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Abstract: In two recent papers the authors have studied conditions on the relaxation parameters

in order to guarantee the stability or instability of solutions for the Taylor approximations to

dual-phase-lag and three-phase-lag heat conduction equations. However, for several limit cases

relating to the parameters the kind of stability was unclear. Here we analyze these limit cases

and clarify whether we can expect exponential or slow decay for the solutions. Moreover, rather

general well-posedness results for three-phase-lag models are presented. Finally, the exponential

stability expected by spectral analysis is rigorously proved exemplarily.

1 Introduction

It is well known that Fourier’s heat conduction theory implies that the thermal disturbance

at some point in a solid will be felt instantly anywhere, however distant. From a physical

point of view this is a drawback of the model because it predicts that heat waves propagate

with infinite speed. To save the principle of causality, several heat conduction theories

were suggested in the second part of the last century (see [2, 6, 7]). In the books [10, 20,

22], several studies concerning the applicability of nonclassical thermoelastic theories are

considered.

In 1995 Tzou [21] suggested a modification of Fourier’s law. He proposed a theory of

a thermal flux with delay. It is based on the constitutive equation

q(x, t+ τq) = −k∇T (x, t+ τT ), k > 0. (1.1)

Here q is the heat flux vector and T is the temperature. This equation proposes that the

temperature gradient established across a material volume at position x at time t + τT

results in a heat flux to flow at a different instant of time t + τq. This delay should

be understood in terms of the microstructure of the material. Recently, Choudhuri [19]

proposed an extension of Tzou’s proposition. The constitutive equation for the heat flux
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ciones” (MTM2009-08150) of the Spanish Ministry of Science and Technology)

1



vector is

q(x, t+ τq) = − (k∇T (x, t+ τT ) + k∗∇ν(x, t+ τν)) . (1.2)

Here ν is the thermal displacement that satisfies ν̇ = T . It seems that the aim of Choud-

huri was to establish a mathematical model based on delay in such a way that the Taylor

approximations recover the models of Green and Naghdi [4, 5].

Both theories are strongly based on an intuitive point of view, but there is no a priori

thermomechanical foundation. Unfortunately, it can be proved that, when we adjoin these

constitutive equations with the classical energy equation

−div q(x, t) = cṪ (x, t), c > 0, (1.3)

there always exists a sequence of solutions Tn(t, x) = exp(ωnt)Φn(x) such that the real

part Reωn tends to infinity [3]. This result implies that the associated mathematical

problem is ill posed in the sense of Hadamard. Of course, this is not suitable for a

heat conduction theory and disagrees with what one would expect a priori. For this

reason a big interest has been developed to study different Taylor approximations to

these equations [1, 8, 11, 12, 13, 14, 15, 16, 17, 18]. These alternative theories allow to

obtain the stability of solutions and the well-posedness of the problems. In particular, the

contributions [16, 18] gave conditions to guarantee stability or instability of solutions for

the different theories. However, we should mention that few attention has been dedicated

to the limit cases for the parameters. That is, we proved that when a strict inequality

holds stability or instability can be obtained. However, we have not yet paid attention

to what happens in the more difficult case of equalities. This is one main object of the

present contribution. We wish to see if the decay of solutions is fast (exponential) or

only slow (i.e. not exponential) in these limit cases. It is worthwhile mentioning that our

contribution is also motivated by the paper of Ignaczak [9] who proved that, in some limit

cases, progressive heat waves behave differently. Our analysis is devoted to clarify when

the different theories should be accepted or rejected.

Assuming w.l.o.g. c = 1 in (1.3) in the sequel, two of the equations proposed by

Tzou, obtained by means of a formal Taylor approximation to the delay equation (1.1)

and leading to dual-phase-lag equations, are

Ṫ + τqT̈ +
τ 2
q

2

...
T = k4T + kτT4Ṫ (1.4)

and

Ṫ + τqT̈ +
τ 2
q

2

...
T = k4T + kτT4Ṫ + k

τ 2
T

2
4T̈ . (1.5)

(i) Equation (1.4) is hyperbolic. We recall that we proved that when τq < 2τT the

problem is exponentially stable, whereas, when τq > 2τT , it is unstable (see [16]). When

2



τq = 2τT the problem will also be stable, but we need to clarify whether the decay is of

exponential type. In fact, we will prove that the answer is negative and that there is slow

decay.

(ii) Equation (1.5) is more difficult to study. In fact, the best that we know is that

the point spectrum is far away from the imaginary axis when τT > (2−
√

3)τq (see [16]).

We wish to analyze what happens in the limit case τT = (2−
√

3)τq.

Using formal Taylor approximations to the delay equation (1.2), Choudhuri proposed

the following couple of equations, representing three-phase-lag problems,

T̈ + τq
...
T = k∗4T + τ ∗ν4Ṫ + kτT4T̈ , (1.6)

and

T̈ + τq
...
T +

τ 2
q

2

....
T = k∗4T + τ ∗ν4Ṫ + kτT4T̈ . (1.7)

(iii) We recall that equation (1.6) is exponentially stable if τ ∗ν > k∗τq, where τ ∗ν is defined

by k∗τν +k (see [18]), and that, depending on the domain, it can be unstable if τ ∗ν < k∗τq.

Here we want to clarify the case τ ∗ν = k∗τq. We will see that the point spectrum is at a

positive distance to the imaginary axis which suggests exponential stability, that will be

proved using energy methods.

(iv) Equation (1.7) is exponentially stable when k∗τq < τ ∗ν <
2kτT
τq

(see [18]). We here

analyze several limit cases.

For the limit case τ ∗ν = k∗τq in (iii) and in (iv), where exponential stability will be sug-

gested by the spectral analysis, we will demonstrate this exponential stability analytically

using energy methods.

Moreover, we give a rigorous and rather general analysis of the well-posedness of

(three-)phase-lag inital-boundary value problems.

The paper is organized as follows: In sections 2-5 we analyze the limit cases with respect to

exponential or slow decay by means of spectral analysis. In section 6 we discuss the well-

posedness of (three-)phase-lag problems in a general setting following [1]. Exponential

stability for the limit case τ ∗ν = k∗τq is proved in section 7 for (iii), and in section 8 for

(iv).

2 Spectral analysis for the limit case of (1.4)

In this section we analyze equation (1.4) when τq = 2τT . Then the equation turns into

Ṫ + 2τ T̈ + 2τ 2
...
T = k4T + kτ4Ṫ , (2.1)

where τ = τT , dropping the sub-index to simplify the expressions. Let us consider func-

tions of the form

T (x, t) = exp(ωt)Φn(x), (2.2)
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where Φn satisfies the eigenvalue problem

4Φn + λnΦn = 0 in Ω, Φn = 0 on ∂Ω.

Thus, (λn)n are the positive eigenvalues of the usual Laplace operator in Ω, where Ω

represents the body as a bounded domain in Rd, d ≥ 1, and is assumed to have a smooth

boundary ∂Ω.

The function in (2.2) is a solution of (1.4) whenever ω satisfies the polynomial equation

2τ 2ω3 + 2τω2 + (1 + kτλn)ω + kλn = 0. (2.3)

The zeros of this equation correspond to the spectrum of that operator A which would

arise if we transformed the equation to a first-order system of the type Vt +AV = 0.

We would like to see if the solutions are near to the imaginary axis. We will show that

for every positive ε, there always exist elements of the point spectrum on the right of the

line Re {ω} = −ε. For this reason we introduce z := ω + ε, i.e. we exchange ω by z − ε,
and we obtain the equation

z3 + l1z
2 + l2z + l3 = 0, (2.4)

where

l1 = τ−1 − 3ε, l2 =
1 + kτλn

2τ 2
+ 3ε2 − 2ε

τ
, l3 =

kλn
2τ 2
− ε3 +

ε2

τ
− (1 + kτλn)ε

2τ 2
.

To prove that there exist solutions to equation (2.3) which are on the right of the line

Re {ω} = −ε, we will show that there are solutions to (2.4) with positive real part. By

the Hurwitz criterion, all three roots of the equation have negative real parts if and only

if the following inequalities

lj > 0, j = 1, 2, 3, l1l2 > l3, (2.5)

hold. In our case we can always take ε small enough to guarantee li > 0 for every

i = 1, 2, 3. However, a direct calculation shows that

l1l2 − l3 =
1

2τ 3
− 2ε

(
1 + kτλn

2τ 2

)
− 2ε

τ 2
+ ε2Ψ, (2.6)

where Ψ is bounded because it can be obtained as an expression which depends on the

parameter and ε, but which does not depend on λn. As λn growths and we select ε as

small as we want (but positive), we can always select n such that the right-hand side of

(2.6) is less than zero. Thus, we conclude that in this case we can always find elements

of the point spectrum on the right of the line Re {ω} = −ε. Therefore, we do not have

exponential decay of the solutions.

Theorem 2.1. In the limit case of (1.4) we have slow decay.
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3 Spectral analysis for the limit case of (1.5)

It was proved that when τT > (2 −
√

3)τq the equation is exponentially stable. We here

consider the limit case when τT = (2−
√

3)τq. Equation (1.5) can be written as

Ṫ + τ T̈ +
τ 2

2

...
T = k4T + k(2−

√
3)τ4Ṫ + k

(2−
√

3)2τ 2

2
4T̈ , (3.1)

where τ = τq.

The functions of the form (2.2) are solutions whenever ω satisfies the polynomial

equation

τ 2

2
ω3 + τ

(
1 +

(2−
√

3)2τkλn
2

)
ω2 + (1 + (2−

√
3)τkλn)ω + kλn = 0.

Again exchanging ω by z − ε we obtain the equation (2.4), now with

l1 = τ−1(2 + (2−
√

3)2τkλn)− 3ε,

l2 =
2

τ 2

(
(1 + (2−

√
3)τkλn) +

3

2
τ 2ε2 − τ(2 + (2−

√
3)2τkλn)ε

)

l3 =
2

τ 2

(
kλn −

τ 2ε3

2
+ τ

(
1 +

(2−
√

3)2

2
τkλn

)
ε2 − (1 + (2−

√
3)τkλn)ε

)
.

We see that lj > 0 if ε is small enough, independent of λn, and

l1l2 − l3 = Aλ2
n −Bλn + C =

(√
Aλn −

B

2
√
A

)2

+

(
C − B2

4A

)

=

(√
Aλn −

B

2
√
A

)2

+
1

4A
(4AC −B2), (3.2)

where

A = k(2−
√

3)2

(
2k(2−

√
3)

τ
− 2k(2−

√
3)2ε

)
,

B =

(
2k

τ 2
+ k(2−

√
3)2ε2 − 2k(2−

√
3)ε

τ

)
+

(
3ε− 2

τ

)(
2k(2−

√
3)

τ
− 2k(2−

√
3)2ε

)

+k(2−
√

3)2

(
4ε

τ
− 2

τ 2
− 3ε2

)
,

C =

(
2

τ
− 3ε

)(
2

τ 2
− 4ε

τ
+ 3ε2

)
−
(

2ε2

τ
− 2ε

τ 2
− ε3

)
.
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Marking the dependence on the parameters n and ε, we rewrite (3.2) as

(l1l2 − l3)(n, ε) = A(ε)


(
λn −

B(ε)

2A(ε)

)2

︸ ︷︷ ︸
=:S1(n,ε)

+
1

4A2(ε)

(
4A(ε)C(ε)−B2(ε)

)
︸ ︷︷ ︸

=:S2(ε)

 (3.3)

First case:

∀n ∈ N : λn 6=
B(0)

2A(0)
=

3
√

3− 5

kτ(26− 15
√

3)
.

Then we conclude, since 0 < λn →∞:

∃ c0 > 0 ∃ ε1 > 0 ∀ 0 < ε ≤ ε1 ∀n : S1(n, ε) ≥ c0.

Since we shall see in the discussion of the following second case that S2(ε) = O(ε) always

holds, we conclude

∃ c1 > 0 ∃ ε2 > 0 ∀ 0 < ε ≤ ε2 ∀n : (l1l2 − l3)(n, ε) ≥ c1,

which suggests the expected exponential decay in this case.

Second case:

∃n0 ∈ N : λn0 =
B(0)

2A(0)
.

Remark 3.1. This situation of having one special eigenvalue might (only) happen for a

special geometry of the underlying domain, therefore the situation in the first case is called

generic.

Computing

4A(0)C(0)−B2(0) = 0,

(l1l2 − l3)(n0, 0) = 0

implies the existence of a value ω with real part equal to zero, by a generalization of the

Routh-Hurwitz criterion given in [24]. Hence, since ω = 0 is not admissible, there exists

an oscillating solution, so we do not have exponential stability in this special case.

Theorem 3.2. In the limit case of (1.5) there exist cases such that the asymptotic stability

is not given.

Remark 3.3. For the generic case we expect exponential stability.
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4 Spectral analysis for the limit case of (1.6)

In this section we analyse the point spectrum of the equation (1.6) in the case that

τ ∗ν = k∗τq. We would like to prove that we can find a positive ε such that the point

spectrum is on the left of the line Re {ω} = −ε. This suggests the exponential decay of

the solutions.

We first note that our equation becomes

T̈ + τ1

...
T = k∗4T + k∗τ14Ṫ + kτ24T̈ , (4.1)

where

τ1 = τq and τ2 = τT .

If we look for solutions of the form (2.2), the parameter ω must satisfy the equation

τ1ω
3 + (1 + kτ2λn)ω2 + τ1k

∗λnω + k∗λn = 0. (4.2)

Exchanging again ω by z − ε we obtain the equation (2.4) with

l1 = τ−1
1 (1 + kτ2λn)− 3ε, l2 = k∗λn −

2(1 + kτ2λn)

τ1

ε+ 3ε2,

l3 =
k∗λn
τ1

− ε3 +
ε2(1 + kτ2λn)

τ1

− k∗λnε.

Again, we can always take ε small enough to guarantee that li > 0 for every i = 1, 2, 3.

We also have

l1l2 − l3 = λ2
n

(
kk∗τ2

τ1

+ c1ε

)
+ λn(c2ε+ c3ε

2) + (c4ε+ c5ε
2 + c6ε

3),

with constants cj, j = 1, . . . , 6, that are independent of ε and of n.

Since 0 < λn →∞ (as n→∞), we conclude that

∃ c0 > 0 ∃ ε0 > 0 ∀ 0 < ε ≤ ε0 ∀n : l1l2 − l3 ≥ c0.

Thus, the point spectrum is strictly to the left of the imaginary axis. This suggests the

exponential stability of the system, which will be proved rigorously in Section 7.

Theorem 4.1. In the limit case of (1.6) the spectrum is located strictly left to the imag-

inary axis.

5 Spectral analysis for the limit cases of (1.7)

The exponential stability of solutions of equation (1.7) is known when k∗τq < τ ∗ν <
2kτT
τq

.

Several possibilities should be considered as limit cases. We will study three cases. The

first one corresponds to k∗τq = τ ∗ν <
2kτT
τq

, the second one will be when k∗τq < τ ∗ν = 2kτT
τq

,

and the last one is k∗τq = τ ∗ν = 2kτT
τq

.

7



5.1 Case k∗τq = τ ∗ν <
2kτT
τq

We here will see that the point spectrum is strictly away from the imaginary axis when

k∗τq = τ ∗ν <
2kτT
τq

, which suggests the exponential decay of solutions.

If k∗τq = τ ∗ν <
2kτT
τq

equation (1.7) can be written as

T̈ + τ1

...
T +

τ 2
1

2

....
T = k∗4T + k∗τ14Ṫ + kτ24T̈ , (5.1)

where τ1 = τq and τ2 = τT . If we look for solutions of the form (2.2), the parameter ω

must satisfy the equation

τ 2
1

2
ω4 + τ1ω

3 + (1 + kτ2λn)ω2 + τ1k
∗λnω + k∗λn = 0. (5.2)

We will see that in this case we can find ε > 0 such that the point spectrum is on the left

of the line Re {ω} = −ε. The change of ω to z − ε leads to the equation

z4 + a1z
3 + a2z

2 + a3z + a4 = 0, (5.3)

where

a1 =
2

τ1

− 4ε, a2 =
2(1 + τ2kλn)

τ 2
1

+ 6ε2 − 6ε

τ1

,

a3 =
2k∗λn
τ1

− 4ε3 +
6ε2

τ1

− 4ε(1 + kτ2λn)

τ 2
1

a4 =
2k∗λn
τ 2

1

+ ε4 − 2ε3

τ1

+
2ε2(1 + kτ2λn)

τ 2
1

− 2k∗λnε

τ1

.

Considering again the Hurwitz criterium, we know that the solutions have negative real

parts whenever

ai > 0, i = 1, 2, 3, 4, a1a2 − a3 > 0, and a1a2a3 − a2
1a4 − a2

3 > 0. (5.4)

In our case, we immediately see that all the coefficients aj, j = 1, 2, 3, 4, are positive

whenever ε is small enough. Let us consider the other two conditions in (5.4). First, it is

a1a2 − a3 =
4

τ 3
1

+

(
4kτ2 − 2τ 2

1 k
∗ − 4τ1τ2kε

τ 3
1

)
︸ ︷︷ ︸

=:D

λn + c1ε+ c2ε
2 + c3ε

3,

where cj, j = 1, 2, 3, and also c4, . . . , c7 in the sequel, denote constants not depending on

ε nor on n.

Since

τ 3
1D = 2(2τ2k − τ 2

1 k
∗) + c4ε
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and 2τ2k − τ 2
1 k
∗ > 0 by our assumption, we conclude that D > 0 for sufficiently small ε,

hence also

a1a2 − a3 > 0

for sufficiently small ε. Finally, we have

F := a1a2a3 − a2
1a4 − a2

3 = λ2
n

(
8τ2kk

∗

τ 4
1

− 4(k∗)2

τ 2
1

+ c5εΨ1(ε)

)
+ λnc6εΨ2(ε) + c7εΨ3(ε),

with smooth functions Ψj, j = 1, 2, 3, satisfying

sup
0≤ε≤1

Ψj(ε) <∞.

Since
8τ2kk

∗

τ 4
1

− 4(k∗)2

τ 2
1

=
4k∗

τ 2
1

(
2τ2k

τ 2
1

− k∗
)

and 2τ2k
τ21
− k∗ > 0 holds by our assumption in this limit case, we conclude that F > 0 for

sufficiently small ε. Hence, the real parts of the zeros are strictly away from the imaginary

axis. This suggests the exponential stability of the system, which will be proved rigorously

in Section 8.

Theorem 5.1. In the first limit case of (1.7) the spectrum is located strictly left to the

imaginary axis.

5.2 Case k∗τq < τ ∗ν = 2kτT
τq

Now, we would like to prove that when k∗τq < τ ∗ν = 2kτT
τq

, there are always elements in

the point spectrum as near as we want to the imaginary axis. If we substitute τ ∗ν by 2kτT
τq

in equation (1.7) and consider solutions of the form (2.2), we see that ω must satisfy the

equation
τ 3

1

2
ω4 + τ 2

1ω
3 + τ1(1 + kτ2λn)ω2 + 2kτ2λnω + k∗τ1λn = 0.

Here we use the same notation as in the previous sub-section. The change of ω to z − ε
leads to the equation (5.3) with

a1 =
2

τ1

− 4ε, a2 =
2(1 + kτ2λn)

τ 2
1

+ 6ε2 − 6ε

τ1

,

a3 =
4kτ2λn
τ 3

1

− 4ε3 +
6ε2

τ1

− 4ε(1 + kτ2λn)

τ 2
1

,

a4 =
2k∗λn
τ 2

1

+ ε4 − 2ε3

τ1

+
2(1 + kτ2λn)ε2

τ 2
1

− 4kτ2λnε

τ 3
1

.
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It is obvious that aj > 0, j = 1, 2, 3, 4 for sufficiently small ε.

On the other hand, we have

H := a1a2 − a3 =
4

τ 3
1

− 4τ2k

τ 2
1

ελn + c1ε+ c2ε
2 + c3ε

3,

with constants cj, j = 1, 2, 3, being independent of ε and n. The term H is not uniformly

(in n) positive, since for any however small positive ε, the term which is linear in λn tends

to −∞ as n→∞. This implies the non-exponential stability, i.e. a slow decay.

Theorem 5.2. In the second limit case of (1.7) we have slow decay in general.

5.3 Case k∗τq = τ ∗ν = 2kτT
τq

We can regard this case as a limit case of the second case when k∗τq = 2kτT
τq

. Thus, we also

see in this case that a1a2 − a3 will be negative for any fixed positive ε and for sufficiently

large n (similarly for a1a2a3 − a2
1 − a2

3). Hence we get

Theorem 5.3. In the third limit case of (1.7) we have slow decay in general.

6 Well-posedness for (three-)phase-lag heat conduc-

tion

We consider the phase-lag flux-temperature relation (1.2), i.e.

q(x, t+ τq) = − (k∇T (x, t+ τT ) + k∗∇ν(x, t+ τν)) (6.1)

with k ≥ 0 and k∗ > 0. Well-posedness results in the case of dual-phase-lag with k > 0

and k∗ = 0 have been given in [15, 17, 23]. Now let k∗ > 0, but possibly k = 0 (i.e. real

three-phase-lag, or dual-phase-lag different from the case k∗ = 0).

Formal Taylor approximations in τq, τT and τν , respectively, in (6.1) yield the general

form
mq∑
j=0

τ jq
j!

∂j

∂tj
q(x, t) = −k

mT∑
j=0

τ jT
j!

∂j

∂tj
∇T (x, t)− k∗

mν∑
j=0

τ jν
j!

∂j

∂tj
∇ν(x, t) (6.2)

with mq,mT ,mν ∈ N. When combined with the energy equation (1.3) it leads to

mq∑
j=0

τ jq
j!

∂j+2

∂tj+2
T (x, t) =

m∑
j=0

aj
∂j

∂tj
∆T (x, t). (6.3)
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where m := mν if k = 0, and m := max
{
mT + 1,mν

}
if k > 0. The coefficients aj > 0

are given by aj := τ jν
j!
k∗ for j = 0, . . . ,m if k = 0 and otherwise a0 := k∗ and

if mν ≤ mT : aj :=
τ j−1
T

(j − 1)!
k +

τ jν
j!
k∗ for j = 1, . . . ,mν ,

aj :=
τ j−1
T

(j − 1)!
k for j = mν + 1, . . . ,m,

if mν = mT + 1 : aj :=
τ j−1
T

(j − 1)!
k +

τ jν
j!
k∗ for j = 1, . . . ,m,

if mν > mT + 1 : aj :=
τ j−1
T

(j − 1)!
k +

τ jν
j!
k∗ for j = 1, . . . ,mT + 1,

aj :=
τ jν
j!
k∗ for j = mT + 2, . . . ,m.

In this notation the equations (1.6) and (1.7) correspond to the cases (a) mq = 1,mT =

1,mν = 1 and (b) mq = 2,mT = 1,mν = 1, respectively.

If mq ≥ m+1 the problem (6.3) is ill-posed (see [3]), which, e.g., applies to the case (b)

with k = 0 (special dual-phase-lag). We will now show well-posedness results for (6.3) for

the following two cases: (i) mq = 1,m = 2 and (ii) mq = m, whereby the three-phase-lag

problems (1.6) and (1.7) with k > 0, as well as the special dual-phase-lag problem (1.6)

with k = 0, are included.

6.1 Well-posedness in case of mq = 1,m = 2

Let Ω ⊂ Rn be bounded. We are looking for a solution T : Ω× [0,∞)→ R to the initial

boundary value problem,

T̈ + τq
...
T = k∗∆T + a1∆Ṫ + a2∆T̈ in Ω× (0,∞), (6.4)

T (·, 0) = θ0, Ṫ (·, 0) = θ1, T̈ (·, 0) = θ2 in Ω, (6.5)

T (·, t)|∂Ω = 0 for t ∈ [0,∞), (6.6)

where the initial data θ0 : Ω→ R, θ1 : Ω→ R and θ2 : Ω→ R are given.

We choose

H := H1
0 (Ω)×H1

0 (Ω)× L2(Ω)

and for V,W ∈ H we define

〈V,W 〉H := 〈∇V1,∇W1〉+ a1〈∇V2,∇W2〉+ τq〈V3,W3〉.

Here, 〈·, ·〉 denotes the L2(Ω)-inner product with associated norm ‖ · ‖. (H, 〈·, ·〉H) can be

shown to be a Hilbert space, and the norm ‖·‖H is equivalent to the norm ‖·‖H1
0×H1

0×L2 .
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Transforming (6.4)–(6.6) to a first order system via V := (T, Ṫ , T̈ ), we obtain

d

dt
V(t) = AV(t) + F(t), V(0) = V0, (6.7)

where the operator A : D(A) ⊆ H → H is defined by

D(A) := {V ∈ (H1
0 (Ω))3 | k∗∆V1 + a1∆V2 + a2∆V3 ∈ L2(Ω)},

and

AV :=

 0 1 0

0 0 1
k∗

τq
∆ a1

τq
∆ a2

τq
∆− 1

τq

V for V ∈ D(A).

The corresponding initial condition is given by V0 := (θ0, θ1, θ2)′ . Besides, we have added a

possible inhomogeneity F : [0,∞)→ H, which does not affect the essential considerations

concerning the existence of solutions.

Lemma 6.1. A is a closed linear operator with D(A) = H.

Proof. D(A) = H is obvious by a density argument. Let (V n)n∈N ⊆ D(A) and V,W ∈ H
with V n H−→ V and AV n H−→ W as n → ∞. Particularly, for the first component we have

V n
1

H1
0−→ V1 ∈ H1

0 (Ω), remembering the equivalence of ‖·‖H and ‖·‖H1
0×H1

0×L2 . V2 = W1

in H1
0 (Ω) results from V n

2

H1
0−→ V2 ∈ H1

0 (Ω) and V n
2 = (AV n)1

H1
0−→ W1 ∈ H1

0 (Ω). Since

V n
3

L2

−→ V3 ∈ L2(Ω) and V n
3 = (AV n)2

H1
0−→ W2 ∈ L2(Ω) we conclude V3 = W2 in L2(Ω),

and, by testing with ∇ϕ for ϕ ∈ C∞0 (Ω), one sees that the equality also holds in H1
0 (Ω).

If we choose Φ = (0, 0,Φ3) ∈ H with Φ3 ∈ C∞0 (Ω) being arbitrary, then, by definition of

A and 〈·, ·〉H,

〈AV n,Φ〉H −→ 〈W,Φ〉H = τq〈W3,Φ3〉

and

〈AV n,Φ〉H = 〈k∗∆V n
1 + a1∆V n

2 + a2∆V n
3 − V n

3 ,Φ3〉
−→ −〈k∗∇V1 + a1∇V2 + a2∇V3,∇Φ3〉 − 〈V3,Φ3〉

as n→∞. This implies k∗∆V1 +a1∆V2 +a2∆V3 ∈ L2(Ω) with k∗∆V1 +a1∆V2 +a2∆V3 =

τqW3 + V3. Altogether we have shown V ∈ D(A) and AV = W , so A is closed.

Lemma 6.2. There exists d > 0 such that A− λ is dissipative for all λ > d. In this case

λ−A is injective, therefore invertible, with (λ−A)−1 being continuous and closed.

Proof. For V ∈ D(A) the appropriate choice of the inner product guarantees

Re〈AV, V 〉H = Re〈∇V2,∇V1〉 − k∗Re〈∇V1,∇V3〉 − a2‖∇V3‖2 − ‖V3‖2

≤
(

1

2
‖∇V2‖2 +

1

2
‖∇V1‖2

)
+ k∗

(
1

2ε
‖∇V1‖2 +

ε

2
‖∇V3‖2

)
− a2‖∇V3‖2

12



where ε > 0 is arbitrary. If we choose ε := 2a2
k∗

and define d := 1
2

max
{

1 + (k∗)2

2a2
, 1
a1

}
we

have

Re〈AV, V 〉H ≤ d
(
‖∇V1‖2 + a1‖∇V2‖2

)
≤ d‖V ‖2

H

which provides the dissipativity of A − λ for λ > d. This means that ‖(λ − A)V ‖H ≥
λ‖V ‖H holds for all V ∈ H and λ > d, from which follows that λ − A is injective and

(λ−A)−1 is continuous. The latter operator is closed because of the closedness of A.

Lemma 6.3. For λ > d the operator λ−A is surjective, that is, its range is R(λ−A) = H.

Proof. First let F ∈ H with the additional condition F1, F2 ∈ H2(Ω) ∩ H1
0 (Ω). By

definition of A the problem (λ−A)V = F is equivalent to
λV1 − V2 = F1,

λV2 − V3 = F2,

λV3 −
k∗

τq
∆V1 −

a1

τq
∆V2 −

a2

τq
∆V3 +

1

τq
V3 = F3.

Eliminating V2 and V3 leads to

−
(
k∗

τq
+
a1

τq
λ+

a2

τq
λ2

)
︸ ︷︷ ︸

=:α

∆V1 +

(
λ3 +

λ2

τq

)
︸ ︷︷ ︸

=:β

V1 = f

with f :=
(
λ2 + λ

τq

)
F1−

(
a1
τq

+ a2
τq
λ
)

∆F1 +
(
λ+ 1

τq

)
F2− a2

τq
∆F2 +F3, which is in L2(Ω)

because of the choice of F . The coefficients fulfill α, β > 0. By the Lax-Milgram theorem

there uniquely exists V1 ∈ H1
0 (Ω) with ∆V1 ∈ L2(Ω) which solves −α∆V1 + βV1 = f .

Then

V :=
(
V1, λV1 − F1, λ

2V1 − λF1 − F2

)′
is in D(A) and solves (λ−A)V = F .

Omitting further requirements on its components any F ∈ H can still be approximated

by a sequence (F n)n∈N ⊆
(
H2(Ω)∩H1

0 (Ω)
)2×L2(Ω). Using the continuity and closedness

of (λ−A)−1 we also obtain F ∈ R(λ−A) for any F ∈ H.

Because of the last two lemmata we can apply the Lumer-Phillips theorem concluding

that A generates a C0-semigroup on H. Now, the well-posedness result for (6.7) reads as

follows:

Theorem 6.4. If V0 ∈ D(A) and either F ∈ C0 ([0,∞), D(A)) or F ∈ C1 ([0,∞),H)

then there is a unique solution V ∈ C0 ([0,∞),H)∩C0 ((0,∞), D(A))∩C1 ((0,∞),H) to

(6.7).

13



6.2 Well-posedness in case of mq = m

Using the same approach as before, we can look at

m∑
j=0

τ jq
j!

∂j+2

∂tj+2
T =

m∑
j=0

aj
∂j

∂tj
∆T in Ω× (0,∞), (6.8)

∂j

∂tj
T (·, 0) = θj in Ω for j = 0, . . . ,m+ 1, (6.9)

T (·, t)|∂Ω = 0 for t ∈ [0,∞), (6.10)

where the initial data θj : Ω→ R are given.

H := H1
0 (Ω)× . . .×H1

0 (Ω)︸ ︷︷ ︸
(m+1)−times

×L2(Ω)

with

〈V,W 〉H :=
3m

am

(
m∑
j=1

a2
j−1〈∇Vj,∇Wj〉

)
+ am〈∇Vm+1,∇Wm+1〉+

τmq
m!
〈Vm+2,Wm+2〉

+
m∑
j=1

aj−1 (〈∇Vj,∇Wm+1〉+ 〈∇Vm+1,∇Wj〉)

will turn out to be a suitable Hilbert space. Its norm ‖·‖H is equivalent to the stan-

dard norm ‖·‖H1
0×...×H1

0×L2 . The coefficients in front of the terms 〈∇Vj,∇Wj〉 are chosen

large enough to guarantee the positive definiteness of the inner product. The underlying

estimate is

m∑
j=1

aj−1 (〈∇Vj,∇Vm+1〉+ 〈∇Vm+1,∇Vj〉) ≥ −2
m∑
j=1

aj−1

(
1

2εj
‖∇Vj‖2 +

εj
2
‖∇Vm+1‖2

)
with εj :=

am
2maj−1

for 1 ≤ j ≤ m

= −am
2
‖∇Vm+1‖2 − 2m

am

m∑
j=1

a2
j−1‖∇Vj‖2.

On H we now consider

d

dt
V(t) = AV(t) + F(t), V(0) = V0, (6.11)

where again an inhomogeneity F is allowed. The operator A : D(A) ⊆ H → H is defined

by

D(A) := {V ∈ (H1
0 (Ω))m+2 |

∑m+1
j=1 aj−1∆Vj ∈ L2(Ω)}
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and

AV :=


(0)(m+1)×1 id(m+1)×(m+1)

m!
τmq
a0∆ m!

τmq
a1∆

(
m!
τmq
aj∆− m!

(j−2)!
τ j−2−m
q

)
2≤j≤m

−m
τq

V

which is motivated by the transformation of (6.8)-(6.10) to a first order system via V :=

(T, ∂
∂t
T, . . . , ∂

m+1

∂tm+1T ). Accordingly the initial value is V0 := (θ0, θ1, . . . , θm+1)′.

Lemma 6.5. A is a closed linear operator with D(A) = H.

Proof. D(A) = H is true by a density argument. Let (V n)n∈N ⊆ D(A) and V,W ∈ H
with V n H−→ V and AV n H−→ W as n → ∞. Because of the equivalence of ‖·‖H and

‖·‖H1
0×...×H1

0×L2 the first component V n
1 obviously tends to V1 ∈ H1

0 (Ω) as n→∞ and for

j = 1, . . . ,m the identity Vj+1 = Wj in H1
0 (Ω) follows from

V n
j+1

H1
0−→ Vj+1 ∈ H1

0 (Ω) and V n
j+1 = (AV n)j

H1
0−→ Wj ∈ H1

0 (Ω) as n→∞.

The validity of Vm+2 = Wm+1 in H1
0 (Ω) is ensured by

V n
m+2

L2

−→ Vm+2 ∈ L2(Ω) and V n
m+2 = (AV n)m+1

H1
0−→ Wm+1 ∈ H1

0 (Ω) as n→∞.

For any Φ = (0, . . . , 0,Φm+2) ∈ H with Φm+2 ∈ C∞0 (Ω) we obtain

〈AV n,Φ〉H −→ 〈W,Φ〉H =
τmq
m!
〈Wm+2,Φm+2〉

and

〈AV n,Φ〉H = 〈
m∑
j=0

aj∆V
n
j+1 −

m+1∑
j=2

τ j−2
q

(j − 2)!
V n
j+1,Φm+2〉

−→ −〈
m∑
j=0

aj∇Vj+1,∇Φm+2〉 − 〈
m+1∑
j=2

τ j−2
q

(j − 2)!
Vj+1,Φm+2〉

by definition of A and 〈·, ·〉H. This shows that
∑m

j=0 aj∆Vj+1 is in L2(Ω) fulfilling∑m
j=0 aj∆Vj+1 =

τmq
m!
Wm+2 +

∑m+1
j=2

τ j−2
q

(j−2)!
Vj+1. So A is closed since V ∈ D(A) and

AV = W .

Lemma 6.6. There exists d > 0 such that A− λ is dissipative for all λ > d. In this case

λ−A is injective with (λ−A)−1 being continuous and closed.
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Proof. Let V ∈ D(A). The form of the inner product enables

Re〈AV, V 〉H =
3m

am
Re

m∑
j=1

a2
j−1〈∇Vj+1,∇Vj〉+ Re

m−1∑
j=1

aj−1〈∇Vj+1,∇Vm+1〉

− Re
m∑
j=2

τ j−2
q

(j − 2)!
〈Vj+1, Vm+2〉+ am−1‖∇Vm+1‖2 −

τm−1
q

(m− 1)!
‖Vm+2‖2

≤ am−1‖∇Vm+1‖2 +
3m

2am

m∑
j=1

a2
j−1

(
‖∇Vj+1‖2 + ‖∇Vj‖2

)
+

m−1∑
j=1

aj−1

2

(
‖∇Vj+1‖2 + ‖∇Vm+1‖2

)
+

1

2

m∑
j=2

τ j−2
q

(j − 2)!

(
‖Vj+1‖2 + ‖Vm+2‖2

)
=

3m

2am
a2

0‖∇V1‖2 +
m∑
j=2

(
3m

2am

(
a2
j−2 + a2

j−1

)
+
aj−2

2

)
‖∇Vj‖2 +

1

2

m∑
j=2

τ j−2
q

(j − 2)!
‖Vj+1‖2

+

(
am−1 +

3m

2am
a2
m−1 +

m−1∑
j=1

aj−1

2

)
‖∇Vm+1‖2 +

(
1

2

m∑
j=2

τ j−2
q

(j − 2)!

)
‖Vm+2‖2

≤ d1‖V ‖H1
0×...×H1

0×L2

≤ d‖V ‖H

for some positive constants d1, d. We conclude that A − λ is dissipative if λ > d. Then

(λ−A)−1 exists and it is continuous and closed.

Lemma 6.7. For λ > d the operator λ−A is surjective, that is R(λ−A) = H.

Proof. First let F ∈ H whose first m components F1, . . . , Fm are additionally assumed to

be in H2(Ω) ∩H1
0 (Ω). The system (λ−A)V = F , which is

λVj − Vj+1 = Fj for j = 1, . . . ,m+ 1,

λVm+2 −
m!

τmq

m∑
j=0

aj∆Vj+1 +
m!

τmq

m+1∑
j=2

τ j−2
q

(j − 2)!
Vj+1 = Fm+2,

can be transformed to a single equation by eliminating V2, . . . , Vm+2 via

Vj+1 = λVj − Fj = λjV1 −
j∑

k=1

λj−kFk for j = 1, . . . ,m+ 1,

according to the first m+ 1 equations. Thus we obtain

−

(
m!

τmq

m∑
j=0

ajλ
j

)
︸ ︷︷ ︸

=:α

∆V1 +

(
λm+2 +

m!

τmq

m+1∑
j=2

τ j−2
q

(j − 2)!
λj

)
︸ ︷︷ ︸

=:β

V1 = f
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with f := Fm+2 +
m+1∑
k=1

λm+2−kFk −
m!

τmq

m∑
j=1

aj

j∑
k=1

λj−k∆Fk +
m!

τmq

m+1∑
j=2

τ j−2
q

(j − 2)!

j∑
k=1

λj−kFk.

We have α, β > 0, and the additional condition on F ensures f ∈ L2(Ω), so−α∆V1+βV1 =

f has got a unique solution V1 ∈ H1
0 (Ω) with ∆V1 ∈ L2(Ω). We define

V :=
(
V1, . . . , Vm+2

)′
where Vj+1 := λjV1 −

j∑
k=1

λj−kFk for j ∈ {1, . . . ,m+ 1}.

Then V ∈ D(A), and V solves (λ−A)V = F .

As before we conclude F ∈ R(λ − A) for any F ∈ H by a density argument using the

continuity and closedness of (λ−A)−1.

As a result of the last two lemmata (applying the Lumer-Phillips theorem) we obtain

the well-posedness of (6.11):

Theorem 6.8. If V0 ∈ D(A) and either F ∈ C0 ([0,∞), D(A)) or F ∈ C1 ([0,∞),H),

then there is a unique solution V ∈ C0 ([0,∞),H)∩C0 ((0,∞), D(A))∩C1 ((0,∞),H) to

(6.11).

7 Exponential stability for the limit case of (1.6)

For the case that τ ∗ν = k∗τq in (1.6), we shall prove the exponential stability suggested by

our spectral analysis, cf. Theorem 4.1. We recall the differential equation

T̈ + τ1

...
T = k∗4T + k∗τ14Ṫ + kτ24T̈ , (7.1)

with τ1 = τq and τ2 = τT , supplemented by initial and Dirichlet type boundary conditions.

As in [18] we define the functions

F (t) :=
1

2

∫
Ω

(
(Ṫ + τ1T̈ )2 + k∗|∇(T + τ1Ṫ )|2 + kτ2|∇Ṫ |2

)
(x, t)dx,

representing a non-negative energy functional, and

G(t) :=

∫
Ω

(
k∗τ1

2
|∇T |2 + kτ2∇T ∇Ṫ + T Ṫ + τ1T T̈

)
(x, t)dx.

To treat the limit case, we need to introduce an additional function, in contrast to [18],

namely,

H(t) := −
∫

Ω

(∇T ∇Ṫ )(x, t)dx. (7.2)

As Lyapunov function we now consider E defined by

E(t) := F (t) + ε3/4H(t) + εG(t), (7.3)
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where the positive ε will be chosen small enough in the sequel. For sufficiently small ε,

we have that E is equivalent to F , i.e.,

∃ p1, p2 > 0 ∀ t ≥ 0 : p1F (t) ≤ E(t) ≤ p2F (t). (7.4)

Moreover, F = F (t) is equivalent to
∫

Ω

(
|∇T |2 + |∇Ṫ |2 + |T̈ |2

)
(x, t)dx.

We have, as in [18], that

F ′(t) = −
∫

Ω

kτ1τ2|∇T̈ |2(x, t)dx

and

G′(t) = −k∗
∫

Ω

|∇T |2(x, t)dx+

∫
Ω

(
kτ2|∇Ṫ |2 + |Ṫ |2 + τ1Ṫ T̈

)
(x, t)dx.

Additionally, we now have

H ′(t) = −
∫

Ω

∇T ∇T̈ (x, t)dx−
∫

Ω

|∇Ṫ |2(x, t)dx. (7.5)

Thus we get

E ′(t) = −
∫

Ω

kτ1τ2|∇T̈ |2(x, t)dx− εk∗
∫

Ω

|∇T |2(x, t)dx− (ε3/4 − εkτ2)

∫
Ω

|∇Ṫ |2(x, t)dx

+ε

∫
Ω

(
Ṫ 2 + τ1Ṫ T̈

)
(x, t)dx− ε3/4

∫
Ω

(
∇T ∇T̈

)
(x, t)dx.

This implies

E ′(t) ≤ −
∫

Ω

(
kτ1τ2 −

ετ1

2λ1

)
|∇T̈ |2(x, t)dx− εk∗

∫
Ω

|∇T |2(x, t)dx

−
(
ε3/4 − εkτ2 −

ε

λ1

− ετ1

2λ1

)∫
Ω

|∇Ṫ |2(x, t)dx

−ε3/4
∫

Ω

∇T ∇T̈ (x, t)dx. (7.6)

Noting that the matrix

M :=

(kτ1τ2 − ετ1
2λ1

) 0 ε3/4

2

0 (ε3/4 − εkτ2 − ε
λ1
− ετ1

2λ1
) 0

ε3/4

2
0 εk∗


is positive definite whenever ε is sufficiently small, we obtain, using (7.4), with positive

constants c, c1,

E ′(t) ≤ −cF (t) ≤ −c1E(t),

implying the exponential decay of E(t), and hence of F (t). That is we have proved

Theorem 7.1. In the limit case of (1.6), we have exponential energy decay, i.e.,

∃ c1, c2 > 0 ∀ t ≥ 0 : F (t) ≤ c2 exp(−c1t)F (0).
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8 Exponential stability for a limit case of (1.7)

For the case that k∗τq = τ ∗ν < 2kτT
τq

in (1.7), we shall prove the exponential stability

suggested by our spectral analysis, cf. Theorem 5.1. We recall the differential equation

T̈ + τ1

...
T +

τ 2
1

2

....
T = k∗4T + k∗τ14Ṫ + kτ24T̈ , (8.1)

with τ1 = τq and τ2 = τT , supplemented by initial and Dirichlet type boundary conditions.

As in [18] we define the function

F (t) :=
1

2

∫
Ω

((
Ṫ + τ1T̈ +

τ 2
1

2

...
T
)2

+ k∗
∣∣∣∇(T + τ1Ṫ +

τ 2
1

2
T̈
)∣∣∣2 (8.2)

+

(
kτ2 −

k∗τ 2
1

2

)
|∇Ṫ |2 +

τ 2
1

2

(
kτ2 −

k∗τ 2
1

2

)
|∇T̈ |2

)
(x, t)dx.

It is easy to see that F = F (t) is equivalent to

N(t) :=

∫
Ω

(
|∇T |2 + |∇Ṫ |2 + |∇T̈ |2 + |

...
T |2
)

(x, t)dx,

i.e.,

∃ p1, p2 > 0 ∀ t ≥ 0 : p1F (t) ≤ N(t) ≤ p2F (t). (8.3)

We have

F ′(t) = −τ1

(
kτ2 −

k∗τ 2
1

2

)∫
Ω

|∇T̈ |2(x, t)dx. (8.4)

We also define, as in [18],

G(t) :=
1

2

∫
Ω

(
τ 2

1

2
|
...
T |2 + |T̈ |2 + kτ2|∇T̈ |2 + 2k∗τ1∇Ṫ ∇T̈ + 2k∗∇T ∇T̈

)
(x, t)dx, (8.5)

which satisfies

G′(t) = −τ1

∫
Ω

|
...
T (x, t)|2dx+

∫
Ω

(
k∗τ1|∇T̈ |2 + k∗∇Ṫ ∇T̈

)
(x, t)dx. (8.6)

As a new function, we define

Hδ(t) :=

∫
Ω

(
k∗τ1

2
|∇T |2 + (kτ2 − δ)∇T ∇Ṫ + T Ṫ + τ1T T̈ +

τ 2
1

2
T

...
T

)
(x, t)dx, (8.7)

where δ is a positive constant to be chosen later (large enough). We have

H ′δ(t) = −k∗
∫

Ω

|∇T |2(x, t)dx+ (kτ2 − δ)
∫

Ω

|∇Ṫ |2(x, t)dx+

∫
Ω

|Ṫ |2(x, t)dx

+τ1

∫
Ω

(
Ṫ T̈ +

τ1

2
Ṫ

...
T
)

(x, t)dx− δ
∫

Ω

∇T ∇T̈ (x, t)dx. (8.8)
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Let ε be a positive number to be chosen below (small enough). We have

G′(t) + εH ′δ(t) = −τ1

∫
Ω

|
...
T |2(x, t)dx− εk∗

∫
Ω

|∇T |2(x, t)dx

+ε(kτ2 − δ)
∫

Ω

|∇Ṫ |2(x, t)dx

+

∫
Ω

(
k∗τ1|∇T̈ |2 + k∗∇Ṫ ∇T̈

)
(x, t)dx

+ε

∫
Ω

|Ṫ |2(x, t)dx+ ετ1

∫
Ω

(
Ṫ T̈ +

τ1

2
Ṫ

...
T
)

(x, t)dx

−εδ
∫

Ω

∇T ∇T̈ (x, t)dx. (8.9)

We note that∣∣∣∣∫
Ω

k∗∇Ṫ ∇T̈ (x, t)dx

∣∣∣∣ ≤ k∗ε

2

∫
Ω

|∇Ṫ |2(x, t)dx+
k∗

2ε

∫
Ω

|∇T̈ |2(x, t)dx, (8.10)

ε

∫
Ω

|Ṫ |2(x, t)dx ≤ ε

λ1

∫
Ω

|∇Ṫ |2(x, t)dx, (8.11)

∣∣∣∣ετ1

∫
Ω

(
Ṫ T̈ +

τ1

2
Ṫ

...
T
)

(x, t)dx

∣∣∣∣ ≤ ε
2τ1 + τ 2

1

4λ1

∫
Ω

|∇Ṫ |2(x, t)dx+ ε
τ1

2λ1

∫
Ω

|∇T̈ |2(x, t)dx

+ε
τ 2

1

4

∫
Ω

|
...
T |2(x, t)dx, (8.12)

and ∣∣∣∣εδ ∫
Ω

∇T ∇T̈ (x, t)dx

∣∣∣∣ ≤ ε2
δ

2

∫
Ω

|∇T |2(x, t)dx+
δ

2

∫
Ω

|∇T̈ |2(x, t)dx. (8.13)

Combining (8.9)–(8.13) we obtain

G′(t) + εH ′δ(t) ≤ −τ1

(
1− ετ1

4

)∫
Ω

|
...
T |2(x, t)dx− ε

(
k∗ − εδ

2

)∫
Ω

|∇T |2(x, t)dx

+ε

(
kτ2 − δ +

2τ1 + τ 2
1

4λ1

+
1

λ1

+
k∗

2

)∫
Ω

|∇Ṫ |2(x, t)dx

+

(
k∗τ1 +

k∗

2ε
+
ετ1

2λ1

+
δ

2

)∫
Ω

|∇T̈ |2(x, t)dx. (8.14)

Choosing first δ large enough such that

δ > kτ2 +
2τ1 + τ 2

1

4λ1

+
1

λ1

+
k∗

2
,

and then ε small enough, we see that there exists a positive constant C1 = C1(δ, ε) such

that

G′(t) + εH ′δ(t) ≤ −C1

∫
Ω

(
|
...
T |2 + |∇T |2 + |∇Ṫ |2

)
(x, t)dx

+

(
k∗τ1 +

k∗

2ε
+
ετ1

2λ1

+
δ

2

)∫
Ω

|∇T̈ |2(x, t)dx. (8.15)
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Let us consider the Lyapunov function

E(t) := F (t) + ε2 (G(t) + εHδ(t))

which is equivalent to F (t), if ε is small enough, i.e.,

∃ d1, d2 > 0 ∀ t ≥ 0 : d1F (t) ≤ E(t) ≤ d2F (t). (8.16)

Then, by (8.4) and (8.15), we conclude

E ′(t) ≤ −C1ε
2

∫
Ω

(
|
...
T |2 + |∇T |2 + |∇Ṫ |2

)
(x, t)dx

−
[
τ1

(
kτ2 −

k∗τ 2
1

2

)
−
(
ε2k∗τ1 +

εk∗

2
+
ε3τ1

2λ1

+
ε2δ

2

)]∫
Ω

|∇T̈ |2(x, t)dx.

If ε is chosen small enough, we get, using (8.3) and (8.16),

E ′(t) ≤ −c
∫

Ω

(
|
...
T |2 + |∇T |2 + |∇Ṫ |2 + |∇T̈ |2

)
(x, t)dx ≤ −c1E(t)

for some positive constants c, c1, implying the exponential decay of E(t), and hence of

F (t). That is we have proved

Theorem 8.1. In the first limit case of (1.7), we have exponential energy decay, i.e.,

∃ c1, c2 > 0 ∀ t ≥ 0 : F (t) ≤ c2 exp(−c1t)F (0).
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