 ∈ Hs(R)∩ L1,γ(R) with
´
RU0 (x) dx = 0. These improvements can be extended further with additional

assumptions about the spatial decay of U0 (see Remark 3.6 below).

The one-dimensional nonlinear Cauchy problem of thermoelasticity with second sound, with more gen-
eral nonlinearities, has been analyzed by Racke and Wang [20]. They derived the following decay rate of
the solution:

‖U (t)‖2 + ‖∂xU (t)‖2 ≤ C
(
‖U0‖1 + ‖U0‖H3

)
(1 + t)−1/4 . (1.5)

With the method used in our paper, which is different from the one used in [20], it is possible to improve the
decay rate (1.5) as seen in (1.2); that is, we additionally obtain the decay rates of higher-order derivatives.

We should also note that a global existence result for small initial data for a system similar to that in [20]
has been established by Tarabek [26]. He considered the following one-dimensional system:

utt − a (ux, θ, q) uxx + b (ux, θ, q) θx = α1 (ux, θ) qqx,

θt + g (ux, θ, q) qx + d (ux, θ, q) utx = α2 (ux, θ) qqt, (1.6)

τ (ux, θ) qt + q + k (ux, θ) θx = 0,

in both bounded and unbounded domains. Although he showed that the solution tends to equilibrium as t
tends to infinity, he derived no decay rate.

Concerning the linearized system corresponding to (1.1), the Cauchy problem has been considered in [27]
where the authors derived the same decay rates as (1.3). However, our method here differs from the one used
in [27]. In addition, we obtain improved decay rates as seen in (1.4).

It is well known that smooth solutions of quasilinear hyperbolic systems may develop singularities in finite
time, even for very regular initial data (see for example [14]). System (4.1) includes a damping mechanism
that prevents the formation of singularities of solutions for initial data that are close to the equilibrium state
in appropriate Sobolev norms. For the Cauchy problem in classical thermoelasticity, Hrusa and Messaoudi
[8] have shown that if the initial data are large enough, then the solution will develop singularities in finite
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time. (See also [6] for a similar result). It has been recently shown [9] that for the nonlinear systems
discussed here, a blow-up for large data is expected.

The plan of the remainder of this paper is as follows. In Section 2, we introduce the notation and, for
the convenience of the reader, we recall some useful results without proofs. In Section 3, we investigate the
linearized model and derive appropriate decay estimates. Section 4 is devoted to demonstrating the existence
of global solutions for small and smooth initial data to the nonlinear model. In addition, we provide proofs
of new decay estimates.

2 Notation and some useful lemmas

Before proceeding, we introduce the notation used in this paper. Throughout, ‖.‖q and ‖.‖Hl stand for the
Lq(RN)-norm (2 ≤ q ≤ ∞) and the Hl(RN)-norm. We define the weighted function space, L1,γ(RN), N ≥
1, γ ∈ [0,+∞), as follows: u ∈ L1,γ(RN) iff u ∈ L1

(
RN

)
and

‖u‖1,γ =

ˆ
RN

(1 + |x|)γ|u(x)|dx < +∞.

By f̂ , we denote the Fourier transform of f :

f̂ (ξ) =

ˆ
RN

f (x) e−iξxdx, f (x) =
1

(2π)N

ˆ
RN

f̂ (ξ) eiξxdξ.

The symbol [A, B] = AB − BA denotes the commutator. The constant C denotes a generic positive constant
that appears in various inequalities and may change its value in different occurrences.

We next recall several useful inequalities.

Lemma 2.1 ([16]) Let N ≥ 1, 1 ≤ p, q , r ≤ ∞, and let k be a positive integer. Then, for any integer j with
0 ≤ j ≤ k, we have

‖∂
j
xu‖p ≤ C

∥∥∥∂k
xu

∥∥∥a
q ‖u‖

1−a
r (2.1)

where
1
p

=
j

N
+ a

(
1
q
−

k
N

)
+ (1 − a)

1
r

for a satisfying j/k ≤ a ≤ 1 and C is a positive constant. The following exceptional cases exist:

1. If j = 0, qk < N and r = ∞, then we make the additional assumption that either u(x)→ 0 as |x| → ∞
or u ∈ Lq′ for some 0 < q′ < ∞.

2. If 1 < r < ∞ and k − j − N/r is a nonnegative integer, then (2.1) holds only for j/k ≤ a < 1.

Lemma 2.2 [7, Lemma 4.1]. Let 1 ≤ p, q, r ≤ ∞ and 1/p = 1/q + 1/r. Then, we have

‖∂k
x(uv)‖p ≤ C(‖u‖q‖∂k

xv‖r + ‖v‖q‖∂k
xu‖r), k ≥ 0 (2.2)

and
‖[∂k

x, u]vx‖p ≤ C(‖ux‖q‖∂
k
xv‖r + ‖vx‖q‖∂

k
xu‖r), k ≥ 1. (2.3)
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Lemma 2.3 [15, 22]. Let a > 0 and b > 0 be constants. Then,
ˆ t

0
(1 + t − s)−a (1 + s)−b ds ≤ C (1 + t)−min(a,b) , if max(a, b) > 1, (2.4)

ˆ t

0
(1 + t − s)−a (1 + s)−b ds ≤ C (1 + t)−min(a,b) ln (2 + t) , if max (a, b) = 1, (2.5)

ˆ t

0
(1 + t − s)−a (1 + s)−b ds ≤ C (1 + t)1−a−b , if max (a, b) < 1. (2.6)

3 The linearized model

This section is devoted to establishing various decay rates for the linear problem in thermoelasticity with
second sound. Let us consider the following Cauchy problem:

utt − auxx + βθx = 0,

θt + ηqx + δutx = 0,

τqt + q + κθx = 0,

u (x, 0) = u0, ut (x, 0) = u1,

θ (x, 0) = θ0, q (x, 0) = q0,

x ∈ R, t ≥ 0, (3.1)

with positive constants a, β, η, δ, τ, κ.
Setting v = ut and z = ux, we get from (3.1) the following first-order system:

vt − azx + βθx = 0,

zt − vx = 0,

θt + ηqx + δvx = 0,

qt +
1
τ

q +
κ

τ
θx = 0,

(3.2)

which, equivalently, takes the matrix form Ut + AUx + LU = 0,

U (x, 0) = U0,
(3.3)

where U := (v, z, θ, q)T and the matrices A and L are

A =


0 −a β 0
−1 0 0 0
δ 0 0 η

0 0 κ/τ 0

 , L =


0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 1/τ

 .

Remark 3.1 By the change of variables, W =
(
v,
√

az,
√
β/δθ,

√
τηβ/(κδ)q

)
, system (3.3) can be sym-

metrized to take the form
Wt + A1Wx + BW = 0, (3.4)
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where A1 is symmetric and B =
√
τηβ/(κδ)L. For this new system, the Shizuta-Kawashima condition [23]

is satisfied. The result in Theorem 3.3 below can therefore be obtained directly from the general result of
[1]. We present a direct method of using estimates in Fourier space and obtain more general decay rates
in weighted spaces. More importantly, we also employ the technique used to derive the linear results in
obtaining the decay rates for the nonlinear system.

To proceed, we take the Fourier transform of (3.2) and obtain

v̂t − aiξẑ + βiξθ̂ = 0,

ẑt − iξv̂ = 0,

θ̂t + iξηq̂ + δiξv̂ = 0,

q̂t +
1
τ

q̂ +
κ

τ
iξθ̂ = 0.

(3.5)

Let us now define the energy functional

E (t) =
1
2

(
κδ |v̂|2 + κδa |ẑ|2 + κβ|θ̂|2 + ηβτ |q̂|2

)
. (3.6)

Multiplying the first equation in (3.5) by κδ ¯̂v, the second equation by κδaẑ, the third equation by κβθ̂ and
the fourth equation by ηβτ q̂, adding these equalities and taking the real part, it easily follows that

dE (t)
dt

= −βη |q̂|2 . (3.7)

The following crucial lemma will be proved directly with the help of an appropriate Lyapunov functional
in the Fourier space.

Lemma 3.2 Let Û (ξ, t) = (v̂, ẑ, θ̂, q̂) (ξ, t) be the solution of (3.5). Then, for any t ≥ 0 and ξ ∈ R, we have
the following pointwise estimate: ∣∣∣Û (ξ, t)

∣∣∣2 ≤ Ce−cρ(ξ)t
∣∣∣Û (ξ, 0)

∣∣∣2 , (3.8)

where ρ (ξ) = ξ2/(1 + ξ2) and C and c are positive constants.

Proof. Our main tool to prove Lemma 3.2 is the energy method in the Fourier space. In the sequel, we
make repeated use of Young’s inequality:

|ab| ≤ εa2 + C(ε)b2.

Constants C(ε) here and in the sequel denote possibly different values in different places, but they are in
principle easy to determine.

First, by multiplying the second equation in (3.5) by −iξ ¯̂v, the first equation by iξẑ , adding the resulting
equation and taking the real part, we get{

Re
(
iξẑv̂

)}
t
+ ξ2

(
a |ẑ|2 − |v̂|2

)
= Re

(
βξ2θ̂ẑ

)
. (3.9)

Using Young’s inequality, the term on the right-hand side can be estimated as∣∣∣∣Re
(
βξ2θ̂ẑ

)∣∣∣∣ ≤ εξ2 |ẑ|2 + C (ε) ξ2|θ̂|2. (3.10)
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Plugging (3.10) into (3.9), we obtain{
Re

(
iξẑv̂

)}
t
+ ξ2

(
(a − ε) |ẑ|2 − |v̂|2

)
≤ C (ε) ξ2|θ̂|2. (3.11)

Similarly, multiplying the third equation in (3.5) by −iξ ¯̂v and the first equation by iξθ̂, adding the results
and taking the real part, we find that{

Re(iξθ̂v̂)
}
t
+ ξ2(δ|v̂|2 − β|θ̂|2) = −Re

(
ξ2ηq̂ ¯̂v

)
− Re

(
aξ2ẑθ̂

)
. (3.12)

Then, Young’s inequality gives∣∣∣∣∣−Re
(
ξ2ηq̂ ¯̂v

)
− Re

(
aξ2ẑθ̂

)∣∣∣∣∣ ≤ ε1ξ
2 |ẑ|2 + C (ε1) ξ2|θ̂|2 + εξ2|v̂|2 + C (ε) ξ2 |q̂|2 .

Thus, (3.12) takes the form{
Re(iξθ̂v̂)

}
t
+ ξ2((δ − ε) |v̂|2 ≤ ε1ξ

2 |ẑ|2 + C (ε1) ξ2|θ̂|2 + C (ε) ξ2 |q̂|2 . (3.13)

Next, multiplying the fourth equation in (3.5) by −iξθ̂, the third equation by iξq̂, adding the results, and
taking the real part, we find that{

Re(iξq̂θ̂)
}
t
+ ξ2

(
κ

τ
|θ̂|2 − η |q̂|2

)
= Re

(
1
τ

iξθ̂q̂
)

+ Re
(
δξ2v̂q̂

)
. (3.14)

As above, Young’s inequality implies∣∣∣∣∣∣Re
(
1
τ

iξθ̂q̂
)

+ Re
(
δξ2v̂q̂

)∣∣∣∣∣∣ ≤ εξ2|θ̂|2 + C (ε, ε2)
(
1 + ξ2

)
|q̂|2 + ε5ξ

2|v̂|2.

Consequently, taking into account this last estimate, we obtain from (3.14) that{
Re(iξq̂θ̂)

}
t
+ ξ2

(
κ

τ
− ε

)
|θ̂|2 ≤ ε2ξ

2|v̂|2 + C (ε, ε2)
(
1 + ξ2

)
|q̂|2 . (3.15)

Now, let α1 and α2 be two positive constants (to be chosen later). Then, (3.11) + α1(3.13) + α2(3.15) gives

ξ
dF (t)

dt
+ ξ2 ((a − ε) − ε1α1) |ẑ|2 + ((α1 (δ − ε) − 1 − α2ε2) ξ2|v̂|2

+

{
α2

(
κ

τ
− ε

)
−C (ε) − α1C (ε1)

}
ξ2|θ̂|2 (3.16)

≤ C (ε, ε1, ε2, α1, α2)
(
1 + ξ2

)
|q̂|2 ,

where
F (t) = Re

(
iẑv̂

)
+ α1 Re(iθ̂v̂) + α2 Re(iq̂θ̂). (3.17)

At this point, we fix our constants in (3.16) very carefully. First, we choose ε small enough such that
ε < min (a, κ/τ, δ) . Once ε is fixed, we may pick α1 large enough such that α1 (δ − ε) /2 ≥ 1. After that, we
select ε1 small enough such that ε1 < (a − ε) /α1. Then, we may take α2 large enough such that

α2

(
κ

τ
− ε

)
−C (ε1) − α1C (ε1) > 0.
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Finally, we fix ε2 small enough such that ε2 < α1 (δ − ε) /(2α2). Consequently, we deduce from (3.16) that
there exists a positive constant, λ > 0, such that

ξ
dF (t)

dt
+ λξ2

(
|ẑ|2 + |v̂|2 + |θ̂|2

)
≤ C (ε, ε1, ε2, α1, α2)

(
1 + ξ2

)
|q̂|2 . (3.18)

Now, let us define the functional, L , as

L (t) := ME (t) +
ξ

1 + ξ2 F (t) , (3.19)

where M is a large positive constant to be fixed later. Consequently, exploiting (3.7) and (3.18), we may
write

dL (t)
dt

+ λ
ξ2

1 + ξ2

(
|ẑ|2 + |v̂|2 + |θ̂|2

)
+

(
M −C (ε, ε1, ε2, α1, α2)

)
|q̂|2 ≤ 0. (3.20)

By choosing M large enough such that M > C (ε, ε1, ε2, α1, α2), (3.20) takes the form

dL (t)
dt

+ cW (t) ≤ 0, (3.21)

where

W (t) =
ξ2

1 + ξ2

(
|ẑ|2 + |v̂|2 + |θ̂|2

)
+ |q̂|2

and c is a positive constant.

On the other hand, and for large enough M, there exist three positive constants, β1, β2, and β3, such that
for all t ≥ 0, we have

β1E (t) ≤ L (t) ≤ β2E (t) and W (t) ≥ β3ρ (ξ) E (t), (3.22)

where ρ (ξ) = ξ2/
(
1 + ξ2

)
. (See [21] for the proof of similar inequalities.)

Consequently, from (3.21) and (3.22) we can find η > 0 such that

E (t) =
∣∣∣Û(ξ, t)

∣∣∣2 ≤ e−ηρ(ξ)E (0).

Thus, inequality (3.8) is proved.

Dividing the domain of integration into the low-frequency region (|ξ| < 1) and into the high-frequency
region (|ξ| ≥ 1), we obtain the following theorem.

Theorem 3.3 Let s be a nonnegative integer and assume that U0 ∈ Hs(R) ∩ L1(R). Then, the solution U of
problem (3.3) satisfies the following decay estimates:∥∥∥∂k

xU (t)
∥∥∥

2 ≤ C (1 + t)−1/4−k/2 ‖U0‖1 + Ce−ct
∥∥∥∂k

xU0
∥∥∥

2 , (3.23)

for 0 ≤ k ≤ s.

Moreover, using the Fourier representation, we can improve the decay result obtained in Theorem 3.3 by
restricting the initial data to U0 ∈ Hs (R) ∩ L1,γ (R) with γ ∈ [0, 1]. For these data, we get faster decay
estimates than those given in Theorem 3.3. As in [18, 19], we obtain the following theorem.

Theorem 3.4 Let s be a nonnegative integer and assume that U0 ∈ Hs(R)∩ L1,γ(R), where γ ∈ [0, 1]. Then
the solution U of problem (3.3) satisfies the following decay estimates:∥∥∥∂k

xU (t)
∥∥∥

2 ≤ C (1 + t)−1/4−k/2−γ/2 ‖U0‖1,γ + Ce−ct
∥∥∥∂k

xU0
∥∥∥

2 + C (1 + t)−1/4−k/2
∣∣∣∣∣ˆ
R

U0 (x) dx
∣∣∣∣∣ , (3.24)

for 0 ≤ k ≤ s.
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Remark 3.5 The estimate (3.24) shows that by taking the initial data U0 ∈ Hl (R) ∩ L1,γ (R), γ ∈ [0, 1],
such that

´
RU0 (x) dx = 0, the decay rates given in Theorem 3.3 can be improved by t−γ/2.

Remark 3.6 For γ ∈ N and U0 ∈ Hs(R) ∩ L1,2(γ+1)(R) satisfying
ˆ
R

xmU0 (x) dx = 0, m = 0, ..., 2γ,

the following stronger decay estimates are obtained:∥∥∥∂k
xU (t)

∥∥∥
2 ≤ C (1 + t)−1/4−k/2−(2γ+1)/2

(
‖U0‖1,2(γ+1) + ‖U0‖1,2γ+1 +

∥∥∥∂k
xU0

∥∥∥
2

)
, (3.25)

where k is a non-negative integer satisfying k ≤ s and C is a positive constant. This can be proved using
[11, Lemma 2.3] and the estimate (3.8).

Now, we are going to prove the decay rate of the L∞ norm of the solution of (3.3).

Theorem 3.7 Let s be a nonnegative integer and γ ∈ [0, 1]. Then, we have the following decay estimates:

(i) If U0 ∈ Hs(R) ∩ L1(R), then the solution U of problem (3.3) satisfies∥∥∥∂k
xU

∥∥∥
∞
≤ Ct−

1+k
2

(
‖U0‖1 +

∥∥∥∂k+1
x U0

∥∥∥
2

)
, k = 0, 1, 2, .., s − 1. (3.26)

(ii) If U0 ∈ Hs(R) ∩ L1,γ(R), then the solution U of problem (3.3) satisfies∥∥∥∂k
xU

∥∥∥
∞
≤ Ct−

1
2−

k+γ
2

(
‖U0‖1,γ +

∥∥∥∂k+1
x U0

∥∥∥
2

)
+ C

∣∣∣∣∣ˆ
R

U0 (x) dx
∣∣∣∣∣ t− 1

2−
k
2 , k = 0, 1, 2, .., s − 1. (3.27)

Proof. By using the Fourier transform, we have from (3.8) that∣∣∣Û (ξ, t)
∣∣∣ ≤ Ce−

c
2ρ(ξ)t

∣∣∣Û (ξ, 0)
∣∣∣ .

Consequently, ∥∥∥∥∂̂k
xU

∥∥∥∥
1

=
∥∥∥(iξ)k Û

∥∥∥
1 ≤ C

∥∥∥|ξ|k e−
c
2ρ(ξ)tÛ0

∥∥∥
1

≤ C
ˆ
R
|ξ|k e−

c
2ρ(ξ)t

∣∣∣Û0 (ξ)
∣∣∣ dξ. (3.28)

By splitting the integral on the right-hand side of (3.28) into the low-frequency part (ξ < 1) and the high-
frequency part (ξ ≥ 1), and by using the same methods as in the proof of Theorem 3.3, we get the following
estimate: ∥∥∥∥∂̂k

xU
∥∥∥∥

1
≤ C ‖U0‖1

ˆ
ξ≤1
|ξ|k e−cξ2tdξ + C

ˆ
|ξ|≥1
|ξ|k e−

c
2ρ(ξ)t

∣∣∣Û (ξ, 0)
∣∣∣ dξ

≤ C ‖U0‖1

ˆ
ξ≤1
|ξ|k e−cξ2tdξ + Ce−

c
4 t
ˆ
|ξ|≥1
|ξ|k

∣∣∣Û (ξ, 0)
∣∣∣ dξ (3.29)

≤ C ‖U0‖1 t−
k+1

2 + Ce−
c
4 t

(ˆ
|ξ|≥1
|ξ|2(k+1)

∣∣∣Û (ξ, 0)
∣∣∣2 dξ

)1/2 (ˆ
|ξ|≥1
|ξ|−2 dξ

)1/2

≤ C ‖U0‖1 t−
k+1

2 + Ce−
c
4 t

∥∥∥∂k+1
x U0

∥∥∥
2 .
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By using the inequality

‖ f ‖p ≤ ‖ f̂ ‖q,
1
p

+
1
q

= 1, 1 ≤ q ≤ 2, (3.30)

we have ∥∥∥∂k
xW

∥∥∥
∞
≤

∥∥∥∥∂̂k
xW

∥∥∥∥
1
,

and therefore, this last inequality together with the estimate (3.29) imply (3.26). Thus, (i) is proved.

To prove (ii), we have, as in (3.28),∥∥∥∥∂̂k
xU

∥∥∥∥
1
≤ C
ˆ
ξ≤1
|ξ|k e−cξ2t

∣∣∣Û0 (ξ)
∣∣∣ dξ + C

ˆ
|ξ|≥1
|ξ|k e−

c
2ρ(ξ)t

∣∣∣Û (ξ, 0)
∣∣∣ dξ. (3.31)

We can estimate
∣∣∣Û0

∣∣∣ as follows [12]:

∣∣∣Û0 (ξ)
∣∣∣ ≤ Cγ |ξ|

γ ‖U0‖1,γ +

∣∣∣∣∣ˆ
R

U0 (x) dx
∣∣∣∣∣ (3.32)

with Cγ = Kγ + Mγ. Consequently, inserting (3.32) in (3.31) yields∥∥∥∥∂̂k
xU

∥∥∥∥
1
≤ C ‖U0‖1,γ

ˆ
ξ≤1
|ξ|k+γ e−cξ2tdξ + C

∣∣∣∣∣ˆ
R

U0 (x) dx
∣∣∣∣∣ˆ

ξ≤1
|ξ|k e−cξ2tdξ

+C
ˆ
|ξ|≥1
|ξ|k e−

c
2ρ(ξ)t

∣∣∣Û (ξ, 0)
∣∣∣ dξ. (3.33)

This means, by using ˆ 1

0
|ξ|σe−

c
2 ξ

2tdξ ≤ C(1 + t)−(σ+1)/2, (3.34)

that ∥∥∥∥∂̂k
xU

∥∥∥∥
1
≤ C ‖U0‖1 t−

1
2−

k+γ
2 + Ce−

c
4 t

∥∥∥∂k+1
x U0

∥∥∥
2 + C

∣∣∣∣∣ˆ
R

U0 (x) dx
∣∣∣∣∣ t− k+1

2 .

Consequently, using the (3.30) once again yields (3.27). Thus, the proof of (ii) is finished as is the proof of
Theorem 3.7.

Remark 3.8 The decay estimates (3.24), (3.26) and (3.27) are new, but the estimate (3.23) can also be
deduced from the work of Young and Wang [27]. However, our method of the proof here is different and can
be adapted to tackle the nonlinear problem as well.

4 The nonlinear problem

In this section, we extend the decay results obtained in section 3 to the nonlinear problem (1.1). The latter
can be written as the first-order system  Ut + F (U)x + LU = 0,

U (x, 0) = U0,
(4.1)

where U = (v, z, θ, q)T and F (U) =

(
−σ (z) + βθ, v, ηq + δv,

κ

τ
θ
)T
. The linearized problem (3.1) can be

obtained by taking the Jacobian of F at U = 0 and setting σ′ (0) = a.
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Remark 4.1 Our system is a symmetrizable hyperbolic system as in [1, 2]. In contrast to [1, 2], however,
with our direct approach, we do not need assumptions on the existence of entropy functions satisfying certain
inequalities. Moreover, we have additionally obtained results on decay estimates for derivatives of the
solution.

Our goal in this section is to establish the global existence and asymptotic behavior of the solution of
(4.1), at least for small initial data.

The local existence result can be obtained by the standard method based on the successive approximation
sequence. We omit its details and only derive desired a priori estimates of solutions.

Remark 4.2 As we mentioned in the Introduction, Tarabek [26] obtained a global existence result similar
to the one in Theorem 4.5 below, by using the energy method from the work of Slemrod [24]. He used
a relation from the second law of thermodynamics to overcome the difficulty arising from the lack of the
Poincaré inequality (see inequality (2.16) in [26]). However, no decay rate of the solution has been given in
[26]. Here, we use a different method based on the weighted energy estimates to prove Theorem 4.5. This
method also allows us to find the decay rates of the solution in certain Sobolev spaces, as shown in Theorem
4.8. These decay rates extend the ones given in [20] to estimates for the derivatives.

Our main goal now is to prove the global existence Theorem 4.5 and Theorem 4.8, which establishes the
decay rates. We first need several lemmas and propositions. The aim of the computations that follow is to
establish the inequality (4.67) below. To this end, the following basic types of estimates will be used:

• estimates obtained directly from the derivative of the total energy of the system (4.9);

• inequalities obtained by using equations in (4.13) to express estimates of energy of higher order;

• interpolation inequalities.

This approach has successfully been applied to other problems, e.g. Timoshenko systems [18, 19].

In order to state our main result, we introduce the time-weighted energy norm, E(t), and the corresponding
dissipation norm, D(t), as follows:

E2(t) =

s∑
j=0

sup
0≤ζ≤t

(1 + ζ) j
∥∥∥∥∂ j

xU (ζ)
∥∥∥∥2

Hs− j
, (4.2)

D2(t) =

s−1∑
j=0

ˆ t

0
(1 + ζ) j

∥∥∥∥∂ j+1
x U (ζ)

∥∥∥∥2

Hs− j−1
dζ +

s∑
j=0

ˆ t

0
(1 + ζ) j

∥∥∥∥∂ j
xq (τ)

∥∥∥∥2

Hs− j
dζ. (4.3)

The following quantities are convenient in the computations below:

M0 (t) = sup
0≤ζ≤t

‖U (ζ)‖∞ ,

M1 (t) = sup
0≤ζ≤t

(1 + ζ) ‖∂xU (ζ)‖∞ ,

M (t) =

s∑
j=0

sup
0≤ζ≤t

(1 + ζ)1/4+ j/2
∥∥∥∥∂ j

xU (ζ)
∥∥∥∥

2
.
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Now, let T > 0 and consider solutions of (4.1) that are defined on the time interval [0,T ] and satisfy
U ∈ C ([0,T ]; Hs) ∩ C1([0,T ]; Hs−1). Thanks to the assumption s > N/2 + 1 = 3/2 (where N = 1 is the
space dimension), it follows from the Sobolev embedding theorem that

sup
0≤ζ≤t

‖U (ζ)‖∞ + sup
0≤ζ≤t

‖∂xU (ζ)‖∞ ≤ C ‖U (t)‖Hs . (4.4)

Thus, we derive the energy estimates under the a priori assumption

sup
0≤t≤T

‖U (t)‖∞ ≤ ᾱ, (4.5)

where ᾱ is a fixed small number independent of T .

Proposition 4.3 Let U0 ∈ Hs(R) ∩ L1(R) with s ≥ 3. Assume that T > 0 and let U be the local solution of
problem (4.1), such that

U ∈ C
(
[0,T ] ; Hs) ∩C1([0,T ] ; Hs−1)

and
sup

0≤t≤T
‖U (t)‖∞ ≤ ᾱ.

Then, the estimate
E (t)2 + D (t)2 ≤ C ‖U0‖

2
Hs + C (M0 (t) + M1 (t)) D2 (t) (4.6)

holds true for all t ∈ [0,T ], where C is a positive constant independent of T .

Proof. In order to prove Proposition 4.3, it suffices to show that, for any t ∈ [0,T ] and for any 0 ≤ j ≤ s−1,
the estimates

(1 + ζ) j
∥∥∥∥∂ j

xU (ζ)
∥∥∥∥2

Hs− j
+

ˆ t

0
(1 + ζ) j

∥∥∥∥∂ j+1
x U (ζ)

∥∥∥∥2

Hs− j−1
dζ +

ˆ t

0
(1 + ζ) j

∥∥∥∥∂ j
xq (ζ)

∥∥∥∥2

Hs− j
dζ

≤ C ‖U0‖
2
Hs + C (M0 (t) + M1 (t)) D2 (t)

(4.7)

and

(1 + ζ)s
∥∥∥∂s

xU (ζ)
∥∥∥2

2 +

ˆ t

0
(1 + ζ)s

∥∥∥∂s
xq (ζ)

∥∥∥2
2 dζ ≤ C ‖U0‖

2
Hs + C (M0 (t) + M1 (t)) D2 (t) (4.8)

hold true.

First, let us rewrite (4.1) as: 

vt − σ (z)x + βθx = 0,

zt − vx = 0,

θt + ηqx + δvx = 0,

τqt + q + κθx = 0.

(4.9)

We proceed with the basic energy estimate by multiplying the first equation in (4.9) by κδv, the second
equation by κδ(σ(z)−σ(0)), the third equation by κβθ, and the fourth equation by ηβq. Adding the resulting
equations, we obtain:

1
2

(
κδv2 + κβθ2 + ηβτq2 + κδF (z)

)
t

+ (κβδvθ + κβηqθ − (σ (z) − σ (0)) v)x + ηβq2 = 0,
(4.10)
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where

F (z) = 2
ˆ z

0
(σ (s) − σ (0)) ds.

Integrating equation (4.10) with respect to x over R, we find that

d
dt

E(0) (t) + ηβ ‖q‖22 = 0, (4.11)

where
E(0) (t) =

1
2

(
κδ ‖v‖22 + κβ ‖θ‖22 + ηβτ ‖q‖22

)
+ κδ

ˆ
R

F (z) dx. (4.12)

To obtain the energy estimates on higher-order terms, we apply ∂k
x to (4.9) and get

∂k
xvt − σ

′ (z) ∂k+1
x (z) + β∂k+1

x θ =
[
∂k

x, σ
′ (z)

]
zx,

∂k
xzt − ∂

k+1
x v = 0,

∂k
xθt + η∂k+1q + δ∂k+1

x v = 0,

τ∂k
xqt + ∂k

xq + κ∂k+1
x θ = 0.

(4.13)

where we used [∂k
x, A]B = ∂k

x (AB) − A∂k
xB.

Now, we define the energy associated with system (4.13) as

Ek (t) =
1
2

(
κδ

∥∥∥∂k
xv

∥∥∥2
2 + κβ

∥∥∥∂k
xθ

∥∥∥2
2 + ηβτ

∥∥∥∂k
xq

∥∥∥2
2

)
+ κδ

ˆ
R

Fk (z) dx, (4.14)

where
Fk (z) =

1
2
σ′(z)(∂k

xz)2.

Next, we construct a Lyapunov functional with appropriate multipliers. Multiplying the first equation in
(4.13) by κδ∂k

xv, the second equation by κδ(σ′(z)∂k
xz), the third equation by κβ∂k

xθ, the fourth equation by
ηβ∂k

xq, and adding the resulting equations, we get

1
2

(
κδ(∂k

xv)2 + κβ(∂k
xθ)

2 + ηβτ(∂k
xq)2 + κδσ′(z)(∂k

xz)2
)
t

+
(
κβδ∂k

xv∂k
xθ + κβη∂k

xq∂k
xθ − σ

′ (z) ∂k
x (z) ∂k

xv
)

x
+ ηβ(∂k

xq)2

=
κδ

2
σ′ (z)t

(
∂k

xz
)2
− κδσ′ (z)x

(
∂k

xz
)
∂k

xv + κδ∂k
xv

[
∂k

x, σ
′ (z)

]
zx.

(4.15)

Integrating (4.15) with respect to x, we obtain

d
dt

E(k) (t) + ηβ
∥∥∥∂k

xq
∥∥∥2

2 = R(k)
0 , (4.16)

where
R(k)

0 =

ˆ
R

{
κδ

2
σ′ (z)t

(
∂k

xz
)2
− κδσ′ (z)x

(
∂k

xz
)
∂k

xv + κδ∂k
xv

[
∂k

x, σ
′ (z)

]
zx

}
dx.

Using the assumption (4.5) and keeping in mind that zt = vx, we get∣∣∣∣R(k)
0

∣∣∣∣ ≤ C
ˆ
R
|vx|

∣∣∣∂k
xz
∣∣∣2 + |zx|

∣∣∣∂k
xz
∣∣∣ ∣∣∣∂k

xv
∣∣∣ +

∣∣∣∂k
xv

∣∣∣ ∣∣∣∣[∂k
x, σ

′ (z)
]∣∣∣∣ |zx| ,
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which implies, by using Lemma 2.2 (see [10], where a similar estimate has been proved for the Timoshenko
system), that ∣∣∣∣R(k)

0

∣∣∣∣ ≤ C ‖∂xU‖∞
∥∥∥∂k

xU
∥∥∥2

2 . (4.17)

On the other hand, recalling (4.5), we deduce that there exist two positive constants, β1 and β2, such that

β1

∥∥∥∂k
xU

∥∥∥2
2 ≤ Ek (t) ≤ β2

∥∥∥∂k
xU

∥∥∥2
2 , k ≥ 0. (4.18)

Consequently, multiplying (4.11) by (1 + t)µ and integrating with respect to t and using (4.18) we get

(1 + t)µ ‖U (t)‖22 + ηβ

ˆ t

0
(1 + ζ)µ ‖q (ζ)‖22 dζ

≤ ‖U0‖
2
2 + µ

ˆ t

0
(1 + ζ)µ−1 ‖U (ζ)‖22 dζ. (4.19)

Similarly, for k ≥ 1, the estimates (4.17), (4.18) together with (4.16) yield after multiplication by (1 + t)µ

and integration with respect to t over (0, t) the following:

(1 + t)µ
∥∥∥∂k

xU (t)
∥∥∥2

2 + ηβ

ˆ t

0
(1 + ζ)µ

∥∥∥∂k
xq (ζ)

∥∥∥2
2 dζ

≤ C
∥∥∥∂k

xU0
∥∥∥2

2 + µ

ˆ t

0
(1 + ζ)µ−1 ‖∂k

xU (ζ) ‖22dζ

+C
ˆ t

0
(1 + ζ)µ ‖∂xU (ζ)‖∞ ‖∂

k
xU (ζ) ‖22dζ.

(4.20)

Adding the estimate (4.19) to (4.20) and taking the summation for 1 ≤ k ≤ s, we get the main estimate:

(1 + t)µ ‖U (t)‖2Hs + ηβ

ˆ t

0
(1 + ζ)µ ‖q (ζ)‖2Hs dζ

≤ C ‖U0‖
2
Hs + µ

ˆ t

0
(1 + ζ)µ−1 ‖U (ζ)‖2Hs dζ

+C
ˆ t

0
(1 + ζ)µ ‖∂xU (ζ)‖∞ ‖∂xU (ζ)‖2Hs−1 dζ.

(4.21)

To control the second term on the right-hand side of (4.21), we have to get a dissipative term of the form´ t
0 ‖U (t)‖2Hs on the left-hand side of (4.21). Applying ∂k

x to (4.9) and putting ∂k
x (v, z, θ, q) = (ṽ, z̃, θ̃, q̃), we

get 

ṽt − az̃x + βθ̃x = ∂k
xg (z)x ,

z̃t − ṽx = 0,

θ̃t + ηq̃x + δṽx = 0,

τq̃t + q̃ + κθ̃x = 0,

(4.22)

where g (z) = σ (z) − σ (0) − σ′ (0) z = O(z2).

Multiplying the second equation in (4.22) by ṽx, the first equation by −z̃x and adding the resulting equa-
tions, we get

(ṽz̃x)t − (ṽz̃t)x + az̃2
x − ṽ2

x − βθ̃xz̃x = −z̃x∂
k
xg (z)x .

Young’s inequality gives
βθ̃xz̃x ≤ εz̃2

x + C (ε) θ̃2
x,
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and, for any ε > 0,
(ṽz̃x)t − (ṽz̃t)x + (a − ε) z̃2

x − ṽ2
x ≤ −z̃x∂

k
xg (z)x + C (ε) θ̃2

x. (4.23)

Similarly, multiplying the third equation in (4.22) by ṽx, the first equation by −θ̃x, adding the two resulting
equations, we obtain

(θ̃ṽx)t − (θ̃ṽt)x + δṽ2
x − βθ̃

2
x = −ηq̃xṽx − az̃xθ̃x − θ̃x∂

k
xg (z)x .

Again, Young’s inequality implies that, for any ε, ε1 > 0,

(θ̃ṽx)t − (θ̃ṽt)x + (δ − ε) ṽ2
x ≤ ε1z̃2

x + C (ε1) θ̃2
x + C (ε) q̃2

x − θ̃x∂
k
xg (z)x . (4.24)

Next, multiplying the fourth equation in (4.22) by 1
τ θ̃x, the third equation by −q̃x, and adding the results, we

get (
q̃θ̃x

)
t
−

(
q̃θ̃t

)
x

+
κ

τ
θ̃

2
x +

1
τ

q̃θ̃x − δṽxq̃x = 0,

which gives, by Young’s inequality,(
q̃θ̃x

)
t
−

(
q̃θ̃t

)
x

+

(
κ

τ
− ε

)
θ̃

2
x ≤ ε2ṽ2

x + C (ε, ε2)
(
q̃2

x + q2
)
. (4.25)

Now, we let α̃1 and α̃2 be two positive constants (to be chosen later), take (4.23) + α̃1(4.24) + α̃2(4.25), and
integrate the result over R to obtain:

d
dt

F̃ (k) (t) + {(a − ε) − ε1α̃1}
∥∥∥∂k

xzx
∥∥∥2

2 + {α̃1 (δ − ε) − 1 − ε2α̃2}
∥∥∥∂k

xvx
∥∥∥2

2

+

{
α̃2

(
κ

τ
− ε

)
−C (ε) − α̃1C (ε1)

} ∥∥∥∂k
xθx

∥∥∥2
2

≤ α̃2C (ε, ε2, α̃1)
(∥∥∥∂k

xqx
∥∥∥2

2 +
∥∥∥∂k

xq
∥∥∥2

2

)
+ R(k),

(4.26)

where
F̃ (k) (t) =

ˆ
R
∂k

xv∂k+1
x zdx + α̃1

ˆ
R
∂k

xθ∂
k+1
x vdx + α̃2

ˆ
R
∂k

xq∂k+1
x θdx (4.27)

and
R(k) = −

ˆ
R

(
∂k

xzx∂
k
xg (z)x + α̃1∂

k
xθx∂

k
xg (z)x

)
dx.

We choose the constants ε, ε1, ε2, α̃1, and α̃2 exactly as we have chosen ε, ε1, ε2, α1, and α2 in (3.16).
Then, we deduce that there exists λ̃ > 0, such that for any 0 ≤ k ≤ s − 1, the estimate (4.26) takes the form

d
dt

F̃ (k) (t) + λ̃
{∥∥∥∂k

xzx
∥∥∥2

2 +
∥∥∥∂k

xvx
∥∥∥2

2 +
∥∥∥∂k

xθx
∥∥∥2

2

}
≤ α̃2C (ε, ε2, α̃1)

∥∥∥∂k
xq

∥∥∥2
H1 + R(k).

This inequality can be rewritten as

d
dt

F̃ (k) (t) + λ̃1
∥∥∥∂k+1

x U (t)
∥∥∥2

2 ≤ α̃2C (ε, ε2, α̃1)
∥∥∥∂k

xq (t)
∥∥∥2

H1 + R(k), (4.28)

for any 0 ≤ k ≤ s − 1 and for some λ̃1 > 0.

On the other hand, there exists a constant c1 > 0, such that∣∣∣F̃ (k) (t)
∣∣∣ ≤ c1‖∂

k
xU (t) ‖2H1 , ∀t ≥ 0. (4.29)
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We also have the following estimate, as in [10],

R(k)
1 ≤ C‖z‖∞‖∂k+1

x z‖22 + C‖z‖∞‖∂k+1
x θ‖2‖∂

k+1
x z‖2. (4.30)

Now, multiplying (4.28) by (1 + t)µ, integrating with respect to t and using (4.29) and (4.30), we arrive at
ˆ t

0
(1 + ζ)µ

∥∥∥∂k+1
x U (ζ)

∥∥∥2
2 dζ ≤ C‖∂k

xU0‖
2
H1 + C(1 + t)µ‖∂k

xU (t) ‖2H1 + C
ˆ t

0
(1 + ζ)µ

∥∥∥∂k
xq (ζ)

∥∥∥2
H1 dζ

+C
ˆ t

0
(1 + ζ)µ‖z‖∞

(
‖∂k+1

x z‖22 + ‖∂k+1
x θ‖2‖∂

k+1
x z‖2

)
(4.31)

for all t ≥ 0 and for 0 ≤ k ≤ s − 1. Taking the summation in (4.31) over k with 0 ≤ k ≤ s − 1, we get
ˆ t

0
(1 + ζ)µ ‖∂xU (ζ)‖2Hs−1 dζ ≤ C‖U0‖

2
Hs + C(1 + t)µ‖U (t) ‖2Hs + C

ˆ t

0
(1 + ζ)µ ‖q (ζ)‖2Hs dζ

+C
ˆ t

0
(1 + ζ)µ‖z‖∞

(
‖∂xz‖2Hs−1 + ‖∂xθ‖Hs−1‖∂xz‖Hs−1

)
dζ. (4.32)

Let ω be a positive constant. Then taking (4.21)+ω(4.32) and choosing ω small enough, we arrive at the
following estimate:

(1 + t)µ ‖U (t)‖2Hs +

ˆ t

0
(1 + ζ)µ ‖q (ζ)‖2Hs dζ + ω

ˆ t

0
(1 + ζ)µ ‖∂xU (ζ)‖2Hs−1 dζ

≤ C ‖U0‖
2
Hs + µ

ˆ t

0
(1 + ζ)µ−1 ‖U (ζ)‖2Hs dζ

+Cω
ˆ t

0
(1 + ζ)µ‖z‖∞

(
‖∂xz‖2Hs−1 + ‖∂xθ‖Hs−1‖∂xz‖Hs−1

)
dζ

+C
ˆ t

0
(1 + ζ)µ ‖∂xU (ζ)‖∞ ‖∂xU (ζ)‖2Hs−1 dζ.

(4.33)

Our goal now is to prove (4.7), which will be done by induction on j. Indeed, we deduce from (4.49) that
(4.7) holds for j = 0. Now, we let 0 ≤ l ≤ s − 1 and suppose that (4.7) holds true for j = l. Then, we will
show the validity of (4.7) for j = l + 1. Taking µ = l + 1 in (4.20) and adding over k with l + 1 ≤ k ≤ s, we
obtain

(1 + t)l+1
∥∥∥∂l+1

x U (t)
∥∥∥2

Hs−l−1 +

ˆ t

0
(1 + ζ)l+1

∥∥∥∂l+1
x q (ζ)

∥∥∥2
Hs−l−1 dζ

≤ C ‖U0‖
2
Hs + C

ˆ t

0
(1 + ζ)l ‖∂l+1

x U (ζ) ‖2Hs−l−1dζ

+C
ˆ t

0
(1 + ζ)l+1 ‖∂xU (ζ)‖∞ ‖∂

l+1
x U (ζ) ‖2Hs−l−1dζ,

(4.34)

where we have used the fact that
∥∥∥∂l+1

x U0
∥∥∥2

Hs−l−1 ≤ ‖U0‖
2
Hs .

By the same method, taking µ = l + 1 in (4.31) and adding over k with l + 1 ≤ k ≤ s − 1, we have
ˆ t

0
(1 + ζ)l+1

∥∥∥∂l+2
x U (ζ)

∥∥∥2
Hs−l−2 dζ ≤ C ‖U0‖

2
Hs + C(1 + t)l+1‖∂l+1

x U (t) ‖Hs−l−1

+C
ˆ t

0
(1 + ζ)l+1

∥∥∥∂l+1
x q (ζ)

∥∥∥2
Hs−l−1 dζ (4.35)

+C
ˆ t

0
(1 + ζ)l+1‖z‖∞

(
‖∂l+2

x z‖2Hs−l−2 + ‖∂l+2
x θ‖Hs−l−2‖∂l+2

x z‖Hs−l−2

)
dζ.
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As above, for ω̂ small enough, we have by taking (4.34) + ω̂(4.35),

(1 + t)l+1
∥∥∥∂l+1

x U (t)
∥∥∥2

Hs−l−1 +

ˆ t

0
(1 + ζ)l+1

∥∥∥∂l+1
x q (ζ)

∥∥∥2
Hs−l−1 dζ +

ˆ t

0
(1 + ζ)l+1

∥∥∥∂l+2
x U (ζ)

∥∥∥2
Hs−l−2 dζ

≤ C ‖U0‖
2
Hs + C

ˆ t

0
(1 + ζ)l ‖∂l+1

x U (ζ) ‖2Hs−l−1dζ (4.36)

+C
ˆ t

0
(1 + ζ)l+1 ‖∂xU (ζ)‖∞ ‖∂

l+1
x U (ζ) ‖2Hs−l−1dζ,

+C
ˆ t

0
(1 + ζ)l+1‖z‖∞

(
‖∂l+2

x z‖2Hs−l−2 + ‖∂l+2
x θ‖Hs−l−2‖∂l+2

x z‖Hs−l−2

)
dζ,

where C is a positive constant depending on ω̂.

The second term on the right-hand side of (4.36) is estimated by the induction hypothesis (4.7) with j = l
as ˆ t

0
(1 + ζ)l ‖∂l+1

x U (ζ) ‖2Hs−l−1dζ ≤ C ‖U0‖
2
Hs + C (M0 (t) + M1 (t)) D2 (t) . (4.37)

On the other hand, we haveˆ t

0
(1 + ζ)l+1 ‖∂xU (ζ)‖L∞ ‖∂

l+1
x U (ζ) ‖2Hs−l−1dζ ≤ CM1 (t)

ˆ t

0
(1 + ζ)l ‖∂l+1

x U (ζ) ‖2Hs−l−1dζ

≤ CM1 (t) D2 (t) .
(4.38)

Also, ˆ t

0
(1 + ζ)l+1‖z‖∞‖∂l+2

x z‖2Hs−l−2dζ ≤ CM0 (t)
ˆ t

0
(1 + ζ)l+1‖∂l+2

x z‖2Hs−l−2dζ

≤ CM0 (t) D2 (t) . (4.39)

The last term on the right-hand side of (4.36) can be estimated as follows:
ˆ t

0
(1 + ζ)l+1‖z‖∞‖∂l+2

x θ‖Hs−l−2‖∂l+2
x z‖Hs−l−2dζ

≤ CM0 (t)
(ˆ t

0
(1 + ζ)l+1‖∂l+2

x θ‖2Hs−l−2dζ
)1/2 (ˆ t

0
(1 + ζ)l+1‖∂l+2

x z‖2Hs−l−2dζ
)1/2

≤ CM0 (t) D2 (t) . (4.40)

Inserting the estimates (4.37), (4.38), (4.39), and (4.40) into (4.36), we get

(1 + t)l+1
∥∥∥∂l+1

x U (t)
∥∥∥2

Hs−l−1 +

ˆ t

0
(1 + ζ)l+1

∥∥∥∂l+1
x q (ζ)

∥∥∥2
Hs−l−1 dζ

+

ˆ t

0
(1 + ζ)l+1

∥∥∥∂l+2
x U (ζ)

∥∥∥2
Hs−l−2 dζ (4.41)

≤ C ‖U0‖
2
Hs + C (M0 (t) + M1 (t)) D2 (t) ,

which shows that (4.7) holds true for j = l+1. Thus, by induction, we have proved (4.7) for all 0 ≤ j ≤ s−1.
Now, we are going to prove the estimate (4.8). Indeed, taking µ = k = s in (4.20), we arrive at

(1 + t)s
∥∥∥∂s

xU (t)
∥∥∥2

2 + ηβ

ˆ t

0
(1 + ζ)s

∥∥∥∂s
xq (ζ)

∥∥∥2
2 dζ ≤ C

∥∥∥∂s
xU0

∥∥∥2
2 + s

ˆ t

0
(1 + ζ)s−1 ‖∂s

xU (ζ) ‖22dζ

+C
ˆ t

0
(1 + ζ)s ‖∂xU (ζ)‖∞ ‖∂

s
xU (ζ) ‖22dζ.

(4.42)
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From (4.7), we have for j = s − 1ˆ t

0
(1 + ζ)s−1 ‖∂s

xU (ζ) ‖22dζ ≤ C ‖U0‖
2
Hs + C (M0 (t) + M1 (t)) D2 (t) . (4.43)

On the other hand, the last term on the right hand side of (4.42) is estimated as follows:
ˆ t

0
(1 + ζ)s ‖∂xU (ζ)‖∞ ‖∂

s
xU (ζ) ‖22dζ ≤ CM1 (t) D2 (t) . (4.44)

Inserting the estimates (4.43) and (4.44) into (4.42) yields (4.8). Consequently, the proof of Proposition 4.3
is finished.

Proposition 4.4 Assume that U0 ∈ Hs(R) where s ≥ 2 is an integer. Let U(x, t) be the local solution
of problem (4.1) on the interval [0,T ]. Then, there exists a small positive constant ᾱ, independent of T ,
such that, if sup0≤t≤T ‖U (t, x)‖Hs ≤ ᾱ, then the solution satisfies the following uniform energy estimate for
t ∈ [0,T ] :

‖U (t)‖2Hs +

ˆ t

0
‖q (ζ)‖2Hs dζ +

ˆ t

0
‖∂xU (ζ)‖2Hs−1 dζ ≤ C ‖U0‖

2
Hs . (4.45)

Proof. Let us take µ = 0 in (4.33). Then, we obtain

‖U (t)‖2Hs +

ˆ t

0
‖q (ζ)‖2Hs dζ + ω

ˆ t

0
‖∂xU (ζ)‖2Hs−1 dζ

≤ C ‖U0‖
2
Hs + Cω

ˆ t

0
‖z‖∞

(
‖∂xz (ζ) ‖2Hs−1 + ‖∂xθ (ζ) ‖Hs−1‖∂xz (ζ) ‖Hs−1

)
dζ

+C
ˆ t

0
‖∂xU (ζ)‖∞ ‖∂xU (ζ)‖2Hs−1 dζ.

(4.46)

Let ᾱ be a small positive constant independent of T such that sup0≤t≤T ‖U (t, x)‖Hs ≤ ᾱ, which implies, by
(4.4) and s ≥ 2, that

sup
0≤t≤T

‖∂xU (t)‖∞ ≤ ᾱ.

The last term on the right-hand side of (4.46) is estimated as
ˆ t

0
‖∂xU (ζ)‖∞ ‖∂xU (ζ)‖2Hs−1 dζ ≤ ᾱ

ˆ t

0
‖∂xU (ζ)‖2Hs−1 dζ. (4.47)

Similarly, we have
ˆ t

0
‖z‖∞

(
‖∂xz (ζ) ‖2Hs−1 + ‖∂xθ (ζ) ‖Hs−1‖∂xz (ζ) ‖Hs−1

)
dζ

≤ ᾱ

ˆ t

0

(
‖∂xz(ζ)‖2Hs−1 + ‖∂xθ (ζ) ‖Hs−1‖∂xz (ζ) ‖Hs−1

)
dζ (4.48)

≤ 2ᾱ
ˆ t

0
‖∂xU (ζ)‖2Hs−1 dζ.

Plugging (4.47) and (4.48) into (4.46), we get

‖U (t)‖2Hs +

ˆ t

0
‖q (ζ)‖2Hs dζ +

ˆ t

0
‖∂xU (ζ)‖2Hs−1 dζ

≤ C ‖U0‖
2
Hs + Cᾱ

ˆ t

0
‖∂xU (ζ)‖2Hs−1 dζ.
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This last inequality implies (4.45) provided that ᾱ is sufficiently small. This completes the proof of Propo-
sition 4.4.

Theorem 4.5 Assume that U0 ∈ Hs(R) where s ≥ 2 is an integer. Then, there exists a small positive constant
δ0 such that, if ‖U0‖Hs ≤ δ0, then (4.1) has a unique global solution U(x, t) such that

U ∈ C
(
[0,∞) ; Hs) ∩C1([0,∞) ; Hs−1).

Moreover, the solution satisfies the uniform energy estimate:

‖U (t)‖2Hs +

ˆ t

0
‖q (ζ)‖2Hs dζ +

ˆ t

0
‖∂xU (ζ)‖2Hs−1 dζ ≤ C ‖U0‖

2
Hs . (4.49)

Proof. By using Proposition 4.4, the proof of Theorem 4.5 is straightforward. Indeed, using the a priori
estimate (4.45), we can apply the continuity argument and get a global solution to problem (4.1) as long as
‖U0‖

2
Hs is suitably small, i.e., ‖U0‖

2
Hs ≤ δ0. The solution thus obtained satisfies the estimate (4.45) for all

t ≥ 0. The proof of Theorem 4.5 is therefore finished.

Lemma 4.6 Suppose that U0 ∈ Hs(R) ∩ L1(R) with s ≥ 3. Then we have

M (t) ≤ CEs + CM (t)2 + CM0 (t) E (t) , (4.50)

for all t ∈ [0,T ], where C is a positive constant independent of T and Es = ‖U0‖Hs + ‖U0‖L1 .

Proof. In order to prove (4.50), it suffices to establish the estimate∥∥∥∥∂ j
xU (t)

∥∥∥∥
2
≤ CEs (1 + t)−1/4− j/2 + C

(
M (t)2 + M0 (t) E (t)

)
(1 + t)−1/4− j/2 , (4.51)

for all t ∈ [0,T ] and 0 ≤ j ≤ s − 1.

By the Duhamel principle, the solution of (4.1) can be written as

U (t) = etΦU0 +

ˆ t

0
e(t−ζ)ΦG (U)x (ζ) dζ, (4.52)

where (
etΦω

)
(x) = F −1

[
etΦ̂(iξ)ω̂ (ξ)

]
(x)

with Φ̂ (iξ) = − (iξA + L) and G (U) = (g (z) , 0, 0, 0) . Therefore, estimate (3.23) can be rewritten as∥∥∥∂k
xetΦU0

∥∥∥
2 ≤ C (1 + t)−1/4−k/2 ‖U0‖1 + Ce−ct

∥∥∥∂k
xU0

∥∥∥
2 . (4.53)

Let j be a nonnegative integer and apply ∂ j
x to (4.52) to obtain∥∥∥∥∂ j

xU (t)
∥∥∥∥

2
≤

∥∥∥∥∂ j
xetΦU0

∥∥∥∥
2

+

ˆ t

0

∥∥∥∥∂ j+1
x e(t−ζ)ΦG (U)

∥∥∥∥
2

dζ

= I1 + I2. (4.54)

Since etΦU0 is the solution of the linear problem, then from (3.23), we get

I1 ≤ CEs (1 + t)−1/4− j/2 . (4.55)
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To estimate I2, split it into two parts:

I2 =

ˆ t/2

0

∥∥∥∥∂ j+1
x e(t−ζ)ΦG (U (ζ))

∥∥∥∥
2

dζ +

ˆ t

t/2

∥∥∥∥∂ j+1
x e(t−ζ)ΦG (U (ζ))

∥∥∥∥
2

dζ

= J1 + J2,

Using Lemma 2.2, recalling that g(z) = O(z2), and applying (3.23), we obtain

J1 ≤ C
ˆ t/2

0
(1 + t − ζ)−3/4− j/2 ‖G (U (ζ))‖1 dζ + C

ˆ t/2

0
e−c(t−ζ)

∥∥∥∥∂ j+1
x G (U (ζ))

∥∥∥∥
2

dζ

≤ C
ˆ t/2

0
(1 + t − ζ)−3/4− j/2 ‖U (ζ)‖22 dζ + C

ˆ t/2

0
e−c(t−ζ)

∥∥∥∥∂ j+1
x G (U (ζ))

∥∥∥∥
2

dζ

≤ CM (t)2
ˆ t/2

0
(1 + t − ζ)−3/4− j/2 (1 + ζ)−1/2 dζ + C

ˆ t/2

0
e−c(t−ζ)

∥∥∥∥∂ j+1
x G (U (ζ))

∥∥∥∥
2

dζ. (4.56)

The first term on the right-hand side of (4.56) can be estimated as

CM (t)2
ˆ t/2

0
(1 + t − ζ)−3/4− j/2 (1 + ζ)−1/2 dζ ≤ CM (t)2 (1 + t)−1/4− j/2 , (4.57)

where we used (2.6).

On the other hand, ∥∥∥∥∂ j+1
x G (U)

∥∥∥∥
2
≤ ‖U‖∞

∥∥∥∥∂ j+1
x U

∥∥∥∥
2
,

and, for j + 1 ≤ s, we obtain

‖U‖∞
∥∥∥∥∂ j+1

x U
∥∥∥∥

2
≤ M0 (t)

∥∥∥∥∂ j+1
x U

∥∥∥∥
Hs− j−1

≤ M0 (t) E (t) (1 + t)−1/2− j/2 .

Consequently, the last term on the right-hand side of (4.56) can be estimated as

C
ˆ t/2

0
e−c(t−ζ)

∥∥∥∥∂ j+1
x G (U (ζ))

∥∥∥∥
2

dζ ≤ CM0 (t) E (t)
ˆ t/2

0
e−c(t−ζ) (1 + ζ)−1/2− j/2 dζ

≤ CM0 (t) E (t) (1 + t)−1/2− j/2 . (4.58)

Using (4.57) and (4.58), we deduce that

J1 ≤ C
(
M (t)2 + M0 (t) E (t)

)
(1 + t)−1/4− j/2 . (4.59)

Next, J2 is estimated by applying (4.53) with j = 1 and using ∂ j
xG (U) instead of U0, to obtain

J2 =

ˆ t

t/2

∥∥∥∥∂xe(t−ζ)Φ∂
j
xG (U (ζ))

∥∥∥∥
2

dζ

≤ C
ˆ t

t/2
(1 + t − ζ)−

5
4

∥∥∥∥∂ j
xG (U (ζ))

∥∥∥∥
1

dζ + C
ˆ t

t/2
e−c(t−ζ)

∥∥∥∥∂ j+1
x G (U (ζ))

∥∥∥∥
2

dζ

= J21 + J22.

On the other hand, we have (see [10, page 1021]):∥∥∥∥∂ j
xG (U)

∥∥∥∥
1
≤ C ‖U‖2

∥∥∥∥∂ j
xU

∥∥∥∥
2

≤ CM2 (t) (1 + t)−1/2− j/2 ,
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for j ≤ s − 1. Thus,

J21 ≤ CM2 (t)
ˆ t

t/2
(1 + t − ζ)−5/4 (1 + ζ)−1/2− j/2 dζ

≤ CM2 (t) (1 + t)−1/2− j/2 . (4.60)

Since ∥∥∥∥∂ j+1
x G (U)

∥∥∥∥
2
≤ C ‖U‖∞

∥∥∥∥∂ j+1
x U

∥∥∥∥
2

≤ CM0 (t)
∥∥∥∥∂ j+1

x U
∥∥∥∥

Hs− j−1

≤ CM0 (t) E (t) (1 + t)−1/2− j/2 ,

we get

J22 ≤ CM0 (t) E (t)
ˆ t

t/2
e−c(t−ζ) (1 + ζ)−1/2− j/2 dζ

≤ CM0 (t) E (t) (1 + t)−1/2− j/2 . (4.61)

From (4.60) and (4.61), it follows that

J2 ≤ CM0 (t) E (t) (1 + t)−1/2− j/2 . (4.62)

Therefore, (4.55), (4.59), and (4.62) lead to∥∥∥∥∂ j
xU (t)

∥∥∥∥
2
≤ CEs (1 + t)−1/4− j/2 + C

(
M (t)2 + M0 (t) E (t)

)
(1 + t)−1/4− j/2 (4.63)

for all 0 ≤ j ≤ s − 1. Estimate (4.51) is now proved, which concludes the proof of Lemma 4.6.

Lemma 4.7 Let U0 ∈ Hs(R) ∩ L1(R) with s ≥ 3 and put Es = ‖U0‖Hs + ‖U0‖1. Let T > 0 and let U(x, t) be
the solution of (3.3), satisfying

U ∈ C ([0,T ]; Hs) ∩C1(0,T ]; Hs−1).

Then, we have the a priori estimates:

E2(T ) + D2(T ) ≤ CE2
s , (4.64)

M (T ) ≤ CEs, (4.65)

where C is a positive constant independent of T and Es.

Proof. By using the following interpolation inequality:

‖U‖∞ ≤
√

2 ‖U‖1/22 ‖∂xU‖1/22 , (4.66)

we can see that
M0 (t) ≤ CM (t) ,

provided that s ≥ 2. Similarly, applying (4.66), with Ux instead of U, we get for s − 1 ≥ 2 (i.e., for s ≥ 3)

M1 (t) ≤ CM (t) .
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For s ≥ 3, by using (4.6) and (4.50), we therefore get,

(E (t) + D (t) + M (t))2 ≤ CE2
s + C (E (t) + D (t) + M (t))3 . (4.67)

By standard arguments (cf. [17]), we conclude that for sufficiently small Es,

E (t) + D (t) + M (t) ≤ Ĉ. (4.68)

Indeed, let x = (E (t) + D (t) + M (t))2 and h(x) = C
(
E2

s + x3/2
)
− x. Then, (4.67) implies h (0) = CE2

s and
f (x) ≥ 0. On the other hand, we have

h′(x) =
3
2

Cx1/2 − 1 ≤ −
1
2
,

for small enough x, say 0 ≤ x ≤ 1/
(
9C2

)
. From the identity f (x) = f (0)+

´ t
0 f ′ (x) dx, we deduce that f (x)

changes its sign in 0 ≤ x ≤ 2CE2
s . Let Ĉ be the first zero of the function h. Then, we deduce that (4.68)

holds. This proves Lemma 4.7.

Theorem 4.8 Let U0 ∈ Hs(R) ∩ L1(R) and Es = ‖U0‖Hs + ‖U0‖L1 , where s ≥ 3 . Then, there exists a
positive constant, δ1 > 0, such that, if Es ≤ δ1, then the global solution obtained in Theorem 4.5 satisfies
the weighted energy estimate:

E2(t) + D2(t) ≤ CE2
s , (4.69)

and the decay estimate: ∥∥∥∂k
xU (t)

∥∥∥
2 ≤ CEs (1 + t)−1/4−k/2 , (4.70)

where C is a positive constant and 0 ≤ k ≤ s − 1.

Proof. The proof of Theorem 4.8 is a direct consequence of Lemma 4.7 and can be given from a chain of
estimates of the energy type.
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