
STRONG AND MILD EXTRAPOLATED L2-SOLUTIONS TO THEHEAT EQUATION WITH CONSTANT DELAYDENYS KHUSAINOV∗, MICHAEL POKOJOVY†, AND REINHARD RACKE‡Abstrat. We propose a Hilbert spae solution theory for a nonhomogeneous heat equationwith delay in the highest order derivatives with nonhomogeneous Dirihlet boundary onditions in abounded domain. Under rather weak regularity assumptions on the data, we prove a well-posednessresult and give an expliit representation of solutions. Further, we prove an exponential deay rate forthe energy in the dissipative ase. We also show that lower order regularizations lead to ill-posedness,also for higher-order equations. Finally, an appliation with physially relevant onstants is given.Key words. heat equation, delay in highest order terms, strong solutions, mild solutions,well-posedness, ill-posednessAMS subjet lassi�ations. 35B30, 35B35, 35D30, 35D35, 35K20, 35Q791. Introdution. Let Ω ⊂ Rd be a domain with a Lipshitz-boundary ∂Ω and
T > 0 be a �xed number. Let a funtion θ : [0, T ]× Ω̄ → R denote the temperaturemeasured with respet to a referene temperature θ0 and let q : [0, T ]× Ω̄ → Rd be theheat �ux at a material point x ∈ Ω̄ at time t ∈ [0, T ]. With ρ : Ω̄ → (0,∞) denotingthe spei� density and cρ : Ω̄ → (0,∞) denoting the spei� heat apaity, the energyonservation law reads as(1.1) ρ(x)cρ(x)∂tθ(t, x) + div q(t, x) = h(t, x) for t ∈ (0, T ), x ∈ Ω,where h stands for the intensity of external heat soures.To lose this equation, a material law postulating a relation between the tem-perature and the heat �ux is required. The lassial way to do this onsists in usingFourier's law of heat ondution stating(1.2) q(t, x) + λ(x)∇θ(t, x) = 0 for t ∈ (0, T ), x ∈ Ω,where λ : Ω̄ → (0,∞) denotes the heat ondutivity being a material property. Plug-ging Equation (1.2) into (1.1) leads to the lassial paraboli heat equation(1.3) ρ(x)cρ(x)∂tθ(t, x) − div

(
λ(x)∇θ(t, x)

)
= h(t, x) for t ∈ (0, T ), x ∈ Ω.In many appliations, Equation (1.3) provides a very aurate marosopi desriptionof the heat ondution phenomenon. For some other physial appliations, the in�nitespeed of signal propagation arising from Equation (1.3) is a signi�ant drawbak.In partiular for these, the following assumption(1.4) q(t, x) + λ(x)∇θ(t − τ, x) = 0 for t ∈ (0, T ), x ∈ Ωis more realisti from a physial point of view stating that the heat �ux noties hangesin temperature (gradient) not instantaneously, but with some delay. The latter leadsto the so-alled heat equation with pure delay(1.5) ρ(x)cρ(x)∂tθ(t, x) − div

(
λ(x)∇θ(t − τ, x)

)
= h(t, x) for t ∈ (0, T ), x ∈ Ω.
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2 D. KHUSAINOV, M. POKOJOVY, R. RACKEIn addition to severe problems aused by the loss of regularity, Equation (1.5) turnsout to be ill-posed (f. [13℄). One way to overome this problem is to �equivalently�rewrite Equation (1.4) as
q(t+ τ, x) + λ(x)∇θ(t, x) = 0 for t ∈ (0, T ), x ∈ Ωand perform a formal Taylor expansion of order one with respet to τ (p. [6℄), i.e.,(1.6) τqt(t+ τ, x) + q(t, x) + λ(x)∇θ(t, x) = 0 for t ∈ (0, T ), x ∈ Ω,to �nally obtain

ρ(x)cρ(x)∂tθ(t, x) + div q(t, x) = h(t, x) for t ∈ (0, T ), x ∈ Ω,

τ∂tq(t, x) + q(t, x) + λ(x)∇θ(t, x) = 0 for t ∈ (0, T ), x ∈ Ω.
(1.7)In the present paper, we propose another approah to regularize Equation (1.5).For a small parameter ε > 0, we replae Equation (1.4) with(1.8) q(t, x) + ελ(x)∇θ(t, x) + λ(x)∇θ(t − τ, x) = 0 for t ∈ (0, T ), x ∈ Ωand arrive at a regularized heat equation

ρ(x)cρ(x)∂tθ(t, x) − ε div
(
λ(x)∇θ(t, x)

)
− div

(
λ(x)∇θ(t − τ, x)

)
= h(t, x)for t ∈ (0, T ), x ∈ Ω.

(1.9)Though Equation (1.9) is muh better behaved than Equation (1.5), standard resultson semigroups for delay equations (see, e.g., [4℄, [39℄) still annot be applied sinethe delay term is no low order perturbation of the term without delay. A semigrouptreatment of this problem nevertheless turned out to be possible. In [5℄, a perturbationresult due to Weiss & Sta�ans was used to obtain the well-posedness results for aneven bigger lass of equations given by
∂tu(t) = Au(t) +

∫ 0

−r

dB(θ)u(t+ θ) for t > 0, u(t) = ϕ(t) for t ∈ [−r, 0],whereA is a setorial operator on a Banah spaeX and B ∈ BV
(
[−r, 0],L(D(A), X)

)has no mass at 0. The partiular situation B = ηAδ−r, η ∈ R, was given someadditional attention.The �rst systemati treatment of this topi for the ase of unbounded operatorsthough probably dates bak to [38℄. The authors onsidered the following evolutionequation
∂tu(t) = Au(t) + F(ut) for t > 0, u0 = ϕ,where A is an in�nitesimal generator of a C0-semigroup (S(t))t≥0 on a Banah spae

X , F is a (possibly) unbounded linear or nonlinear operator and ut = u|[t−r,t](· − t)denotes the history variable. In partiular, it was shown for the ase of F beinga linear di�erential operator and ontaining terms of the same order as A that theproblem possesses a unique mild solution, i.e., a funtion u ∈ H1
(
(0, T ), X

), T > 0,satisfying the integral equation
u(t) = S(t)ϕ(0) +

∫ t

0

S(t− s)F(us)ds for a.e. t ∈ (0, T ).



HEAT EQUATION WITH CONSTANT DELAY 3In [11℄, a similar problem was studied in the strong ase, i.e., u ∈ H1
(
(0, T ), X)∩

L2
(
(0, T ), D(A)

). Namely, the authors onsidered an abstrat linear delay equationof the form
∂tu(t) = Au(t) + Bu(t) + L1u(t− r) + L2ut, for t > 0where A is a generator of an analyti semigroup on a Hilbert spae H . A typialexample of suh equation is given by

∂tu(t, x) = ∂xxu(t, x) + ∂xu(t, x) + ∂xxu(t− r, x) +

∫ 0

−r

a(s)∂xxu(t+ s, x)dsfor (t, x) ∈ (0,∞)× (0, 1),

u(t, x) = ϕ(t, x) for (t, x) ∈ (−r, 0)× (0, 1), u(t, 0) = u(t, 1) = 0 for t > 0.Under ertain assumptions on the operators B, L1, L2, the well-posedness followedfrom the existene of a semigroup assoiated with the �ow t 7→ (u(t), ut).In [12℄, the authors elaborated on these results by arefully studying the L2-regularity of the orresponding solution in ertain weighted and interpolation spaesand presenting a haraterization of the in�nitesimal generator.An Lp-treatment of delay di�erential equations with unbounded operators atingon delay terms for p ∈ [1,∞) was given in [10℄. In partiular, a well-posedness resultwas obtained for the following problem
∂tu(t) = Au(t) + Lu(t− τ) for t > 0,where A is an ellipti operator of order 2m and L is an integro-di�erential operatorof the same order.Reently, hyperboli partial di�erential equations have also gained a lot of atten-tion. In [27℄, a wave equation with an internal feedbak inorporating a delay in theveloity �eld was studied. The initial boundary value problem

∂ttu(t, x)−△u(t, x) + a0∂tu(t, x) + a∂tu(t− τ, x) = 0 for (t, x) ∈ (0,∞)× Ω,

u(t, x) = 0 for (t, x) ∈ (0,∞)× Γ0,

∂u

∂ν
(t, x) = 0 for (t, x) ∈ (0,∞)× Γ1subjet to appropriate initial onditions, where Γ0,Γ1 ⊂ ∂Ω are relatively open with

Γ̄0 ∩ Γ̄1 = ∅, was shown to possess a unique strong solution, whih is exponentiallystable if a0 > a > 0 or instable, otherwise. Similar results have also been obtained forthe ase of a boundary delay. This stability study was later arried out in the ase oftime-varying internal or boundary delay, i.e., τ = τ(t), in [28℄, [29℄, et.To the authors' best knowledge, no well-posedness results are available for thease of the delay in Laplaian for higher-order in time systems. At the same time,replaing stabilizing feedbaks by their delayed ounterparts are sometimes known toeven lead to ill-posedness of the resulting system as shown in [7℄ for the wave-equationand the Euler & Bernoulli beam. The same holds for a general m-th order equationwith the pure delay (f. [13℄)
∂m
t u(t) +Au(t− τ) = 0 for t > 0



4 D. KHUSAINOV, M. POKOJOVY, R. RACKEfor an arbitrary unbounded operator A possessing a sequene of eigenvalues λn → ∞,
n → ∞, or the hyperboli-paraboli thermoelastiity with pure delay in the seondorder ellipti part (s. [35℄)

a∂ttu(t, x)− d∂xxu(t− τ1, x) + β∂xθ(t, x) = 0 for (t, x) ∈ (0,∞)× (0, L),

b∂tθ(t, x) − k∂xxθ(t− τ2, x) + β∂txu(t, x) = 0 for (t, x) ∈ (0,∞)× (0, L),

u(t, 0) = u(t, L) = ∂xθ(t, 0) = ∂xθ(t, L) = 0 for (t, x) ∈ (0,∞)× (0, L).In the following, we propose a natural solution approah in Hilbert spaes whihemploys a generalization of the lassial step method for ordinary delay equations(f. [15℄) rather than the delay semigroup theory. In addition to its simpliity andonstrutivity, our approah allows for nonhomogeneous boundary onditions underrather weak regularity assumptions on the boundary data. The latter is very usefulfor various appliations in ontrol theory (f. [24℄, [25℄, [26℄). We want also to pointout that our theory an also be applied to obtain mild, strong, extrapolated and mildextrapolated solutions in a muh more general ase even in the Lp-framework withrespet to time (f. Remark 3.11).To justify the neessity of the regularization to have at least the same order asthe delay term, we make essential amendments to the method from [13℄ to show thatlower order regularizations lead to ill-posedness like in the ase with pure delay, alsofor higher-order systems. We also refer the reader to [21℄ for a study on neessaryonditions for the well-posedness of partial di�erential equations with delay.To give an illustration, we apply our theory to get a losed form solution to a one-dimensional pratial problem related to short-pulse laser heating of metal nano�lmswith physially relevant onstants.2. Fourier Heat Condution. In this setion, we brie�y summarize some well-known results for the following initial-boundary value problem for the Fourier heatequation with nonhomogeneous Dirihlet boundary onditions
∂tu(t, x) = ∂i

(
aij(x)∂ju(t, x)

)
+ bi(x)∂iu(t, x) + c(x)u(t, x)+

f(t, x) for (t, x) ∈ (0, T )× Ω,

u(t, x) = γ(t, x) for (t, x) ∈ (0, T )× ∂Ω,

u(0, x) = u0(x) for x ∈ Ω.

(2.1)Reall that ∂Ω is assumed to be Lipshitzian throughout the paper. To treat the prob-lem from Equation (2.1), a orresponding operator framework needs to be introdued.First, we formally de�ne in the sense of distributions the di�erential operators
A0 := ∂i

(
aij(·)∂j

)
, Ar := bi(·)∂i + c(·).Here and in the sequel, we employ the Einstein's summation onvention. So, ∂i(aij(·)∂j)should be interpreted as d∑

i,j=1

∂i(aij(·)∂j), et.Let X := L2(Ω) be equipped with the standard salar produt. We de�ne theoperators
A0 : D(A0) ⊂ X → X, u 7→ A0u,

Ar : D(Ar) ⊂ X → X, u 7→ Aru



HEAT EQUATION WITH CONSTANT DELAY 5with
D(A0) =

{
u ∈ H1

0 (Ω)
∣∣A0u ∈ X

}
, D(Ar) := H1

0 (Ω).Aording to [36, Theorems 9.18 and 12.40℄, the following assertion holds true.Theorem 2.1. Let ∂Ω 6= ∅ and let aij ∈ W 1,∞(Ω) and aij = aji, bi, cj ∈ L∞(Ω).Further, there may exist a onstant κ > 0 suh that
ess inf
x∈Ω

ξiaij(x)ξj ≥ κ|ξ|2 for all ξ ∈ C
n.Then, the perturbed operator A := A0 + Ar : D(A0) ⊂ X → X is an in�nitesimalgenerator of an analyti semigroup (S(t))t≥0 on X.Following the approah desribed by Lasieka and Triggiani [22, Setion 0.3℄ andtaking into aount the fat that A0 is ontinuously invertible, we de�ne the extrap-olation spae X−1 as the ompletion of X with respet to the ‖ · ‖−1 := ‖A−1

0 · ‖Xnorm. Sine X is Hilbertian und therefore re�exive, X−1 is isomorphi to (D(A∗
0))

′.Note that X−1 is a distributional spae, e.g., X−1 ⊂ H−1(Ω). Further, the operator
A an be extended to an operator A−1 ∈ L(X,X−1) being a generator of an analytisemigroup (S−1(t))t≥0 of bounded linear operators on X−1 whih in its turn is anextension of the semigroup (S(t))t≥0 from Theorem 2.1 onto X−1.Similar to [22, Setion 3.1℄, we de�ne the Dirihlet map D : L2(∂Ω) → X−1sending eah γ ∈ L2(∂Ω) to a solution u ∈ X−1 of the problem(2.2) Au = 0 in Ω, u = γ on ∂Ω.Lemma 2.2. There holds

D ∈ L
(
L2(∂Ω), H1/2(Ω)

)
→֒ L

(
L2(∂Ω), X

)
→֒ L

(
L2(∂Ω), X−1

)
.Proof. See [16℄ and [18℄.The notion of strong solution from [10℄ in the ase of homogeneous boundary datamotivates the followingDefinition 2.3. A funtion u ∈ H1

(
(0, T ), L2(Ω)

)
∩L2

(
(0, T ), H2(Ω)

) satisfyingEquation (2.1) for a.e. t ∈ [0, T ] is alled a strong solution.Remark 2.4. The initial and boundary onditions are satis�ed in terms of theontinuity of the map u 7→
(
u(t∗), u|(0,T )×∂Ω

),
H1

(
(0, T ), L2(Ω)

)
∩ L2

(
(0, T ), H2(Ω)

)
→

H1(Ω)×
(
H3/4

(
(0, T ), L2(∂Ω)

)
∩ L2

(
(0, T ), H3/2(∂Ω)

))for an arbitrary t∗ ∈ [0, T ] (f. [33℄).The fat that a strong solution to Equation (2.1) has to satisfy the equation
∂tu = A

(
u−Dγ

)
+ f in L2

(
(0, T ), X

)and thus
∂tu = A−1u−A−1Dγ + f in L2

(
(0, T ), X−1

)motivates the following de�nition of extrapolated solutions (p. the notion of extrap-olated solution in [10℄).



6 D. KHUSAINOV, M. POKOJOVY, R. RACKEDefinition 2.5. A funtion u ∈ H1
(
(0, T ), X−1

) given by
u(t) = S−1(t)u

0 −
∫ t

0

S−1(t− s)A−1Dγ(s)ds+

∫ t

0

S−1(t− s)f(s)dsfor a.e. t ∈ [0, T ]is alled a mild extrapolated solution to Equation (2.1). If it additionally satis�es
u ∈ L2

(
(0, T ), X

), we all u a strong extrapolated solution.Theorem 2.6. Under the onditions of Theorem 2.1, Equation (2.1) possessesa unique mild extrapolated solution if u0 ∈ X−1, f ∈ L2
(
(0, T ), X−1

) and γ ∈
L2

(
(0, T ), L2(∂Ω)

). Moreover, if u0 ∈ X, f ∈ L2
(
(0, T ), X

) and ∂Ω ∈ C0,1, then
u is strong extrapolated solution, whih additionally satis�es

u ∈ L2
(
(0, T ), H1/2(Ω)

)
∩H1/4

(
(0, T ), L2(Ω)

)
∩H1

(
(0, T ), X−1

)
.Proof. See [22, Setion 3.1℄.Assuming that ∂Ω ∈ C1,1 and exploiting the maximum Lp-regularity of A for

p = 2, the following existene and uniqueness theorem follows from [8℄, [33℄. In thisase, the mild extrapolated solution u is even a strong solution and therefore satis�esEquation (2.1) pointwise for a.e. t ∈ [0, T ].Theorem 2.7. Under the onditions of Theorem 2.1 and the regularity assump-tions
u0 ∈ H1(Ω), f ∈ L2

(
(0, T ), L2(Ω)

)
, γ ∈ H3/4

(
(0, T ), L2(∂Ω)

)
∩L2

(
(0, T ), H3/2(∂Ω)

)as well as the ompatibility ondition
γ(0, ·) = u0|∂Ω,the mild extrapolated solution u is a strong solution. Moreover, the mapping (u0, f, γ) 7→

u is an isomorphism between the data spae equipped with the orresponding produtnorm as well as inorporating the ompatibility ondition and the solution spae.Remark 2.8. For homogeneous boundary onditions, a strong solution
u ∈ H1

(
(0, T ), X

)
∩ L2

(
(0, T ), D(A)

)in sense of [9℄ an be obtained without any extra regularity assumptions on ∂Ω. Thedata have to satisfy
u0 ∈

(
X,D(A)

)
1/2,2

, f ∈ L2
(
(0, T ), X

)
,where the parentheses denote the real interpolation funtor.2.1. Expliit Representation of Solutions. In this setion, we will brie�youtline an expliit solution representation formula for the problem

∂tu(t) = A−1u(t)−A−1Dγ(t) + f(t) for t ∈ (0, T ),

u(0) = u0for the ase that A is self-adjoint (i.e., b ≡ 0) and the data satisfy u0 ∈ X−1, f ∈
L2

(
(0, T ), X−1

), γ ∈ L2
(
(0, T ), L2(Ω)

).



HEAT EQUATION WITH CONSTANT DELAY 7By the virtue of Theorem 2.6, the problem possesses a unique mild extrapolatedsolution u given by(2.3) u(t) = S−1(t)u
0 +

∫ t

0

S−1(t− s)(f(s)−Dγ(s))ds.On the other hand, A is an ellipti operator having an eigenfuntion expansion
Au =

∞∑

n=1

λn〈u, φn〉Xφn for u ∈ D(A),where (λn)n ⊂ R, λn → −∞ for n → ∞ and (φn)n ⊂ D(A) form an orthogonal basisof X (f. [36℄). Taking into aount that the embeddings D(A) →֒ X →֒ X−1 aredense and ontinuous, we further obtain
A−1u =

∞∑

n=1

λn〈u, φn〉X−1φn for u ∈ X,where 〈·, ·〉X−1 is the uniquely de�ned ontinuation of 〈·, ·〉X onto X−1. Note that
〈·, ·〉−1 and 〈·, ·〉X−1 do not oinide.Plugging the ansatz

u(t) :=

∞∑

n=1

un(t)φn for a.e. t ∈ [0, T ]into Equation (2.3), we obtain a sequene of ordinary di�erential equations for un

∂tun(t) = λnun(t) + 〈f(t)− λnDγ(t), φn〉X−1 for a.e. t ∈ [0, T ],

un(0) = 〈u0, un〉X−1 ,whih is uniquely solved by un ∈ H1
(
(0, T ),R

) with
un(t) = eλnt〈u0, ϕn〉X−1 +

∫ t

0

eλn(t−s)〈f(s)− λnDγ(s), φn〉X−1ds for a.e. t ∈ [0, T ].Using Lebesgue's dominated onvergene theorem for Bohner integrals, we �nallyobtain for a.e. t ∈ [0, T ](2.4) u(t) =
∞∑

n=1

eλnt〈u0, φn〉X−1φn +
∞∑

n=1

∫ t

0

eλn(t−s)〈f(s)− λnDγ(s), φn〉X−1φnds.Moreover, u oinides with the mild extrapolated solution given in Equation (2.3).2.2. Asymptotial Behavior of Solutions for t → ∞. For the sake of om-pleteness, we give a brief disussion on the asymptotis of solutions to Equation (2.1)in the homogeneous ase, i.e., γ ≡ 0, f ≡ 0. We will be able to generalize thesewell-known results for the ase of regularized heat equation with delay in Setion 3.2later on. For simpliity, we assume bi ≡ 0, c ≡ 0 though the exponentially stabilityeasily arries over to the ase when A is just positive de�nite.



8 D. KHUSAINOV, M. POKOJOVY, R. RACKEWe assume u0 ∈ X−1 and denote by uT for T > 0 the mild extrapolated solutionto
∂tu(t, x) = ∂i

(
aij(x)∂ju(t, x)

) for (t, x) ∈ (0, T )× Ω,

u(t, x) = 0 for (t, x) ∈ (0, T )× ∂Ω,

u(0, x) = u0(x) for x ∈ Ω.

(2.5)Due to the unique solvability of Equation (2.5), uT1 = uT2 |[0,T1] for T2 ≥ T1 > 0. Thus,
(uT )T>0 an be uniquely ontinued to a funtion u ∈ C1

(
[0,∞), X−1

) satisfying
u(t) = S−1(t)u

0 for t ∈ [0,∞).The energy assoiated with the solution u is given by
E(t) := 1

2‖u(t, ·)‖2X−1
.If u0 ∈ X , then u(t, ·) ∈ X for all t ≥ 0 (f. Theorem 2.7), i.e., u is a lassialextrapolated solution (in partiular, a strong extrapolated solution), and E(t) =

1
2‖u(t, ·)‖X = 1

2

∫
Ω
|u(t, x)|2dx sine ‖ · ‖−1 is a ontinuation of ‖ · ‖X .Theorem 2.9. Let u0 ∈ X−1. The energy E deays exponentially, i.e., thereexists ω > 0 suh that

E(t) ≤ e−2ωtE(0) for t ≥ 0.Moreover, u ∈ L2
(
(0,∞), X−1

).Proof. Using the fat that (S−1(t))t≥0 is an extension of an exponentially stablesemigroup, we easily get
E(t) = 1

2‖S−1u0‖2X−1
≤ 1

2e
−2ωt‖u0‖2X−1

= e−2ωtE(0).Taking aount the measurability of u and estimating
∫ ∞

0

‖u(t, ·)‖2X−1
dt = 2

∫ ∞

0

E(t)dt ≤ 2E(0)

∫ ∞

0

e−2ωtdt = −E(0)
ω e−2ωt

∣∣t=∞
t=0

= E(0)
ω ,we �nally onlude u ∈ L2

(
(0,∞), X−1

).3. Regularized Heat Condution with Delay. Now, we turn to the heatondution with onstant delay
ut(t, x) = ∂i

(
aij(x)∂ju(t, x)

)
+ bi(x)∂iu(t, x) + c(x)u(t, x)+

∂i
(
ãij(x)∂ju(t− τ, x)

)
+ b̃i(x)∂iu(t− τ, x) + c̃(x)u(t− τ, x)+

f(t, x) for (t, x) ∈ (0,∞)× Ω,

u(t, x) = γ(t, x) for (t, x) ∈ (0,∞)× ∂Ω,

u(0, x) = u0(x) for x ∈ Ω,

u(t, x) = ϕ(t, x) for (t, x) ∈ (−τ, 0)× Ω.

(3.1)
Assumption 3.1. We postulate the following onditions.
• Let Ω ⊂ Rd be a bounded with a Lipshitz-boundary.
• aij , ãij ∈ W 1,∞(Ω) and aij = aji, bi, b̃i, c, c̃ ∈ L∞(Ω).



HEAT EQUATION WITH CONSTANT DELAY 9
• There exists a onstant κ > 0 suh that

ess inf
x∈Ω

ξiaij(x)ξj ≥ κ|ξ|2 for all ξ ∈ C
d.Similar to the de�nition of A in Setion 1, we de�ne the operator

Ã : D(Ã) ⊂ X → X, u 7→ ∂i(ãij(·)∂ju) + b̃i(·)∂iu+ c̃(·)uwith
D(Ã) := {u ∈ H1

0 (Ω) | Ãu ∈ X}.Further, we need the following assumption:Assumption 3.2. Let at least one of the following onditions be ful�lled:i) There exists a onstant α̃ ∈ R\{0} suh that ãij(x) = α̃ aij(x) for a.e. x ∈ Ω.ii) There exists a onstant κ̃ > 0 suh that
ess inf
x∈Ω

ξiãij(x)ξj ≥ κ̃|ξ|2 for all ξ ∈ C
dand ∂Ω is of lass C1,1.Under Assumption 3.2, Ã is a losed operator. Next, we an de�ne X̃−1 ≃

(D(Ã∗))′ and extend Ã to an operator Ã−1 ∈ L(X, X̃−1). Further, one easily gets
D(A) = D(Ã) and thus X−1 = X̃−1. Note that due to the ellipti regularity theorythe seond assumption even implies D(A) = D(Ã) = H2(Ω) ∩H1

0 (Ω).Remark 3.3. In fat, the losedness of Ã and the onditions D(A) ⊂ D(Ã) and
X−1 ⊃ X̃−1 would also be su�ient for our purposes. This is, for example, the aseif ãij ≡ 0, b̃i ≡ 0 and D(Ã) = X.Following [10℄ for the ase of homogeneous data, we introdue the notion of strongsolution in the nonhomogeneous ase.Definition 3.4. A funtion u ∈ H1

(
(0, T ), L2

(
Ω)

)
∩ L2

(
(−τ, T ), H2(Ω)

) satis-fying Equation (3.1) with the boundary and initial onditions interpreted in the senseof Remark 2.4 is alled a strong solution.Likewise, we obtain a formulation of Equation (3.1) in the extrapolation spae
X−1

∂tu(t) = A−1u(t) + Ã−1u(t− τ)−A−1Dγ(t) + f(t) in L2
(
(0, T ), X−1

)
,

u(0+) = u0 in X−1,

u(t) = ϕ(t) in L2
(
(−τ, 0), X−1

)
.

(3.2)Definition 3.5. A funtion u ∈ L2
(
(−τ, 0), X−1

)
∩H1

(
(0, T ), X−1

) is alled amild extrapolated solution of (3.1) if it satis�es the integro-funtional equation
u(t) = S−1(t)u

0 +

∫ t

0

(
Ã−1S−1(t− s)

(
u(s− τ)−Dγ(s)

)
+ S−1(t− s)f(s)

)
dsfor a.e. t ∈ [0, T ],

u(0+) = u0,

u(t) = ϕ(t) for a.e. t ∈ [−τ, 0].

(3.3)
If u additionally satis�es u ∈ L2

(
(0, T ), X), we all it a strong extrapolated solution.



10 D. KHUSAINOV, M. POKOJOVY, R. RACKEWe start our onsiderations by proving the well-posedness in the strong ase. Inontrast to [12, Theorem 3.3℄, no �xed point iteration is required here.Theorem 3.6. Let ∂Ω be of lass C1,1. Assume
u0 ∈ H1(Ω), ϕ ∈ L2

(
(−τ, 0), H2(Ω)

)
,

γ ∈ H3/4
(
(0, T ), L2(∂Ω)

)
∩ L2

(
(0, T ), H3/2(∂Ω)

)
, f ∈ L2

(
(0, T ), L2(Ω)

)and γ(0, ·) = u0|∂Ω. Then the problem (3.2) possesses a unique strong solution u.Furthermore, there exists a positive onstant CT,τ > 0 suh that
‖u(t)‖2X ≤ CT,τ

(
‖u0‖2X +

∫ 0

−τ

‖ϕ(s)‖2Xds+

∫ T

0

‖γ(s)‖2L2(∂Ω)ds+

∫ T

0

‖f(s)‖2Xds
)for a.e. t ∈ [0, T ].Proof. The idea of the proof onsists in transforming Equation (3.2) to an abstratdi�erene equation. Without loss of generality, let T = nτ for some n ∈ N. Otherwise,onsider the problem with f and γ smoothly ontinued onto [

0, τ
⌈
T
τ

⌉].We de�ne the operators rk : L2
(
(−τ, T ), X−1

)
→ L2

(
(0, τ), X−1

) for k = 0, . . . , nby means of
(rkg)(s) = u((k − 1)τ + s) for s ∈ (0, τ)for g ∈ L2

(
(−τ, T ), X−1

) and set
(u0, . . . , un) := (r0u, . . . , rnu), (f1, . . . , fn) := (r1f, . . . , rnf),

(γ1, . . . , γn) := (r1(Dγ), . . . , rn(Dγ)).Obviously, if u is a strong solution to (3.1), then (u0, . . . , un) ∈ L2
τ

(
(−τ, T ), H2(Ω)

),
(u1, . . . , un) ∈ H1

τ

(
(0, T ), L2(Ω)

)
∩L2

τ

(
(0, T ), H2(Ω)

) by the virtue of Lemma 6.1 and
(u1, . . . , un) solves the following di�erene-di�erential equation

∂tuk = A−1uk + Ã−1uk−1 −A−1Dγk + fk in L2((0, τ), X−1) for 1 ≤ k ≤ n,

u1(0) = u0 in X,

u0 = ϕ(·+ τ) in L2
(
(0, τ), X

)
.

(3.4)Next, we show that the onverse is also true. Let (u0, . . . , un) ∈ L2
τ

(
(−τ, T ), H2(Ω)

)be suh that (u1, . . . , un) ∈ H1
τ

(
(0, T ), L2(Ω)

) solves Equation (3.4). Aording toLemma 6.1 in the Appendix, u ∈ L2
(
(−τ, 0), H2(Ω)

)
∩H1

(
(0, T ), L2(Ω)

). Exploitingthe initial onditions in Equation (3.4), we obtain u(s) = (r0u)(s+ τ) = ϕ(s) for a.e.
s ∈ [−τ, 0] and u(0+) = (r1u)(0) = u0. Further, for all φ ∈ C∞

0

(
(0, T ),R

), we �nd
∫ T

0

∂tu(t)ϕ(t)dt = −
∫ T

0

u(t)∂tϕ(t)dt = −
n∑

k=1

∫ kτ

(k−1)τ

u(t)∂tϕ(t)dt

=

n∑

k=1

∫ kτ

(k−1)τ

∂tu(t)ϕ(t)dt −
n∑

k=1

u(t)ϕ(t)|t=kτ
t=(k−1)τ

=
n∑

k=1

∫ τ

0

∂tuk(t)ϕk(t)dt− u(T )ϕ(T ) + u(0)ϕ(0)
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=

n∑

k=1

∫ τ

0

(
A−1uk(t) + Ã−1uk−1(t)−A−1Dγk(t) + fk(t)

)
ϕk(t)dt

=

∫ T

0

(
A−1u(t) + Ã−1u(t− τ)−A−1Dγ(t) + f(t)

)
ϕ(t)dtwith ϕk := ϕ((k − 1)τ + ·) meaning that u satis�es Equation (3.1) in X−1 for a.e.

t ∈ [0, T ]. By the virtue of regularity assumption, u is then a strong solution. Now,the existene of a unique strong solution to Equation (3.1) is redued to the uniquesolvability of Equation (3.4) in the orresponding spae.We use mathematial indution to show the latter. To start the indution for
k = 1, we apply Theorem 2.6 to get the existene of a unique strong solution u1 ∈
L2

(
(−τ, 0), H2(Ω)

)
∩H1

(
(0, τ), L2(Ω)

). Assume that (3.4) possesses a unique solution
(u0, . . . , uk) ∈ L2

τ

(
(−τ, kτ), H2(Ω)

) with (u1, . . . , uk) ∈ H1
τ

(
(0, kτ), L2(Ω)

) for ertain
k ∈ {1, . . . , n}. If k = n, the laim holds true. Otherwise, k + 1 ≤ n. Taking intoaount

H1
(
(0, τ), L2(Ω)

)
∩ L2

(
(0, τ), H2(Ω)

)
→֒ C0

(
[0, τ ], H1(Ω)

)
,we onsider the Cauhy problem

∂tuk+1(t) = A−1uk+1(t) + gk+1(t) for t ∈ (0, τ),

uk+1(0) = uk(τ)with(3.5) gk+1 := Ã−1uk −A−1Dγk+1 + fk+1 ∈ L2
(
(0, τ), L2(Ω)

)
.By the virtue of Theorem 2.6, this problem is uniquely solved by a funtion uk+1 ∈

H1
(
(0, τ), L2(Ω)

)
∩ L2

(
(0, τ), H2(Ω)

). By onstrution, we have (u0, . . . , uk+1) ∈
L2
τ

(
(−τ, (k + 1)τ), H2(Ω)

) and (u1, . . . , uk+1) ∈ H1
τ

(
(0, (k + 1)τ), L2(Ω)

).There remains to show the a priori estimate. From [31, Theorem 6.3℄, we obtainthe existene of onstants Cσ ≥ 1, Cα > 0 suh that
‖S(t)‖L(X,X) ≤ Cσ for t ∈ [0, τ ].Furthermore, by the virtue of [22, Proposition 0.1℄ there exists a positive onstant

Cα > 0 suh that
∫ τ

0

‖ÃS(t)u(t)‖2Xdt ≤ Cα

∫ τ

0

‖u(t)‖2Xdt.Finally, from Lemma 2.2 we get a onstant Cγ > 0 suh that
∫ τ

0

‖Dγ(t)‖2Xdt ≤ Cγ

∫ τ

0

‖γ‖2L2(∂Ω)dt.Applying Duhamel's formula to Equation (3.4), we get
u1(t) = S−1(t)u

0 +

∫ t

0

S−1(t− s)
(
Ã−1ϕ(s− τ) +A−1γ1(s) + f1(s)

)
ds,

uk(t) = S−1(t)uk−1(τ) +

∫ t

0

S−1(t− s)
(
Ã−1uk−1(s) +A−1γk(s) + fk(s)

)
ds



12 D. KHUSAINOV, M. POKOJOVY, R. RACKEfor a.e. t ∈ [0, τ ] and 2 ≤ k ≤ n and therefore
‖u1(t)‖X ≤ Cσ‖u0‖X + Cα

( ∫ 0

−τ

‖ϕ(s)‖2Xds
)1/2

+ Cγ

( ∫ τ

0

‖γ1(s)‖2L2(∂Ω)ds
)1/2

+

Cσ

(∫ τ

0

‖f1(s)‖2Xds
)1/2

=: C1,

‖uk(t)‖X ≤ (Cσ + Cα

√
τ) ess sup

t∈[0,τ ]

‖uk−1(s)‖X + Cγ

(∫ τ

0

‖γk(s)‖2L2(∂Ω)ds
)1/2

+

Cσ

(∫ τ

0

‖fk(s)‖2Xds
)1/2

=: C2 ess sup
t∈[0,τ ]

‖uk−1(s)‖X + C3,k.Using disrete Gronwall's lemma (f. [14℄), we obtain further
ess sup
t∈[0,τ ]

‖uk−1(s)‖X ≤ max{C1, C3,k}+C2

k−1∑

j=0

C3,ke
(k−j−2)C2 ≤ C1 +C2e

C2k
k∑

j=0

C3,k.Therefore, there exists a onstant CT,τ > 0 suh that
‖u(t)‖2X ≤ CT,τ

(
‖u0‖2X +

∫ 0

−τ

‖ϕ(s)‖2Xds+

∫ T

0

‖γ(s)‖2L2(∂Ω)ds+

∫ T

0

‖f(s)‖2Xds
)for a.e. t ∈ [0, T ].This ompletes the proof.Remark 3.7. Exploiting the isomorphism property from Theorem 2.7, the proofof the previous theorem an be easily amended to obtain the ontinuous dependene instronger norms:

‖u‖H1((0,T ),L2(Ω))∩L2((0,T ),H2(Ω)) ≤ C
(
‖u0‖H1(Ω) + ‖ϕ‖L2((−τ,0),L2(Ω))+

‖f‖L2((0,T ),L2(Ω)) + ‖γ‖H3/4((0,T ),L2(∂Ω))∩L2((0,T ),H3/2(∂Ω))

)
.Remark 3.8. For homogeneous boundary onditions, the proof of Theorem 3.6an easily be amended to obtain a unique strong solution in sense of [10℄

u ∈ H1
(
(0, T ), X

)
∩ L2

(
(−τ, T ), D(A)

)without any additionaly regularity assumptions on ∂Ω if the data satisfy
u0 ∈ (X,D(A))1/2,2, ϕ ∈ L2

(
(−τ, 0), D(A)

)
, f ∈ L2

(
(0, T ), X

)
.The assumptions of Theorem 3.6 an be weakened if one is interested in strongextrapolated solutions. In this ase, neither the C1,1-smoothness of ∂Γ nor the om-patibilty ondition are required. Carrying out the proof of Theorem 3.6 inX−1 insteadof X , we get the following result in the extrapolation spae.Theorem 3.9. Assume

u0 ∈ (X,X−1)1/2,2, ϕ ∈ L2
(
(−τ, 0), X

)
, γ ∈ L2

(
(0, T ), L2(∂Ω)

)
, f ∈ L2

(
(0, T ), X−1

)
.



HEAT EQUATION WITH CONSTANT DELAY 13Then Equation (3.2) possesses a unique strong extrapolated solution u. Furthermore,there exists a positive onstant CT,τ > 0 suh that
‖u(t)‖2X−1

≤ CT,τ

(
‖u0‖2X−1

+

∫ 0

−τ

‖ϕ(s)‖2X−1
ds+

∫ T

0

(
‖γ(s)‖2L2(∂Ω) + ‖f(s)‖2X−1

)
ds

)for a.e. t ∈ [0, T ].Finally, we address the ase of mild extrapolated solutions. In ertain analogyto the proof of Theorem 3.6, we will equivalently transform Equation (3.2) to anintegro-di�erene equation.Theorem 3.10. Let
u0 ∈ X−1, ϕ ∈ L2

(
(−τ, 0), X−1

)
, γ ∈ L2

(
(0, T ), L2(∂Ω)

)
, f ∈ L2

(
(0, T ), X−1

)
.Equation (3.2) possesses a unique mild extrapolated solution u. Furthermore, thereexists a positive onstant CT,τ > 0 suh that

‖u(t)‖2X−1
≤ CT,τ

(
‖u0‖2X−1

+

∫ 0

−τ

‖ϕ(s)‖2X−1
ds+

∫ T

0

(
‖γ(s)‖2L2(∂Ω) + ‖f(s)‖2X−1

)
ds

)for a.e. t ∈ [0, T ].Proof. Without loss of generality, we assume T = nτ for a ertain n ∈ N.Otherwise, onsider f and γ trivially ontinued onto [
0, τ

⌊
T
τ

⌋ ].With the operators rk, k = 0, . . . , n, de�ned in the proof of Theorem 3.6, we let
(u0, . . . , un) := (r0u, . . . , rnu), (f1, . . . , fn) := (r1f, . . . , rnf),

(γ1, . . . , γn) := (r1(Dγ), . . . , rn(Dγ)).If u ∈ L2
(
(−τ, 0), X−1

)
∩H1

(
(0, T ), X−1

) is a mild extrapolated solution to Equation(3.2), then (u0, . . . , un) ∈ L2
τ

(
(−τ, T ), X−1

), (u1, . . . , un) ∈ H1
τ

(
(0, T ), X−1

) holdstrue by the virtue of Lemma 6.1 and (u1, . . . , un) satis�es the following integro-di�erene equation
uk(t) = S−1(t)uk(0) +

∫ t

0

A−1S−1(t− s)
(
uk−1(s) + γk(s)

)
ds+

∫ t

0

S−1(t− s)fk(s)ds for a.e. t ∈ [0, τ ], 1 ≤ k ≤ n,

uk(τ) = uk+1(0) for 1 ≤ k ≤ n− 1,

u1(0) = u0,

u0 = ϕ(·+ τ).

(3.6)
We laim that the onverse is also true. Indeed, let (u0, . . . , un) ∈ L2

τ

(
(−τ, T ), X−1

)suh that (u1, . . . , un) ∈ H1
τ

(
(0, T ), X−1

) solves Equation (3.6). Using one againLemma 6.1, we onlude u ∈ L2
(
(−τ, T ), X−1

)
∩H1

(
(0, T ), X−1

). From the Equation(3.6) we further dedue u(s) = (r0u)(s + τ) = ϕ(s) for a.e. s ∈ [−τ, 0] and u(0+) =
(r1u)(0) = u0. There remains to show that the integral equation in (3.3) is satis�ed.This will be shown using mathematial indution. For a.e. t ∈ [0, τ ], we have
u(t) = S−1(t)u1(0) +

∫ t

0

A−1S−1(t− s)
(
u0(s) + γ1(s)

)
ds+

∫ t

0

S−1(t− s)f1(s)ds

= S−1(t)u
0 +

∫ t

0

(
Ã−1S−1(t− s)

(
u(s− τ)−Dγ(s)

)
+ S−1(t− s)f(s)

)
ds.



14 D. KHUSAINOV, M. POKOJOVY, R. RACKEAssume now that the laim is true on [0, kτ ]. If k = n, the laim trivially holds.Otherwise, k < n, and we have for a.e. t ∈ [kτ, (k + 1)τ ], t̃ := t− kτ

u(t) = S−1(t̃)uk+1(0) +

∫ t̃

0

(
A−1S−1(t̃− s)

(
uk(s) + γk+1(s)

)
+ S−1(t− s)fk+1(s)

)
ds

= S−1(t̃)uk(τ) +

∫ t̃

0

A−1S−1(t̃− s)
(
uk(s) + γk+1(s)

)
ds+

∫ t̃

0

S−1(t− s)fk+1(s)ds

= S−1(t̃)u(kτ) +

∫ t̃

0

A−1S−1(t̃− s)
(
u((k + 1)τ + s) +Dγ(kτ + s)

)
ds+

∫ t̃

0

S−1(t− s)f((k + 1)τ + s)ds

= S−1(t̃)

(
S−1(kτ)u

0 +

∫ kτ

0

(
Ã−1S−1(kτ − s)

(
u(s− τ)−Dγ(s)

)
+

S−1(kτ − s)f(s)
)
ds

)
+

∫ t̃

0

A−1S−1(t̃− s)
(
u(kτ + s) +Dγ((k + 1)τ + s)

)
ds+

∫ t̃

0

S−1(t− s)f((k + 1)τ + s)ds

= S−1(t)u
0 +

∫ kτ

0

(
Ã−1S−1(t− s)

(
u(s− τ)−Dγ(s)

)
+ S−1(t− s)f(s)

)
ds+

∫ t

kτ

A−1S−1(t− s)
(
u(s− τ) +Dγ(s)

)
ds+

∫ t

0

S−1(t− s)f(s)ds

= S−1(t)u0 +

∫ t

0

(
Ã−1S−1(t− s)

(
u(s− τ)−Dγ(s)

)
+ S−1(t− s)f(s)

)
ds.Thus, we have shown that Equations (3.3) and (3.6) are equivalent.Again, we exploit mathematial indution to show that Equation (3.6) possessesa unique solution. Restriting Equation (3.6) onto [0, τ ], Theorem 2.6 yields theexistene of a unique mild extrapolated solution

u1 ∈ H1
(
(0, τ), X−1

)
= H1

τ

(
(0, τ), X−1

)
.Further, (u0, u1) ∈ L2

τ

(
(−τ, 0), X−1

).Assume now (3.6) to possess a unique solution (u0, . . . , uk) ∈ L2
(
(−τ, kτ), X−1

)suh that (u1, . . . , uk) ∈ H1
τ

(
(0, kτ), X−1

). Exluding the trivial ase k = n, we have
k < n. Looking at the Equation (3.6) on the (k + 1)-st interval and exploiting theondition uk+1(0) = uk(τ), we get
uk+1(t) = S−1(t)uk(τ) +

∫ t

0

A−1S−1(t− s)
(
uk(s) + γk(s)

)
ds+

∫ t

0

S−1(t− s)fk(s)ds.Using the assumptions and the properties of the semigroup (S−1(t))t≥0, we obtain aunique solution
uk+1 ∈ H1

(
(0, τ), X−1

)
.



HEAT EQUATION WITH CONSTANT DELAY 15Taking into aount the ondition uk+1(0) = uk(τ), we �nally onlude (u0, . . . , uk) ∈
L2
τ

(
(−τ, (k+1)τ), X−1

)
∩H1

τ

(
(0, (k+1)τ), X−1

). Thus, the existene proof is �nished.The proof of ontinuous dependene on the initial data is literally the same as inthe strong ase in Theorem 3.6 arried out in X−1 instead of X .Remark 3.11. Though this is not the sope of the present paper, we want topoint out that our method an be applied to a muh more general lass of problemsthen paraboli ones. For a Banah spae X and a number p ∈ [1,∞), onsider thefollowing general delay equation
∂tu(t) = Au(t) + But + f(t) for t > 0,

u(0+) = u0,

u(t) = ϕ(t) for t ∈ [−τ, 0]where A is a generator of a C0-semigroup of linear, bounded operators on X and
B ∈ L

(
Lp

(
(−τ, 0), X

)
, Lp

(
(−τ, 0), X

)). Note that ut denotes the usual history vari-able given by ut : [−τ, 0] → X, s 7→ u(t+s). If ϕ ∈ Lp
(
(−τ, 0), X), f ∈ Lp

(
(0, T ), X),same arguments an be exploited to show the existene of a unique mild solution

u ∈ Lp
(
(−τ, T ), X) ∩ W 1,p

(
(0, T ), X) depending ontinuously on f and ϕ. Fur-ther, the extrapolation spae X−1 an be de�ned as a ompletion of X with respetto ‖ · ‖−1 := ‖(A + β)−1 · ‖X , β > 0 su�iently large. If X is re�exive, the lat-ter an be shown to be isomorphi to D(A∗)′. Thus, a mild extrapolated solution

u ∈ Lp
(
(−τ, T ), X−1) ∩W 1,p

(
(0, T ), X−1) an also be onstruted. To obtain higherregularity for mild solutions or even strong solutions, more knowledge about the stru-ture of A and B is though required.3.1. Expliit Representation of Solutions. In this setion, we present anexpliit solution formula for Equation (3.1).For a, b ∈ R, we onsider �rst the following salar ordinary delay di�erentialequation

∂tu(t) = au(t) + bu(t− τ) + f(t) for a.e. t ∈ [0, T ],

u(0) = u0,

u(t) = ϕ(t) for a.e. t ∈ [−τ, 0].

(3.7)Following the approah in [19℄, we de�ne for a number b ∈ R the delayed exponentialfuntion expτ (b, ·) : R → R given by
expτ (b, t) :=






0, t < −τ,

1 +

⌊

t
τ

⌋

+1∑
k=1

(t−(k−1)τ)k

k! bk, t ≥ −τ.Note that the de�nition an easily be generalized to the ase when b is a matrix or abounded linear operator on a Banah spae X .Theorem 3.12. Let u0 ∈ R, ϕ ∈ L2
(
(−τ, 0),R), f ∈ L2

(
(0, T ),R

). Thedelay di�erential equation (3.7) possesses a unique solution u ∈ L2
(
(−τ, T ),R

)
∩

H1
(
(0, T ),R

) given by
u(t) =





ϕ(t), t ∈ [−τ, 0),
u0, t = 0,

eat expτ (be
−aτ ,t−τ)u0+b

∫

0
−τ

ea(t−s−τ) expτ (be
−aτ ,t−2τ−s)ϕ(s)ds+

∫ t
0
ea(t−s) expτ (be

−aτ ,t−τ−s)f(s)ds,
t ∈ (0, T ]

(3.8)
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Figure 3.1. Delayed exponential funtionIf ϕ lies in H1
(
(−τ, 0),R) and satis�es the ompatibility ondition ϕ(0) = u0, u ∈

H1
(
(−τ, T ),R

) holds additionally.Proof. From [19℄ we know for the lassial ase, i.e., if ϕ ∈ C1
(
[−τ, 0],R

)and ϕ(0) = u0, f ∈ C0
(
[−τ, 0],R

), that (3.7) possesses a unique solution u ∈
C0

(
[−τ, T ],R

)
∩ C1

(
[−τ, 0],R

)
∩ C1

(
[0, T ],R

) given by u(t) = u1(t) + u2(t) where
u1 solves (3.7) for f ≡ 0 and u2 solves (3.7) for u0 = 0 and ϕ ≡ 0. It was furthershown

u1(t) =






ϕ(t), t ∈ [−τ, 0),
u0, t = 0,

expτ (be
−aτ ,t)ea(t−τ)ϕ(−τ)+

∫ 0
−τ

expτ (be
−aτ ,t−τ−s)ea(t−s)(ϕ̇(s)−aϕ(s))ds,

t ∈ (0, T ],

u2(t) =

{
0, t ∈ [−τ, 0],∫ t

0
expτ (be

−aτ , t− τ − s)ea(t−s)f(s)ds, t ∈ (0, T ].Performing partial integration for ϕ̇ in u1, we obtain for t ∈ [0, T ]

u1(t) = expτ (be
−aτ , t)ea(t+τ)ϕ(−τ) +

∫ 0

−τ

ea(t−s) expτ (be
−aτ , t− τ − s)ϕ̇(s)ds−

a

∫ 0

−τ

ea(t−s) expτ (be
−aτ , t− τ − s)ϕ(s)ds

= expτ (be
−aτ , t)ea(t+τ)ϕ(−τ) + ea(t−s) expτ (be

−aτ , t− τ − s)ϕ(s)|s=0
s=−τ−

∫ 0

−τ

(
− aea(t−s) expτ (be

−aτ , t− τ − s)−

bea(t−s−τ) expτ (be
−aτ , t− 2τ − s)ϕ(s)

)
ds−

a

∫ 0

−τ

ea(t−s) expτ (be
at, t− τ − s)ϕ(s)ds

= ea(t+τ) expτ (be
at, t)ϕ(−τ) + eat expτ (be

at, t− τ)ϕ(0) − ea(t+τ) expτ (be
at, t)ϕ(−τ)−

∫ 0

−τ

(
− aea(t−s) expτ (be

at, t− τ − s)− bea(t−s+τ) expτ (be
at, t− 2τ − s)

)
ϕ(s)−
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a

∫ 0

−τ

ea(t−s) expτ (be
−aτ , t− τ − s)ϕ(s)ds

= eat expτ (be
−aτ , t− τ)ϕ(0) + b

∫ 0

−τ

ea(t−s−τ) expτ (be
−aτ , t− 2τ − s)ϕ(s)ds.Taking now an approximation of ϕ and f with smooth funtions, we easily deduethe validness of the equation also for the weak ase.To better illustrate Equation (3.8), we plot solutions to the following salar delayordinary di�erential equation for various values of the parameter a:

∂tu(t) = au(t)− u(t− 0.2) + sin(t)
1+t2 for t ∈ [0, 5],

u(0) = 1,

u(t) = e−t for t ∈ [−0.2, 0).
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u
(t
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Figure 3.2. Solution funtions u(·; a)Next, we want to obtain a simple solution representation formula. For this pur-pose, we postulate the following.Assumption 3.13. There exist onstants α ∈ R\{0}, β ∈ R suh that ãij(x) =
αaij(x), b̃i(x) = bi(x) = 0 and c̃(x) = αc(x) + β for a.e. x ∈ Ω. Then, both A and
Ã are ellipti operators having eigenfuntion expansions
Au =

∞∑

n=1

λn〈u, φn〉Xφn, Ãu =

∞∑

n=1

(αλn + β)〈u, φn〉Xφn for u ∈ D(A) = D(Ã)with ommon eigenfuntions forming an orthonormal basis of X and eigenvalues
(λn)n ⊂ R, λn → −∞ for n → ∞. Similar to Setion 2.1, we get

A−1u =

∞∑

n=1

λn〈u, φn〉X−1φn, Ã−1u =

∞∑

n=1

(αλn + β)〈u, φn〉X−1φn for u ∈ X.Plugging the ansatz
u(t) :=

∞∑

n=1

un(t)φn for a.e. t ∈ [−τ, T ]into Equation (3.1), we obtain a sequene of ordinary delay di�erential equations for
un

∂tun(t) = λnun(t) + (αλn + β)un(t− τ) + 〈f(t), φn〉X−1 − λn〈Dγ(t), φn〉X−1for a.e. t ∈ [0, T ],

un(0) = 〈u0, φn〉X−1 ,

un(t) = 〈ϕ(t), φn〉X−1 for a.e. t ∈ [−τ, 0].

(3.9)



18 D. KHUSAINOV, M. POKOJOVY, R. RACKEBy virtue of Theorem 3.12, there exists a unique solution un ∈ H1
(
(−τ, T ),R

) givenby
un(t) = eλnt expτ ((αλn + β)e−λnτ , t− τ)〈u0, φn〉X−1+

(αλn + β)

∫ 0

−τ

eλn(t−s−τ) expτ ((αλn + β)e−aτ , t− 2τ − s)〈ϕ(s), φn〉X−1ds+

∫ t

0

ea(t−s) expτ (e
−aτ , t− τ − s)〈f(s)− λnDγ(s), φn〉X−1ds for a.e. t ∈ [0, T ].

(3.10)
Again, using Lebesgue's dominated onvergene theorem for Bohner integrals, we�nd for a.e. t ∈ [0, T ]

u(t) =

∞∑

n=1

eλnt expτ ((αλn + β)e−λnτ , t− τ)〈u0, φn〉X−1+

∞∑

n=1

(αλn + β)

∫ 0

−τ

eλn(t−s−τ) expτ ((αλn + β)e−aτ , t− 2τ − s)〈ϕ(s), φn〉X−1ds+

∞∑

n=1

∫ t

0

ea(t−s) expτ (e
−aτ , t− τ − s)〈f(s)− λnDγ(s), φn〉X−1ds.

(3.11)
Additionally, this funtion oinides with the mild extrapolated solution given inTheorem 3.10.3.2. Asymptotial Behavior of Solutions for t → ∞. Now we want tostudy the asymptotis of solutions to Equation (3.1). For simpliity, we begin ouronsiderations by looking at the ase of strong solutions. Also, we restrit ourselvesto the ase bi = b̃i ≡ 0 and c = c̃ ≡ 0. But we point out that a similar result an beobtained if A and Ã are just positive de�nite. With these simpli�ations, our problemreads as follows

∂tu(t, x) = ∂i
(
aij(x)∂ju(t, x)

)
+ ∂i

(
ãij(x)∂ju(t− τ, x)

)for (t, x) ∈ (0,∞)× Ω,

u(t, x) = 0 for (t, x) ∈ (0,∞)× ∂Ω,

u(0, x) = u0(x) for x ∈ Ω,

u(t, x) = ϕ(t, x) for (t, x) ∈ (−τ, 0)× Ω.

(3.12)We de�ne the energy assoiated to the solution u(3.13) E(t) :=
1

2
‖u(t)‖2L2(Ω) +

1

2

∫ t

t−τ

〈ãij(·)∂ju(s), ∂iu(s)〉L2(Ω)ds.Denote
λ̃ := ‖(ãij(·))ij‖L∞(Ω,Rn×n) < ∞.Theorem 3.14. Let the Assumption 3.2 be satis�ed with α̃ > 0 and let u0 ∈

(D(A), X)1/2,2, ϕ ∈ L2
(
(−τ, 0), D(A)

). There exists then a unique strong solution
u ∈ H1

loc

(
(0,∞), X

)
∩ L2

loc

(
(−τ,∞), D(A)

)
.



HEAT EQUATION WITH CONSTANT DELAY 19Moreover, if the oe�ient matries (aij(·))ij , (ãij(·))ij are suh that the ondition
κ > λ̃

√
λ̃
κ̃is satis�ed, there exist onstants ω,C > 0, independent from the initial data, with

E(t) ≤ Ce−2ωtE(0) for a.e. t ∈ [0,∞).Proof. From Remark 3.8 we obtain the existene of a strong solution on eah�nite time inverval. The latter an thus be ontinued to a global strong solution
u ∈ H1

loc

(
(0,∞), X

)
∩ L2

loc

(
(−τ,∞), D(A)

)
.Note that no regularity assumptions on ∂Ω are required here sine homogeneousboundary onditions are onsidered. The following alulations should be interpretedin L2

loc

(
(0,∞), X).Multiplying Equation (3.12) with u(t, ·) in L2(Ω) and arrying out a partial inte-gration yields

1

2
∂t‖u(t, ·)‖2L2(Ω) = −〈aij(·)∂ju(t, ·), ∂iu(t, ·)〉L2(Ω)−〈ãij(·)∂ju(t− τ, ·), ∂iu(t, ·)〉L2(Ω).Taking into aount the uniform positive de�niteness of a, we get for an arbitrarynumber ε > 0

1

2
∂t‖u(t, ·)‖2L2(Ω) ≤ −κ‖∇u(t, ·)‖2L2(Ω) +

λ̃ε
2 ‖∇u(t, ·)‖2L2(Ω)+

λ̃
2ε‖∇u(t− τ, ·)‖2L2(Ω).

(3.14)Following the standard approah, we onsider the history variable(3.15) z(s, t, ·) := u(t− sτ, ·) for s ∈ [0, 1], t ∈ [0,∞).Then, z is smooth in s and t (p. [4, Lemma 3.4℄) and there holds in the distributionalsense(3.16) τ∂tz(s, t, ·) + ∂sz(s, t, ·) = 0 for a.e. (s, t) ∈ (0, 1)× (0,∞).Further, a transformation of variables yields
∫ t

t−τ

〈ãij(·)∂ju(s), ∂iu(s)〉L2(Ω)ds = τ

∫ 1

0

〈ãij(·)∂jz(s, t, ·), ∂iz(s, t, ·)〉L2(Ω)ds.For a smooth nonnegative weight funtion ρ : [0, τ ] → R to be seleted later, wede�ne the funtional(3.17) F (t) :=

∫ 1

0

ρ(τs) 〈ãij(x)∂jz(s, t, ·), ∂iz(s, t, ·)〉L2(Ω) ds.Exploiting Equation (3.16) and the identity
∂s

(
ρ(τs)〈∂i

(
ãij(x)∂jz(s, t, ·), z(s, t, ·)〉L2(Ω)

)
=

τρ′(τs)〈∂i
(
ãij(x)∂jz(s, t, ·), z(s, t, ·)〉L2(Ω)+

2Re ρ(τs)〈∂i
(
ãij(x)∂jz(s, t, ·), ∂sz(s, t, ·)〉L2(Ω),
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d

dt
F (t) = − 2

τ
Re

∫ 1

0

ρ(τs)〈∂i
(
ãij(x)∂jz(s, t, ·), ∂sz(s, t, ·)〉L2(Ω)

= −
∫ 1

0

ρ′(τs)〈∂i
(
ãij(x)∂jz(s, t, ·), z(s, t, ·)〉L2(Ω)+

1

τ

∫ 1

0

∂s

(
ρ(τs)〈∂i

(
ãij(x)∂jz(s, t, ·), z(s, t, ·)〉L2(Ω)

)
ds

=

∫ 1

0

ρ′(τs) 〈ãij(x)∂jz(s, t, ·), ∂iz(s, t, ·)〉L2(Ω) ds−

1

τ

(
ρ(τ) 〈ãij(x)∂jz(1, t, ·), ∂iz(1, t, ·)〉L2(Ω) −

ρ(0)〈ãij(x)∂jz(0, t, ·), ∂iz(0, t, ·)〉L2(Ω)

)
.Assuming that ρ is stritly monotonially dereasing, letting

ρ0 := − 1
τ max

s∈[0,τ ]
ρ′(s)and exploiting the uniform positive de�niteness of ã, we obtain the estimate

d

dt
F (t) ≤ −ρ0

∫ t

t−τ

〈ãij(x)∂ju(s, ·), ∂iu(s, ·)〉L2(Ω) ds−

κ̃ρ(τ)
τ ‖∇u(t− τ, ·)‖2L2(Ω) +

λ̃ρ(0)
τ ‖∇u(t, ·)‖2L2(Ω).

(3.18)Now, we an de�ne the Lyapunov funtional
L(t) :=

1

2
‖u(t, ·)‖2L2(Ω) + F (t).Combining (3.14) and (3.18) we obtain

d

dt
L(t) ≤ −α1‖u(t, ·)‖2L2(Ω) − α2‖u(t− τ, ·)‖2L2(Ω)−

ρ0

∫ t

t−τ

〈ãij(x)∂ju(s, ·), ∂iu(s, ·)〉L2(Ω) ds,where
α1 := κ− λ̃ε

2 − λ̃ρ(0)
τ , α2 := κ̃ρ(τ)

τ − λ̃
2ε .Now, we have to selet ε and a smooth, uniformly positive funtion ρ : [0, 1] → R, e.g.,a linear funtion being uniquely determined by presribing ρ(0) and ρ(τ), suh that

ρ0, α1, α2 are positive. This yields a system of three inequalities
κ− λ̃ε

2 − λ̃ρ(0)
τ > 0, κ̃ρ(τ)

τ − λ̃
2ε > 0, ρ(0) > ρ(τ).After some simple equivalent transformations, we obtain(3.19) ρ(0) > ρ(τ) > τλ̃

2εκ̃ , κ > λ̃
2

(
ε+ 2ρ(0)

τ

)



HEAT EQUATION WITH CONSTANT DELAY 21and thus
κ > λ̃

2

(
ε+ λ̃

εκ̃

)
=: χ(ε).The funtion χ attains its global minimum over ε > 0 in ε∗ =

√
λ̃
κ̃ with χ(ε∗) = λ̃

√
λ̃
κ̃ .Plugging now ε = ε∗ into Equation (3.19), we �nally get the �optimal� onditions

ρ(0) > ρ(τ) > τ
2

√
λ̃
κ̃ , κ > λ̃

√
λ̃
κ̃ .The �rst inequality an be satis�ed by a proper hoie of ρ(0) and ρ(τ). The validnessof the seond inequality is guaranteed by the assumptions. Thus, we have β :=

min{α1, α2, ρ0} > 0 and therefore(3.20) d

dt
L(t) ≤ −βE(t).Exploiting the monotoniity of ρ, we �nd(3.21) min

{
1, 2ρ(τ)τ

}
E(t) ≤ L(t) ≤ max

{
1, 2ρ(0)τ

}
E(t) for a.e. t ∈ [0,∞).Combining (3.20) and (3.21), we further arrive at

d

dt
L(t) ≤ −2ωL(t) for a.e. t ∈ [0,∞)with ω := β

2 min
{
1, τ

2ρ(0)

}. Gronwall's inequality now yields
L(t) ≤ e−2ωL(0).Exploiting one again Equation (3.21), the laim follows with ω as above and C :=

ρ(0)
ρ(τ) .Taking into aount the equivalene of u 7→

(
〈ãij(·)u, u〉L2(Ω)

)1/2 and the norms ofinterpolation spaes (X,D(Ã))1/2,2, (X,D(A))1/2,2, the energy E an easily be seento be equivalent with the squared norm of X × L2
(
(−τ, 0), (X,D(A))1/2,2

). Usingthe extrapolation methods, the energy an thus be ontinously extended onto X−1 ×
L2

(
(−τ, 0), (X−1, X)1/2,2

). By approximating the initial data with regular funtionsand applying Theorem 3.14, we get the followingCorollary 3.15. Let the Assumption 3.2 be satis�ed and let u0 ∈ (X−1, X)1/2,2,
ϕ ∈ L2

(
(−τ, 0), X

). There exists then a unique strong extrapolated solution
u ∈ H1

loc

(
(0,∞), X−1

)
∩ L2

loc

(
(−τ,∞), X

)
.Moreover, there exist onstants ω,C > 0 independent from the initial data suh that

‖u(t)‖2X−1
+

∫ t

t−τ

‖u(s)‖2(X−1,X)1/2,2
ds ≤ Ce−2ωt

(
‖u0‖2X−1

+

‖ϕ‖2L2((−τ,0),(X−1,X)1/2,2)

) for a.e. t ≥ 0.



22 D. KHUSAINOV, M. POKOJOVY, R. RACKE4. Ill-Posedness for Lower Order Regularizations. To justify the �sharp-ness� of the results from Setion 3, we show that lower order regularizations of theheat equation with pure delay (1.5) lead to an ill-posed problem.Theorem 4.1. Let A be de�ned as in previous setion and let α ∈ [0, 1), ε > 0.Let u0 ∈ (X,D(A))1/2,2, ϕ ∈ L2
(
(−τ, 0), D(A)

). Then the problem
∂tu(t) = −ε(−A)αu(t) +Au(t− τ) for t ∈ (0, T ),

u(0) = u0,

u(t) = ϕ(t) for t ∈ (−τ, 0)is ill-posed.More generally, we proveTheorem 4.2. Let A be a self-adjoint positive operator having a omplete or-thonormal set of eigenfuntions (φj)j orresponding to eigenvalues (λ̃j) with λ̃j →
−∞ as j → ∞. Let ε > 0, and let α ∈ (−∞, 1). Then, the problem

∂tu(t) = Au(t− τ)− ε(−A)αu(t),

u(0) = u0 ∈ (X,D(A))1/2,2,

u(t) = ϕ(t) for t ∈ (−τ, 0) and ϕ ∈ L2
(
(−τ, 0), D(A)

)is ill-posed. That is, there exists solutions (uj)j with norm ‖uj(t)‖, j ∈ N, suh that,for any �xed t > 0, the norm tends to in�nity as j → ∞, while the norm of the data
(uj(0), ϕj) remains bounded.Proof. We make the ansatz(4.1) uj(t) = eωjtφj ,looking for suitable ωj suh that Reωj → ∞. For suh solutions, the norm of theorresponding data will remain bounded, but, for any t > 0, ‖uj(t)‖ = eReωjt → ∞as j → ∞.The ansatz (4.1) yields a solution if(4.2) ωj = −λje

−τωj − ελα
j ,where λj := −λ̃j → +∞. For simpliity, we drop the index j and de�ne(4.3) v := ω + ελα.Then, v should satisfy(4.4) v = −λeτελ

α

e−τv.Realling the proof of Theorem 1.1 from [13℄, there are solutions to (4.4) satisfying
Re v → ∞ as λ → ∞.We shall show that(4.5) Reω = Re v − ελα → ∞is also valid. This is obvious if α ≤ 0, therefore, it remains to onsider the ase

α ∈ (0, 1). Observing
|v| = λeτ(ελ

α−Re v),
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Re v = ελα − 1

τ ln( |v|λ )and
Reω = 1

τ ln( λ
|v| ).Hene, (4.5) is equivalent to proving(4.6) |v|

λ → 0 as λ → ∞.Sine we onlude from [13℄ that
Im v → π

τ ,this is equivalent to proving(4.7) Re v
λ → 0.It is interesting to notie that we shall prove that Re v goes to in�nity faster thanthe power term λα (p. (4.5)) by proving that Re v goes less fast to in�nity than thepower term λ (p. (4.7)). This will be, of ourse, possible only beause α < 1 holds.To prove (4.7), we apply the rule of de l'Hospital to v as a funtion in λ. Therelation (4.4) implies for the derivative of v

v′eτv(1 + τv) = −eτελ
α

(1 + τεαλα)or
v′ = −eτελ

α

(1 + τεαλα)

eτv + τveτv
= −eτελ

α

(1 + τεαλα)

eτv − τλeτελα

= − 1 + τεαλα

eτve−τελα − τλ
=

1 + τεαλα

λ
v + τλ

=
1
λ + τεαλα−1

1
v + τ

.

(4.8)Hene, sine α < 1, and sine v → ∞, we onlude
v′ → 0 as λ → ∞.This ompletes the proof of (4.7) and thus the proof of the Theorem 4.1.We an extend the ill-posedness result to some higher-order equations of the type(4.9) ∂m

t u(t) = Au(t− τ)− ε(−A)αu(t),where m ≥ 2. Making a similar ansatz as in the proof of Theorem 4.2, the orre-sponding equation for ω is given by(4.10) ωm + ελα = −λe−τωAnsatz:(4.11) ω = y1 + iy2 = reiϕm
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π

2m�xed.Then(4.13) ωm = irm,and (4.10) turns into
ελα = −λe−τy1 cos(τy2),(4.14)

(
y21 + y22

)m/2
= λe−τy1 sin(τy2).(4.15)Observing(4.16) y2 = βy1,with(4.17) β = tan(ϕm) > 0,Equations (4.14), (4.15) turn into

ελα = −λe−τx cos(τβx),(4.18)
(1 + β2)mxτm = λe−τx sin(τβx),(4.19)where(4.20) x := y1, (y2 = βx).Here, the ondition α < 1 is important to give (4.18) sense as λ → ∞.From (4.19) we have(4.21) 0 < λ =

(1 + β2)mx2m eτx

sin(τβx)
,if(4.22) sin(τβx) > 0.Plugging (4.21) into (4.18) yields(4.23)

f1(x) := εeατx
(
sin(τβx)

)1−α
= (1 + β2)m(1−α)x2m(1−α)

(
− cos(τβx)

)
=: f2(x),being well-de�ned if(4.24) cos(τβx) < 0.The equation (4.23) has in�nitely many solutions xk, k ∈ N, one in eah interval(4.25) Ik :=

(
π+4kπ
2τβ , π+2kπ

τβ

)
≡ (ak, bk)



HEAT EQUATION WITH CONSTANT DELAY 25sine g := f1 − f2 satis�es(4.26) g(ak) = f1(ak) > 0 > −f2(bk) = g(bk).Hene
Reωk = xk → ∞and for λk, determined by (4.21), we have

λk → ∞.This way, the eigenvalues are not arbitrary, but we an de�ne in what follows anassoiated operator A, for whih we then have the ill-posedness result related toequation (4.9). The desired operator A an be hosen as
A : D(A) ⊂ H → Hin a Hilbert spae H with a omplete orthonormal system (Φk)k ⊂ H satisfying

AΦk := (−λk)Φk,

D(A) =
{
u ∈ H

∣∣∣
∞∑

k=1

λ2
k|〈u,Φk〉|2 < ∞

}
,

Au =

∞∑

k=1

(−λk)〈u,Φk〉Φk.For the speial ase m = 2 we an prove a similar result as for the ase m = 1, i.e.,we may presribe the sequene (−λn)n of eigenvalues. Without loss of generality, wemay assume ε = τ = 1. The harateristi relation
ω2 + λα = −λe−ωis, for

ω = y1 + iy2, (yj ∈ R),equivalent to(4.27) y21 − y22 + λα = −λe−y1 cos(y2),(4.28) 2y1y2 = λe−y1 sin(y2).Looking for solutions satisfying(4.29) y2 ∈ [π/2, π),Equation (4.28) is equivalent to(4.30) y1e
y1 2y2

sin(y2)
= λ.De�ning

h̃2 : [π/2, π) → [π,∞), h̃1 : [0,∞) → [0,∞)
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h̃1(y1) := y1e

y1 , h̃2(y2) :=
2y2

sin(y2)
,we have that h̃′

1 > 0 and h̃′
2 > 0. Let(4.31) h1 := h̃−1

1 : [0,∞) → [0,∞), h2 := h̃−1
2 : [π,∞) → [π2 , π)satisfy(4.32) h1(0) = 0, lim

z→∞
h1(z) = ∞, h2(π) =

π
2 , lim

η→∞
h2(η) = π.Aording to (4.30), one has to ful�ll

h̃1(y1)h̃2(y2) = λ,hene, allowing
π ≤ h̃2(y2) < ∞,one requires
0 < h̃1(y1) ≤ λ

π .Therefore, h1 is onsidered restrited to(4.33) h1 : (0,
λ
π ] → (0, h1(

λ
π )].Denoting

y1 = h1(z), y2 = h2(η),Equations (4.27), (4.28) turn into(4.34) h2
1(z)− h2

2(z) + λα = −λe−h1(z) cos(h2(η)),(4.35) z η = λ,for(4.36) (z, η) ∈ Gλ := (0, λ
π ]× [π,∞).We look for solutions (zn, ηn) ∈ Gλn to (4.34), (4.35) satisfying zn → ∞ as n → ∞.That is, using (4.35), we wish to solve(4.37) F(λn, z) := h2

1(z)− h2
2(

λ
z ) + λα + λe−h1(z) cos

(
h2(

λ
z )
)
= 0.Sine lim

η→∞
h2(η) = π, we have(4.38) lim

z→0
F(λn, z) = −π2 + λα

n − λn < 0if n is large enough, n ≥ n0 for some n0 ∈ N.
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π
2 , we have

F(λn,
λn

π ) = h2
1(

λn

π )− π2

4 + λα
n

≥ h2
1(

λn

π )− π2

4 > 0
(4.39)if n ≥ n1 for some n1 ∈ N.On the strength of (4.37), (4.38), we onlude that, if n ≥ n∗ := max{n0, n1},(4.40) ∃z ≡ zn ≡ z(λn) ∈ (0, λn

π ) : F(λn, zn) = 0.There remains to prove that there exists (at least a) subsequene (ẑn) of (zn)n suhthat ẑn → ∞. For this purpose we observe from (4.39) that(4.41) h2
1(zn)

λn
−

h2(
λ
zn
)

λn
+

λα
n

λ
+ e−h1(zn) cos

(
h2(

λn

zn
)
)
= 0.Assuming(4.42) sup

n∈N

h1(zn) < ∞,we onlude from (4.40), using the boundedness of h2 and, in partiular, α < 1,(4.43) lim
n→∞

e−h1(zn) cos
(
h2(

λn

zn
)
)
= 0,implying, by assumption (4.40),

lim
n→∞

cosh2(
λn

zn
) = 0,or,(4.44) λn

zn
→ πimplying that (zn)n is unbounded, whih implies, for a subsequene (ẑn)n, that

ẑn → ∞ whih is a ontradition to the assumption (4.40). Therefore (h1(zn))nis unbounded, implying the existene of a subsequene (ẑn)n with ẑn → ∞.Thus, we have provedTheorem 4.3.(i) For m ≥ 2 there are operators A assoiated to (4.9) for whih the problem isill-posed if α < 1.(ii) For m = 2, a result orresponding to Theorem 4.2 holds true.Remark 4.4. The arguments do not arry over to the ase m = 1 sine (4.41)does no longer follow (instead e−h1(zn) cosh2(
λn

zn
) → −1).Remark 4.5. The ase m ≥ 3 and presribing (−λn)n is still open.5. Physial Example. In this last setion, we apply the expliit solution repre-sentation from Setion 3.1 to solve a physial problem arising from mirosale thermaltransport phenomena in thin metal �lms. A kineti desription of the latter an bederived from the Boltzmann equation for eletrons and phonons (see [2℄, [20℄, [37℄).We onsider a 50 nm thin gold �lm oupying the interval (0, L) of the real line(i.e., L = 50 · 10−9 [m℄). Let u, θ, q denote the eletron energy density, eletron tem-perature, and eletron heat �ux, respetively. For simpliity, we assume the phonon



28 D. KHUSAINOV, M. POKOJOVY, R. RACKEtemperature θl ≡ 300 [K℄ to be onstant and the phonon heat �ux ql ≡ 0 to vanish.If the eletron gas is in equilibrium, its energy density is related to the eletron tem-perature as u = γ
2 θ

2 for a positive γ. Performing linearization around θl, we obtainthe following onstitutive equation:
u = ceθwhere ce := γθl is the eletron heat apaity. The �lm is assumed to undergo a shortpump laser pulse applied to its left surfae (i.e., x = 0) ausing an inrease in eletrontemperature (see [20℄, [23℄, [34℄). The absorption of the laser radiation is modeled bya soure term f (f. [23℄, [34℄). See Table 5.2 for details. Replaing Cattaneo's lawNotation Units Value Desription

γ Jm−3K−2 67.6 · 10−3 eletron heat apaity inrease per degree ◦K
ce Jm−3K−1 2.1 · 104 eletron heat apaity
τ s 26 · 10−15 eletron relaxation time
λ Wm−1 K−1 315 eletron thermal ondutivity
G Wm−3 K−1 2.6 · 1016 eletron-lattie oupling onstantTable 5.1Material properties of Au (gold)with a regularized delay law and negleting the equations for the phonon variables,Equation (53) from [37℄ is redued to
ce∂tθ(t, x) + ∂xq(t, x) +G · (θ(t, x) − θl) = f(t, x) for (t, x) ∈ (0, T )× (0, L),

q(t, x) + ελ∂xθ(t, x) + λ∂xθ(t− τ, x) = 0 for (t, x) ∈ (0, T )× (0, L)
(5.1)where ρ is the density, cρ the eletron heat apaity, G eletron-lattie oupling fator,and λ eletron thermal ondutivity. Eliminating q from Equation (5.1) yields

∂tθ(t, x)− ελ
ce
∂xxθ(t, x) +

G
ce
θ(t, x)− λ

ce
∂xxθ(t− τ, x) = 1

ce
f(t, x) + G

ce
θlfor (t, x) ∈ (0, T )× (0, L).

(5.2)To lose the equation, we presribe homogeneous Neumann boundary onditions(5.3) ∂xθ(t, 0) = ∂xθ(t, L) = 0 for (t, x) ∈ (0, T )× (0, L)modeling the insulation of �lm surfae and the initial ondition(5.4) θ(t, x) ≡ θ0 for (t, x) ∈ (−τ, 0)× (0, L), θ(0, x) ≡ θ0 for x ∈ (0, L)with θ0 ≡ 300 [K℄.Figure 5.1 displays the laser intensity at three di�erent points in the �lm.Our theory from Setion 3 does not diretly apply to the problem (5.2)�(5.4)sine Neumann and not Dirihlet boundary onditions are presribed. Nonetheless,an analogous expliit representation formula as the one obtained in Setion 3.1 diretlyapplies to this new problem with (λn)n and (φn)n replaed by the eigenvalues andorthonormal eigenfuntions of Neumann-Laplaian on Ω := (0, L). The latter read as
λn = π2(n−1)2

L2 , φn(x) =

{ 1√
L
, n = 1,√

2
L cos

( (n−1)πx
L

)
, n > 1,

x ∈ [0, L], for n ∈ N.
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rf � 0.94 re�etivity
tp s 96 · 10−15 laser peak time
α−1 m 15 · 10−9 laser radiation penetration depth
J Jm−2 150 total laser energy over the spot ross-setionTable 5.2Laser soure term f(t, x) = 0.94

1−rf

tp
αJ exp

(

−xα− 2.77
(

t

tp

)2
)
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Figure 5.1. Laser intensity at di�erent spae pointsUsing f given in Table 5.2, we ompute
〈f(t, ·), φn〉 ≈






0.94J
tp

√
L
exp

(−αt2pL+277t2

t2p

)
(−1 + rf )(e

αL − 1), n = 1,

1.33α2L3/2

tpα2L2+9.87n2 exp
(−αt2pL+277t2

t2p

)
(−1 + rf )(e

αL + (−1)n), n > 1.Plugging these data into Equation (3.9) and using the solution formula (3.10), we anexpliitly ompute (un)n. We performed this using Simpson's quadrature formula tonumerially evaluate the integrals. The solutions are plotted in Figure 5.2.
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ε = 1 ε = 1.5Figure 5.2. Time-dependent Fourier oe�ients unPlugging this numerial solution into Equation (3.11) and onsidering �rst n ≤ 5terms in the series, we �nally obtain a numerial solution plotted in Figure 5.3. Note



30 D. KHUSAINOV, M. POKOJOVY, R. RACKEthat these �rst �ve terms provide a very aurate approximation sine higher Fourieroe�ients pratially vanish. The solution funtion has a peak somewhere at t̂p =
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ε = 1 ε = 1.5Figure 5.3. Numerial solution
(95± 5) · 10−15[s] whih is lose to the expeted peak value tp = 96 · 10−15.When ε inreases, the solution funtion beomes smoother. For ε < 1, e.g.,
ε = 0.5, the solution funtion beomes very rough due to the high volatility of Fourieroe�ients. This observation suggests that the regularization parameter ε should beseleted to ahieve best �t with experimental measurements.6. Appendix: Semi-disrete Lebesgue and Sobolev Spaes. Let X be aHilbert spae and let a = iτ , b = jτ for some τ > 0 and i, j ∈ N0 with i < j. Weintrodue the following semi-disrete Hilbert spaes

L2
τ

(
(a, b), X

)
:=

{
u = (ui, . . . , uj)

∣∣ uk ∈ L2
(
(0, τ), X

) for i ≤ k ≤ j
}
,

H1
τ

(
(a, b), X

)
:=

{
u = (ui, . . . , uj)

∣∣ uk ∈ H1
(
(0, τ), X

)
, uk(τ) = uk+1(0)for i ≤ k < k + 1 ≤ j

}endowed with the standard produt topology, i.e.,
‖u‖2L2

τ((a,b),X) =

j∑

k=i

‖uk‖2L2((0,τ),X), ‖u‖2H1
τ((a,b),X) =

j∑

k=i

‖uk‖2H1((0,τ),X).Note that due to the ontinuity of the embedding H1
(
(0, τ), X

)
→֒ C0

(
[0, τ ], X

) thespae H1
τ

(
(a, b), X

) is well-de�ned.Next, we onsider the mapping
R : L2

(
(a, b), X

)
→ L2

τ

(
(a, b), X

)
, u 7→ (riu, . . . , rju)with (rku)(s) = u((k − 1)τ + s) for s ∈ [0, τ ], k = i, . . . , j. Obviously, R is anisomorphism. Moreover, the following assertion holds true.Lemma 6.1. u ∈ H1

(
(a, b), X

) is true if and only if Ru ∈ H1
τ

(
(a, b), X

).Proof. If b−a = τ , the laim is trivial. Due to Sobolev embedding, the impliation
u ∈ H1

(
(a, b), X

)
⇒ Ru ∈ H1

τ

(
(a, b), X

) also trivially follows. To show the onverse,due to [1℄, it su�es to prove that
Ru ∈ H1

τ

(
(a, b), X

)
⇒ u ∈ W 1,2

(
(a, b), X

)
.
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(
(a, b), X

), we obtain
∫ b

a

u(t) · ∂tφ(t)dt =
j−1∑

k=i

∫ (i+1)τ

iτ

uk(t) · ∂tφ(t)dt

= −
j−1∑

k=i

∫ (i+1)τ

iτ

∂tuk(t) · φ(t)dt+ u(t)φ(t)|t=(k+1)τ
t=kτ

= −
∫ b

a

( j−1∑

k=i

∂tuk(t)χ(kτ,(k+1)τ)(t)
)
· φ(t)dt =: −

∫ b

a

∂tu(t) · φ(t)dtsine the boundary terms vanish due to the de�nition of H1
τ

(
(a, b), X

) and the fatthat φ(a) = φ(b) = 0. Finally, we observe
∫ b

a

‖∂tu(t)‖2Xdt =

j−1∑

k=i

∫ (i+1)τ

iτ

‖∂tu(t)‖2Xdt < ∞.Thus, u ∈ W 1,2
(
(a, b), X

)
= H1

(
(a, b), X
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