
STRONG AND MILD EXTRAPOLATED L2-SOLUTIONS TO THEHEAT EQUATION WITH CONSTANT DELAYDENYS KHUSAINOV∗, MICHAEL POKOJOVY†, AND REINHARD RACKE‡Abstra
t. We propose a Hilbert spa
e solution theory for a nonhomogeneous heat equationwith delay in the highest order derivatives with nonhomogeneous Diri
hlet boundary 
onditions in abounded domain. Under rather weak regularity assumptions on the data, we prove a well-posednessresult and give an expli
it representation of solutions. Further, we prove an exponential de
ay rate forthe energy in the dissipative 
ase. We also show that lower order regularizations lead to ill-posedness,also for higher-order equations. Finally, an appli
ation with physi
ally relevant 
onstants is given.Key words. heat equation, delay in highest order terms, strong solutions, mild solutions,well-posedness, ill-posednessAMS subje
t 
lassi�
ations. 35B30, 35B35, 35D30, 35D35, 35K20, 35Q791. Introdu
tion. Let Ω ⊂ Rd be a domain with a Lips
hitz-boundary ∂Ω and
T > 0 be a �xed number. Let a fun
tion θ : [0, T ]× Ω̄ → R denote the temperaturemeasured with respe
t to a referen
e temperature θ0 and let q : [0, T ]× Ω̄ → Rd be theheat �ux at a material point x ∈ Ω̄ at time t ∈ [0, T ]. With ρ : Ω̄ → (0,∞) denotingthe spe
i�
 density and cρ : Ω̄ → (0,∞) denoting the spe
i�
 heat 
apa
ity, the energy
onservation law reads as(1.1) ρ(x)cρ(x)∂tθ(t, x) + div q(t, x) = h(t, x) for t ∈ (0, T ), x ∈ Ω,where h stands for the intensity of external heat sour
es.To 
lose this equation, a material law postulating a relation between the tem-perature and the heat �ux is required. The 
lassi
al way to do this 
onsists in usingFourier's law of heat 
ondu
tion stating(1.2) q(t, x) + λ(x)∇θ(t, x) = 0 for t ∈ (0, T ), x ∈ Ω,where λ : Ω̄ → (0,∞) denotes the heat 
ondu
tivity being a material property. Plug-ging Equation (1.2) into (1.1) leads to the 
lassi
al paraboli
 heat equation(1.3) ρ(x)cρ(x)∂tθ(t, x) − div

(
λ(x)∇θ(t, x)

)
= h(t, x) for t ∈ (0, T ), x ∈ Ω.In many appli
ations, Equation (1.3) provides a very a

urate ma
ros
opi
 des
riptionof the heat 
ondu
tion phenomenon. For some other physi
al appli
ations, the in�nitespeed of signal propagation arising from Equation (1.3) is a signi�
ant drawba
k.In parti
ular for these, the following assumption(1.4) q(t, x) + λ(x)∇θ(t − τ, x) = 0 for t ∈ (0, T ), x ∈ Ωis more realisti
 from a physi
al point of view stating that the heat �ux noti
es 
hangesin temperature (gradient) not instantaneously, but with some delay. The latter leadsto the so-
alled heat equation with pure delay(1.5) ρ(x)cρ(x)∂tθ(t, x) − div

(
λ(x)∇θ(t − τ, x)

)
= h(t, x) for t ∈ (0, T ), x ∈ Ω.
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2 D. KHUSAINOV, M. POKOJOVY, R. RACKEIn addition to severe problems 
aused by the loss of regularity, Equation (1.5) turnsout to be ill-posed (
f. [13℄). One way to over
ome this problem is to �equivalently�rewrite Equation (1.4) as
q(t+ τ, x) + λ(x)∇θ(t, x) = 0 for t ∈ (0, T ), x ∈ Ωand perform a formal Taylor expansion of order one with respe
t to τ (
p. [6℄), i.e.,(1.6) τqt(t+ τ, x) + q(t, x) + λ(x)∇θ(t, x) = 0 for t ∈ (0, T ), x ∈ Ω,to �nally obtain

ρ(x)cρ(x)∂tθ(t, x) + div q(t, x) = h(t, x) for t ∈ (0, T ), x ∈ Ω,

τ∂tq(t, x) + q(t, x) + λ(x)∇θ(t, x) = 0 for t ∈ (0, T ), x ∈ Ω.
(1.7)In the present paper, we propose another approa
h to regularize Equation (1.5).For a small parameter ε > 0, we repla
e Equation (1.4) with(1.8) q(t, x) + ελ(x)∇θ(t, x) + λ(x)∇θ(t − τ, x) = 0 for t ∈ (0, T ), x ∈ Ωand arrive at a regularized heat equation

ρ(x)cρ(x)∂tθ(t, x) − ε div
(
λ(x)∇θ(t, x)

)
− div

(
λ(x)∇θ(t − τ, x)

)
= h(t, x)for t ∈ (0, T ), x ∈ Ω.

(1.9)Though Equation (1.9) is mu
h better behaved than Equation (1.5), standard resultson semigroups for delay equations (see, e.g., [4℄, [39℄) still 
annot be applied sin
ethe delay term is no low order perturbation of the term without delay. A semigrouptreatment of this problem nevertheless turned out to be possible. In [5℄, a perturbationresult due to Weiss & Sta�ans was used to obtain the well-posedness results for aneven bigger 
lass of equations given by
∂tu(t) = Au(t) +

∫ 0

−r

dB(θ)u(t+ θ) for t > 0, u(t) = ϕ(t) for t ∈ [−r, 0],whereA is a se
torial operator on a Bana
h spa
eX and B ∈ BV
(
[−r, 0],L(D(A), X)

)has no mass at 0. The parti
ular situation B = ηAδ−r, η ∈ R, was given someadditional attention.The �rst systemati
 treatment of this topi
 for the 
ase of unbounded operatorsthough probably dates ba
k to [38℄. The authors 
onsidered the following evolutionequation
∂tu(t) = Au(t) + F(ut) for t > 0, u0 = ϕ,where A is an in�nitesimal generator of a C0-semigroup (S(t))t≥0 on a Bana
h spa
e

X , F is a (possibly) unbounded linear or nonlinear operator and ut = u|[t−r,t](· − t)denotes the history variable. In parti
ular, it was shown for the 
ase of F beinga linear di�erential operator and 
ontaining terms of the same order as A that theproblem possesses a unique mild solution, i.e., a fun
tion u ∈ H1
(
(0, T ), X

), T > 0,satisfying the integral equation
u(t) = S(t)ϕ(0) +

∫ t

0

S(t− s)F(us)ds for a.e. t ∈ (0, T ).



HEAT EQUATION WITH CONSTANT DELAY 3In [11℄, a similar problem was studied in the strong 
ase, i.e., u ∈ H1
(
(0, T ), X)∩

L2
(
(0, T ), D(A)

). Namely, the authors 
onsidered an abstra
t linear delay equationof the form
∂tu(t) = Au(t) + Bu(t) + L1u(t− r) + L2ut, for t > 0where A is a generator of an analyti
 semigroup on a Hilbert spa
e H . A typi
alexample of su
h equation is given by

∂tu(t, x) = ∂xxu(t, x) + ∂xu(t, x) + ∂xxu(t− r, x) +

∫ 0

−r

a(s)∂xxu(t+ s, x)dsfor (t, x) ∈ (0,∞)× (0, 1),

u(t, x) = ϕ(t, x) for (t, x) ∈ (−r, 0)× (0, 1), u(t, 0) = u(t, 1) = 0 for t > 0.Under 
ertain assumptions on the operators B, L1, L2, the well-posedness followedfrom the existen
e of a semigroup asso
iated with the �ow t 7→ (u(t), ut).In [12℄, the authors elaborated on these results by 
arefully studying the L2-regularity of the 
orresponding solution in 
ertain weighted and interpolation spa
esand presenting a 
hara
terization of the in�nitesimal generator.An Lp-treatment of delay di�erential equations with unbounded operators a
tingon delay terms for p ∈ [1,∞) was given in [10℄. In parti
ular, a well-posedness resultwas obtained for the following problem
∂tu(t) = Au(t) + Lu(t− τ) for t > 0,where A is an ellipti
 operator of order 2m and L is an integro-di�erential operatorof the same order.Re
ently, hyperboli
 partial di�erential equations have also gained a lot of atten-tion. In [27℄, a wave equation with an internal feedba
k in
orporating a delay in thevelo
ity �eld was studied. The initial boundary value problem

∂ttu(t, x)−△u(t, x) + a0∂tu(t, x) + a∂tu(t− τ, x) = 0 for (t, x) ∈ (0,∞)× Ω,

u(t, x) = 0 for (t, x) ∈ (0,∞)× Γ0,

∂u

∂ν
(t, x) = 0 for (t, x) ∈ (0,∞)× Γ1subje
t to appropriate initial 
onditions, where Γ0,Γ1 ⊂ ∂Ω are relatively open with

Γ̄0 ∩ Γ̄1 = ∅, was shown to possess a unique strong solution, whi
h is exponentiallystable if a0 > a > 0 or instable, otherwise. Similar results have also been obtained forthe 
ase of a boundary delay. This stability study was later 
arried out in the 
ase oftime-varying internal or boundary delay, i.e., τ = τ(t), in [28℄, [29℄, et
.To the authors' best knowledge, no well-posedness results are available for the
ase of the delay in Lapla
ian for higher-order in time systems. At the same time,repla
ing stabilizing feedba
ks by their delayed 
ounterparts are sometimes known toeven lead to ill-posedness of the resulting system as shown in [7℄ for the wave-equationand the Euler & Bernoulli beam. The same holds for a general m-th order equationwith the pure delay (
f. [13℄)
∂m
t u(t) +Au(t− τ) = 0 for t > 0



4 D. KHUSAINOV, M. POKOJOVY, R. RACKEfor an arbitrary unbounded operator A possessing a sequen
e of eigenvalues λn → ∞,
n → ∞, or the hyperboli
-paraboli
 thermoelasti
ity with pure delay in the se
ondorder ellipti
 part (s. [35℄)

a∂ttu(t, x)− d∂xxu(t− τ1, x) + β∂xθ(t, x) = 0 for (t, x) ∈ (0,∞)× (0, L),

b∂tθ(t, x) − k∂xxθ(t− τ2, x) + β∂txu(t, x) = 0 for (t, x) ∈ (0,∞)× (0, L),

u(t, 0) = u(t, L) = ∂xθ(t, 0) = ∂xθ(t, L) = 0 for (t, x) ∈ (0,∞)× (0, L).In the following, we propose a natural solution approa
h in Hilbert spa
es whi
hemploys a generalization of the 
lassi
al step method for ordinary delay equations(
f. [15℄) rather than the delay semigroup theory. In addition to its simpli
ity and
onstru
tivity, our approa
h allows for nonhomogeneous boundary 
onditions underrather weak regularity assumptions on the boundary data. The latter is very usefulfor various appli
ations in 
ontrol theory (
f. [24℄, [25℄, [26℄). We want also to pointout that our theory 
an also be applied to obtain mild, strong, extrapolated and mildextrapolated solutions in a mu
h more general 
ase even in the Lp-framework withrespe
t to time (
f. Remark 3.11).To justify the ne
essity of the regularization to have at least the same order asthe delay term, we make essential amendments to the method from [13℄ to show thatlower order regularizations lead to ill-posedness like in the 
ase with pure delay, alsofor higher-order systems. We also refer the reader to [21℄ for a study on ne
essary
onditions for the well-posedness of partial di�erential equations with delay.To give an illustration, we apply our theory to get a 
losed form solution to a one-dimensional pra
ti
al problem related to short-pulse laser heating of metal nano�lmswith physi
ally relevant 
onstants.2. Fourier Heat Condu
tion. In this se
tion, we brie�y summarize some well-known results for the following initial-boundary value problem for the Fourier heatequation with nonhomogeneous Diri
hlet boundary 
onditions
∂tu(t, x) = ∂i

(
aij(x)∂ju(t, x)

)
+ bi(x)∂iu(t, x) + c(x)u(t, x)+

f(t, x) for (t, x) ∈ (0, T )× Ω,

u(t, x) = γ(t, x) for (t, x) ∈ (0, T )× ∂Ω,

u(0, x) = u0(x) for x ∈ Ω.

(2.1)Re
all that ∂Ω is assumed to be Lips
hitzian throughout the paper. To treat the prob-lem from Equation (2.1), a 
orresponding operator framework needs to be introdu
ed.First, we formally de�ne in the sense of distributions the di�erential operators
A0 := ∂i

(
aij(·)∂j

)
, Ar := bi(·)∂i + c(·).Here and in the sequel, we employ the Einstein's summation 
onvention. So, ∂i(aij(·)∂j)should be interpreted as d∑

i,j=1

∂i(aij(·)∂j), et
.Let X := L2(Ω) be equipped with the standard s
alar produ
t. We de�ne theoperators
A0 : D(A0) ⊂ X → X, u 7→ A0u,

Ar : D(Ar) ⊂ X → X, u 7→ Aru



HEAT EQUATION WITH CONSTANT DELAY 5with
D(A0) =

{
u ∈ H1

0 (Ω)
∣∣A0u ∈ X

}
, D(Ar) := H1

0 (Ω).A

ording to [36, Theorems 9.18 and 12.40℄, the following assertion holds true.Theorem 2.1. Let ∂Ω 6= ∅ and let aij ∈ W 1,∞(Ω) and aij = aji, bi, cj ∈ L∞(Ω).Further, there may exist a 
onstant κ > 0 su
h that
ess inf
x∈Ω

ξiaij(x)ξj ≥ κ|ξ|2 for all ξ ∈ C
n.Then, the perturbed operator A := A0 + Ar : D(A0) ⊂ X → X is an in�nitesimalgenerator of an analyti
 semigroup (S(t))t≥0 on X.Following the approa
h des
ribed by Lasie
ka and Triggiani [22, Se
tion 0.3℄ andtaking into a

ount the fa
t that A0 is 
ontinuously invertible, we de�ne the extrap-olation spa
e X−1 as the 
ompletion of X with respe
t to the ‖ · ‖−1 := ‖A−1

0 · ‖Xnorm. Sin
e X is Hilbertian und therefore re�exive, X−1 is isomorphi
 to (D(A∗
0))

′.Note that X−1 is a distributional spa
e, e.g., X−1 ⊂ H−1(Ω). Further, the operator
A 
an be extended to an operator A−1 ∈ L(X,X−1) being a generator of an analyti
semigroup (S−1(t))t≥0 of bounded linear operators on X−1 whi
h in its turn is anextension of the semigroup (S(t))t≥0 from Theorem 2.1 onto X−1.Similar to [22, Se
tion 3.1℄, we de�ne the Diri
hlet map D : L2(∂Ω) → X−1sending ea
h γ ∈ L2(∂Ω) to a solution u ∈ X−1 of the problem(2.2) Au = 0 in Ω, u = γ on ∂Ω.Lemma 2.2. There holds

D ∈ L
(
L2(∂Ω), H1/2(Ω)

)
→֒ L

(
L2(∂Ω), X

)
→֒ L

(
L2(∂Ω), X−1

)
.Proof. See [16℄ and [18℄.The notion of strong solution from [10℄ in the 
ase of homogeneous boundary datamotivates the followingDefinition 2.3. A fun
tion u ∈ H1

(
(0, T ), L2(Ω)

)
∩L2

(
(0, T ), H2(Ω)

) satisfyingEquation (2.1) for a.e. t ∈ [0, T ] is 
alled a strong solution.Remark 2.4. The initial and boundary 
onditions are satis�ed in terms of the
ontinuity of the map u 7→
(
u(t∗), u|(0,T )×∂Ω

),
H1

(
(0, T ), L2(Ω)

)
∩ L2

(
(0, T ), H2(Ω)

)
→

H1(Ω)×
(
H3/4

(
(0, T ), L2(∂Ω)

)
∩ L2

(
(0, T ), H3/2(∂Ω)

))for an arbitrary t∗ ∈ [0, T ] (
f. [33℄).The fa
t that a strong solution to Equation (2.1) has to satisfy the equation
∂tu = A

(
u−Dγ

)
+ f in L2

(
(0, T ), X

)and thus
∂tu = A−1u−A−1Dγ + f in L2

(
(0, T ), X−1

)motivates the following de�nition of extrapolated solutions (
p. the notion of extrap-olated solution in [10℄).



6 D. KHUSAINOV, M. POKOJOVY, R. RACKEDefinition 2.5. A fun
tion u ∈ H1
(
(0, T ), X−1

) given by
u(t) = S−1(t)u

0 −
∫ t

0

S−1(t− s)A−1Dγ(s)ds+

∫ t

0

S−1(t− s)f(s)dsfor a.e. t ∈ [0, T ]is 
alled a mild extrapolated solution to Equation (2.1). If it additionally satis�es
u ∈ L2

(
(0, T ), X

), we 
all u a strong extrapolated solution.Theorem 2.6. Under the 
onditions of Theorem 2.1, Equation (2.1) possessesa unique mild extrapolated solution if u0 ∈ X−1, f ∈ L2
(
(0, T ), X−1

) and γ ∈
L2

(
(0, T ), L2(∂Ω)

). Moreover, if u0 ∈ X, f ∈ L2
(
(0, T ), X

) and ∂Ω ∈ C0,1, then
u is strong extrapolated solution, whi
h additionally satis�es

u ∈ L2
(
(0, T ), H1/2(Ω)

)
∩H1/4

(
(0, T ), L2(Ω)

)
∩H1

(
(0, T ), X−1

)
.Proof. See [22, Se
tion 3.1℄.Assuming that ∂Ω ∈ C1,1 and exploiting the maximum Lp-regularity of A for

p = 2, the following existen
e and uniqueness theorem follows from [8℄, [33℄. In this
ase, the mild extrapolated solution u is even a strong solution and therefore satis�esEquation (2.1) pointwise for a.e. t ∈ [0, T ].Theorem 2.7. Under the 
onditions of Theorem 2.1 and the regularity assump-tions
u0 ∈ H1(Ω), f ∈ L2

(
(0, T ), L2(Ω)

)
, γ ∈ H3/4

(
(0, T ), L2(∂Ω)

)
∩L2

(
(0, T ), H3/2(∂Ω)

)as well as the 
ompatibility 
ondition
γ(0, ·) = u0|∂Ω,the mild extrapolated solution u is a strong solution. Moreover, the mapping (u0, f, γ) 7→

u is an isomorphism between the data spa
e equipped with the 
orresponding produ
tnorm as well as in
orporating the 
ompatibility 
ondition and the solution spa
e.Remark 2.8. For homogeneous boundary 
onditions, a strong solution
u ∈ H1

(
(0, T ), X

)
∩ L2

(
(0, T ), D(A)

)in sense of [9℄ 
an be obtained without any extra regularity assumptions on ∂Ω. Thedata have to satisfy
u0 ∈

(
X,D(A)

)
1/2,2

, f ∈ L2
(
(0, T ), X

)
,where the parentheses denote the real interpolation fun
tor.2.1. Expli
it Representation of Solutions. In this se
tion, we will brie�youtline an expli
it solution representation formula for the problem

∂tu(t) = A−1u(t)−A−1Dγ(t) + f(t) for t ∈ (0, T ),

u(0) = u0for the 
ase that A is self-adjoint (i.e., b ≡ 0) and the data satisfy u0 ∈ X−1, f ∈
L2

(
(0, T ), X−1

), γ ∈ L2
(
(0, T ), L2(Ω)

).



HEAT EQUATION WITH CONSTANT DELAY 7By the virtue of Theorem 2.6, the problem possesses a unique mild extrapolatedsolution u given by(2.3) u(t) = S−1(t)u
0 +

∫ t

0

S−1(t− s)(f(s)−Dγ(s))ds.On the other hand, A is an ellipti
 operator having an eigenfun
tion expansion
Au =

∞∑

n=1

λn〈u, φn〉Xφn for u ∈ D(A),where (λn)n ⊂ R, λn → −∞ for n → ∞ and (φn)n ⊂ D(A) form an orthogonal basisof X (
f. [36℄). Taking into a

ount that the embeddings D(A) →֒ X →֒ X−1 aredense and 
ontinuous, we further obtain
A−1u =

∞∑

n=1

λn〈u, φn〉X−1φn for u ∈ X,where 〈·, ·〉X−1 is the uniquely de�ned 
ontinuation of 〈·, ·〉X onto X−1. Note that
〈·, ·〉−1 and 〈·, ·〉X−1 do not 
oin
ide.Plugging the ansatz

u(t) :=

∞∑

n=1

un(t)φn for a.e. t ∈ [0, T ]into Equation (2.3), we obtain a sequen
e of ordinary di�erential equations for un

∂tun(t) = λnun(t) + 〈f(t)− λnDγ(t), φn〉X−1 for a.e. t ∈ [0, T ],

un(0) = 〈u0, un〉X−1 ,whi
h is uniquely solved by un ∈ H1
(
(0, T ),R

) with
un(t) = eλnt〈u0, ϕn〉X−1 +

∫ t

0

eλn(t−s)〈f(s)− λnDγ(s), φn〉X−1ds for a.e. t ∈ [0, T ].Using Lebesgue's dominated 
onvergen
e theorem for Bo
hner integrals, we �nallyobtain for a.e. t ∈ [0, T ](2.4) u(t) =
∞∑

n=1

eλnt〈u0, φn〉X−1φn +
∞∑

n=1

∫ t

0

eλn(t−s)〈f(s)− λnDγ(s), φn〉X−1φnds.Moreover, u 
oin
ides with the mild extrapolated solution given in Equation (2.3).2.2. Asymptoti
al Behavior of Solutions for t → ∞. For the sake of 
om-pleteness, we give a brief dis
ussion on the asymptoti
s of solutions to Equation (2.1)in the homogeneous 
ase, i.e., γ ≡ 0, f ≡ 0. We will be able to generalize thesewell-known results for the 
ase of regularized heat equation with delay in Se
tion 3.2later on. For simpli
ity, we assume bi ≡ 0, c ≡ 0 though the exponentially stabilityeasily 
arries over to the 
ase when A is just positive de�nite.



8 D. KHUSAINOV, M. POKOJOVY, R. RACKEWe assume u0 ∈ X−1 and denote by uT for T > 0 the mild extrapolated solutionto
∂tu(t, x) = ∂i

(
aij(x)∂ju(t, x)

) for (t, x) ∈ (0, T )× Ω,

u(t, x) = 0 for (t, x) ∈ (0, T )× ∂Ω,

u(0, x) = u0(x) for x ∈ Ω.

(2.5)Due to the unique solvability of Equation (2.5), uT1 = uT2 |[0,T1] for T2 ≥ T1 > 0. Thus,
(uT )T>0 
an be uniquely 
ontinued to a fun
tion u ∈ C1

(
[0,∞), X−1

) satisfying
u(t) = S−1(t)u

0 for t ∈ [0,∞).The energy asso
iated with the solution u is given by
E(t) := 1

2‖u(t, ·)‖2X−1
.If u0 ∈ X , then u(t, ·) ∈ X for all t ≥ 0 (
f. Theorem 2.7), i.e., u is a 
lassi
alextrapolated solution (in parti
ular, a strong extrapolated solution), and E(t) =

1
2‖u(t, ·)‖X = 1

2

∫
Ω
|u(t, x)|2dx sin
e ‖ · ‖−1 is a 
ontinuation of ‖ · ‖X .Theorem 2.9. Let u0 ∈ X−1. The energy E de
ays exponentially, i.e., thereexists ω > 0 su
h that

E(t) ≤ e−2ωtE(0) for t ≥ 0.Moreover, u ∈ L2
(
(0,∞), X−1

).Proof. Using the fa
t that (S−1(t))t≥0 is an extension of an exponentially stablesemigroup, we easily get
E(t) = 1

2‖S−1u0‖2X−1
≤ 1

2e
−2ωt‖u0‖2X−1

= e−2ωtE(0).Taking a

ount the measurability of u and estimating
∫ ∞

0

‖u(t, ·)‖2X−1
dt = 2

∫ ∞

0

E(t)dt ≤ 2E(0)

∫ ∞

0

e−2ωtdt = −E(0)
ω e−2ωt

∣∣t=∞
t=0

= E(0)
ω ,we �nally 
on
lude u ∈ L2

(
(0,∞), X−1

).3. Regularized Heat Condu
tion with Delay. Now, we turn to the heat
ondu
tion with 
onstant delay
ut(t, x) = ∂i

(
aij(x)∂ju(t, x)

)
+ bi(x)∂iu(t, x) + c(x)u(t, x)+

∂i
(
ãij(x)∂ju(t− τ, x)

)
+ b̃i(x)∂iu(t− τ, x) + c̃(x)u(t− τ, x)+

f(t, x) for (t, x) ∈ (0,∞)× Ω,

u(t, x) = γ(t, x) for (t, x) ∈ (0,∞)× ∂Ω,

u(0, x) = u0(x) for x ∈ Ω,

u(t, x) = ϕ(t, x) for (t, x) ∈ (−τ, 0)× Ω.

(3.1)
Assumption 3.1. We postulate the following 
onditions.
• Let Ω ⊂ Rd be a bounded with a Lips
hitz-boundary.
• aij , ãij ∈ W 1,∞(Ω) and aij = aji, bi, b̃i, c, c̃ ∈ L∞(Ω).
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• There exists a 
onstant κ > 0 su
h that

ess inf
x∈Ω

ξiaij(x)ξj ≥ κ|ξ|2 for all ξ ∈ C
d.Similar to the de�nition of A in Se
tion 1, we de�ne the operator

Ã : D(Ã) ⊂ X → X, u 7→ ∂i(ãij(·)∂ju) + b̃i(·)∂iu+ c̃(·)uwith
D(Ã) := {u ∈ H1

0 (Ω) | Ãu ∈ X}.Further, we need the following assumption:Assumption 3.2. Let at least one of the following 
onditions be ful�lled:i) There exists a 
onstant α̃ ∈ R\{0} su
h that ãij(x) = α̃ aij(x) for a.e. x ∈ Ω.ii) There exists a 
onstant κ̃ > 0 su
h that
ess inf
x∈Ω

ξiãij(x)ξj ≥ κ̃|ξ|2 for all ξ ∈ C
dand ∂Ω is of 
lass C1,1.Under Assumption 3.2, Ã is a 
losed operator. Next, we 
an de�ne X̃−1 ≃

(D(Ã∗))′ and extend Ã to an operator Ã−1 ∈ L(X, X̃−1). Further, one easily gets
D(A) = D(Ã) and thus X−1 = X̃−1. Note that due to the ellipti
 regularity theorythe se
ond assumption even implies D(A) = D(Ã) = H2(Ω) ∩H1

0 (Ω).Remark 3.3. In fa
t, the 
losedness of Ã and the 
onditions D(A) ⊂ D(Ã) and
X−1 ⊃ X̃−1 would also be su�
ient for our purposes. This is, for example, the 
aseif ãij ≡ 0, b̃i ≡ 0 and D(Ã) = X.Following [10℄ for the 
ase of homogeneous data, we introdu
e the notion of strongsolution in the nonhomogeneous 
ase.Definition 3.4. A fun
tion u ∈ H1

(
(0, T ), L2

(
Ω)

)
∩ L2

(
(−τ, T ), H2(Ω)

) satis-fying Equation (3.1) with the boundary and initial 
onditions interpreted in the senseof Remark 2.4 is 
alled a strong solution.Likewise, we obtain a formulation of Equation (3.1) in the extrapolation spa
e
X−1

∂tu(t) = A−1u(t) + Ã−1u(t− τ)−A−1Dγ(t) + f(t) in L2
(
(0, T ), X−1

)
,

u(0+) = u0 in X−1,

u(t) = ϕ(t) in L2
(
(−τ, 0), X−1

)
.

(3.2)Definition 3.5. A fun
tion u ∈ L2
(
(−τ, 0), X−1

)
∩H1

(
(0, T ), X−1

) is 
alled amild extrapolated solution of (3.1) if it satis�es the integro-fun
tional equation
u(t) = S−1(t)u

0 +

∫ t

0

(
Ã−1S−1(t− s)

(
u(s− τ)−Dγ(s)

)
+ S−1(t− s)f(s)

)
dsfor a.e. t ∈ [0, T ],

u(0+) = u0,

u(t) = ϕ(t) for a.e. t ∈ [−τ, 0].

(3.3)
If u additionally satis�es u ∈ L2

(
(0, T ), X), we 
all it a strong extrapolated solution.



10 D. KHUSAINOV, M. POKOJOVY, R. RACKEWe start our 
onsiderations by proving the well-posedness in the strong 
ase. In
ontrast to [12, Theorem 3.3℄, no �xed point iteration is required here.Theorem 3.6. Let ∂Ω be of 
lass C1,1. Assume
u0 ∈ H1(Ω), ϕ ∈ L2

(
(−τ, 0), H2(Ω)

)
,

γ ∈ H3/4
(
(0, T ), L2(∂Ω)

)
∩ L2

(
(0, T ), H3/2(∂Ω)

)
, f ∈ L2

(
(0, T ), L2(Ω)

)and γ(0, ·) = u0|∂Ω. Then the problem (3.2) possesses a unique strong solution u.Furthermore, there exists a positive 
onstant CT,τ > 0 su
h that
‖u(t)‖2X ≤ CT,τ

(
‖u0‖2X +

∫ 0

−τ

‖ϕ(s)‖2Xds+

∫ T

0

‖γ(s)‖2L2(∂Ω)ds+

∫ T

0

‖f(s)‖2Xds
)for a.e. t ∈ [0, T ].Proof. The idea of the proof 
onsists in transforming Equation (3.2) to an abstra
tdi�eren
e equation. Without loss of generality, let T = nτ for some n ∈ N. Otherwise,
onsider the problem with f and γ smoothly 
ontinued onto [

0, τ
⌈
T
τ

⌉].We de�ne the operators rk : L2
(
(−τ, T ), X−1

)
→ L2

(
(0, τ), X−1

) for k = 0, . . . , nby means of
(rkg)(s) = u((k − 1)τ + s) for s ∈ (0, τ)for g ∈ L2

(
(−τ, T ), X−1

) and set
(u0, . . . , un) := (r0u, . . . , rnu), (f1, . . . , fn) := (r1f, . . . , rnf),

(γ1, . . . , γn) := (r1(Dγ), . . . , rn(Dγ)).Obviously, if u is a strong solution to (3.1), then (u0, . . . , un) ∈ L2
τ

(
(−τ, T ), H2(Ω)

),
(u1, . . . , un) ∈ H1

τ

(
(0, T ), L2(Ω)

)
∩L2

τ

(
(0, T ), H2(Ω)

) by the virtue of Lemma 6.1 and
(u1, . . . , un) solves the following di�eren
e-di�erential equation

∂tuk = A−1uk + Ã−1uk−1 −A−1Dγk + fk in L2((0, τ), X−1) for 1 ≤ k ≤ n,

u1(0) = u0 in X,

u0 = ϕ(·+ τ) in L2
(
(0, τ), X

)
.

(3.4)Next, we show that the 
onverse is also true. Let (u0, . . . , un) ∈ L2
τ

(
(−τ, T ), H2(Ω)

)be su
h that (u1, . . . , un) ∈ H1
τ

(
(0, T ), L2(Ω)

) solves Equation (3.4). A

ording toLemma 6.1 in the Appendix, u ∈ L2
(
(−τ, 0), H2(Ω)

)
∩H1

(
(0, T ), L2(Ω)

). Exploitingthe initial 
onditions in Equation (3.4), we obtain u(s) = (r0u)(s+ τ) = ϕ(s) for a.e.
s ∈ [−τ, 0] and u(0+) = (r1u)(0) = u0. Further, for all φ ∈ C∞

0

(
(0, T ),R

), we �nd
∫ T

0

∂tu(t)ϕ(t)dt = −
∫ T

0

u(t)∂tϕ(t)dt = −
n∑

k=1

∫ kτ

(k−1)τ

u(t)∂tϕ(t)dt

=

n∑

k=1

∫ kτ

(k−1)τ

∂tu(t)ϕ(t)dt −
n∑

k=1

u(t)ϕ(t)|t=kτ
t=(k−1)τ

=
n∑

k=1

∫ τ

0

∂tuk(t)ϕk(t)dt− u(T )ϕ(T ) + u(0)ϕ(0)
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=

n∑

k=1

∫ τ

0

(
A−1uk(t) + Ã−1uk−1(t)−A−1Dγk(t) + fk(t)

)
ϕk(t)dt

=

∫ T

0

(
A−1u(t) + Ã−1u(t− τ)−A−1Dγ(t) + f(t)

)
ϕ(t)dtwith ϕk := ϕ((k − 1)τ + ·) meaning that u satis�es Equation (3.1) in X−1 for a.e.

t ∈ [0, T ]. By the virtue of regularity assumption, u is then a strong solution. Now,the existen
e of a unique strong solution to Equation (3.1) is redu
ed to the uniquesolvability of Equation (3.4) in the 
orresponding spa
e.We use mathemati
al indu
tion to show the latter. To start the indu
tion for
k = 1, we apply Theorem 2.6 to get the existen
e of a unique strong solution u1 ∈
L2

(
(−τ, 0), H2(Ω)

)
∩H1

(
(0, τ), L2(Ω)

). Assume that (3.4) possesses a unique solution
(u0, . . . , uk) ∈ L2

τ

(
(−τ, kτ), H2(Ω)

) with (u1, . . . , uk) ∈ H1
τ

(
(0, kτ), L2(Ω)

) for 
ertain
k ∈ {1, . . . , n}. If k = n, the 
laim holds true. Otherwise, k + 1 ≤ n. Taking intoa

ount

H1
(
(0, τ), L2(Ω)

)
∩ L2

(
(0, τ), H2(Ω)

)
→֒ C0

(
[0, τ ], H1(Ω)

)
,we 
onsider the Cau
hy problem

∂tuk+1(t) = A−1uk+1(t) + gk+1(t) for t ∈ (0, τ),

uk+1(0) = uk(τ)with(3.5) gk+1 := Ã−1uk −A−1Dγk+1 + fk+1 ∈ L2
(
(0, τ), L2(Ω)

)
.By the virtue of Theorem 2.6, this problem is uniquely solved by a fun
tion uk+1 ∈

H1
(
(0, τ), L2(Ω)

)
∩ L2

(
(0, τ), H2(Ω)

). By 
onstru
tion, we have (u0, . . . , uk+1) ∈
L2
τ

(
(−τ, (k + 1)τ), H2(Ω)

) and (u1, . . . , uk+1) ∈ H1
τ

(
(0, (k + 1)τ), L2(Ω)

).There remains to show the a priori estimate. From [31, Theorem 6.3℄, we obtainthe existen
e of 
onstants Cσ ≥ 1, Cα > 0 su
h that
‖S(t)‖L(X,X) ≤ Cσ for t ∈ [0, τ ].Furthermore, by the virtue of [22, Proposition 0.1℄ there exists a positive 
onstant

Cα > 0 su
h that
∫ τ

0

‖ÃS(t)u(t)‖2Xdt ≤ Cα

∫ τ

0

‖u(t)‖2Xdt.Finally, from Lemma 2.2 we get a 
onstant Cγ > 0 su
h that
∫ τ

0

‖Dγ(t)‖2Xdt ≤ Cγ

∫ τ

0

‖γ‖2L2(∂Ω)dt.Applying Duhamel's formula to Equation (3.4), we get
u1(t) = S−1(t)u

0 +

∫ t

0

S−1(t− s)
(
Ã−1ϕ(s− τ) +A−1γ1(s) + f1(s)

)
ds,

uk(t) = S−1(t)uk−1(τ) +

∫ t

0

S−1(t− s)
(
Ã−1uk−1(s) +A−1γk(s) + fk(s)

)
ds



12 D. KHUSAINOV, M. POKOJOVY, R. RACKEfor a.e. t ∈ [0, τ ] and 2 ≤ k ≤ n and therefore
‖u1(t)‖X ≤ Cσ‖u0‖X + Cα

( ∫ 0

−τ

‖ϕ(s)‖2Xds
)1/2

+ Cγ

( ∫ τ

0

‖γ1(s)‖2L2(∂Ω)ds
)1/2

+

Cσ

(∫ τ

0

‖f1(s)‖2Xds
)1/2

=: C1,

‖uk(t)‖X ≤ (Cσ + Cα

√
τ) ess sup

t∈[0,τ ]

‖uk−1(s)‖X + Cγ

(∫ τ

0

‖γk(s)‖2L2(∂Ω)ds
)1/2

+

Cσ

(∫ τ

0

‖fk(s)‖2Xds
)1/2

=: C2 ess sup
t∈[0,τ ]

‖uk−1(s)‖X + C3,k.Using dis
rete Gronwall's lemma (
f. [14℄), we obtain further
ess sup
t∈[0,τ ]

‖uk−1(s)‖X ≤ max{C1, C3,k}+C2

k−1∑

j=0

C3,ke
(k−j−2)C2 ≤ C1 +C2e

C2k
k∑

j=0

C3,k.Therefore, there exists a 
onstant CT,τ > 0 su
h that
‖u(t)‖2X ≤ CT,τ

(
‖u0‖2X +

∫ 0

−τ

‖ϕ(s)‖2Xds+

∫ T

0

‖γ(s)‖2L2(∂Ω)ds+

∫ T

0

‖f(s)‖2Xds
)for a.e. t ∈ [0, T ].This 
ompletes the proof.Remark 3.7. Exploiting the isomorphism property from Theorem 2.7, the proofof the previous theorem 
an be easily amended to obtain the 
ontinuous dependen
e instronger norms:

‖u‖H1((0,T ),L2(Ω))∩L2((0,T ),H2(Ω)) ≤ C
(
‖u0‖H1(Ω) + ‖ϕ‖L2((−τ,0),L2(Ω))+

‖f‖L2((0,T ),L2(Ω)) + ‖γ‖H3/4((0,T ),L2(∂Ω))∩L2((0,T ),H3/2(∂Ω))

)
.Remark 3.8. For homogeneous boundary 
onditions, the proof of Theorem 3.6
an easily be amended to obtain a unique strong solution in sense of [10℄

u ∈ H1
(
(0, T ), X

)
∩ L2

(
(−τ, T ), D(A)

)without any additionaly regularity assumptions on ∂Ω if the data satisfy
u0 ∈ (X,D(A))1/2,2, ϕ ∈ L2

(
(−τ, 0), D(A)

)
, f ∈ L2

(
(0, T ), X

)
.The assumptions of Theorem 3.6 
an be weakened if one is interested in strongextrapolated solutions. In this 
ase, neither the C1,1-smoothness of ∂Γ nor the 
om-patibilty 
ondition are required. Carrying out the proof of Theorem 3.6 inX−1 insteadof X , we get the following result in the extrapolation spa
e.Theorem 3.9. Assume

u0 ∈ (X,X−1)1/2,2, ϕ ∈ L2
(
(−τ, 0), X

)
, γ ∈ L2

(
(0, T ), L2(∂Ω)

)
, f ∈ L2

(
(0, T ), X−1

)
.



HEAT EQUATION WITH CONSTANT DELAY 13Then Equation (3.2) possesses a unique strong extrapolated solution u. Furthermore,there exists a positive 
onstant CT,τ > 0 su
h that
‖u(t)‖2X−1

≤ CT,τ

(
‖u0‖2X−1

+

∫ 0

−τ

‖ϕ(s)‖2X−1
ds+

∫ T

0

(
‖γ(s)‖2L2(∂Ω) + ‖f(s)‖2X−1

)
ds

)for a.e. t ∈ [0, T ].Finally, we address the 
ase of mild extrapolated solutions. In 
ertain analogyto the proof of Theorem 3.6, we will equivalently transform Equation (3.2) to anintegro-di�eren
e equation.Theorem 3.10. Let
u0 ∈ X−1, ϕ ∈ L2

(
(−τ, 0), X−1

)
, γ ∈ L2

(
(0, T ), L2(∂Ω)

)
, f ∈ L2

(
(0, T ), X−1

)
.Equation (3.2) possesses a unique mild extrapolated solution u. Furthermore, thereexists a positive 
onstant CT,τ > 0 su
h that

‖u(t)‖2X−1
≤ CT,τ

(
‖u0‖2X−1

+

∫ 0

−τ

‖ϕ(s)‖2X−1
ds+

∫ T

0

(
‖γ(s)‖2L2(∂Ω) + ‖f(s)‖2X−1

)
ds

)for a.e. t ∈ [0, T ].Proof. Without loss of generality, we assume T = nτ for a 
ertain n ∈ N.Otherwise, 
onsider f and γ trivially 
ontinued onto [
0, τ

⌊
T
τ

⌋ ].With the operators rk, k = 0, . . . , n, de�ned in the proof of Theorem 3.6, we let
(u0, . . . , un) := (r0u, . . . , rnu), (f1, . . . , fn) := (r1f, . . . , rnf),

(γ1, . . . , γn) := (r1(Dγ), . . . , rn(Dγ)).If u ∈ L2
(
(−τ, 0), X−1

)
∩H1

(
(0, T ), X−1

) is a mild extrapolated solution to Equation(3.2), then (u0, . . . , un) ∈ L2
τ

(
(−τ, T ), X−1

), (u1, . . . , un) ∈ H1
τ

(
(0, T ), X−1

) holdstrue by the virtue of Lemma 6.1 and (u1, . . . , un) satis�es the following integro-di�eren
e equation
uk(t) = S−1(t)uk(0) +

∫ t

0

A−1S−1(t− s)
(
uk−1(s) + γk(s)

)
ds+

∫ t

0

S−1(t− s)fk(s)ds for a.e. t ∈ [0, τ ], 1 ≤ k ≤ n,

uk(τ) = uk+1(0) for 1 ≤ k ≤ n− 1,

u1(0) = u0,

u0 = ϕ(·+ τ).

(3.6)
We 
laim that the 
onverse is also true. Indeed, let (u0, . . . , un) ∈ L2

τ

(
(−τ, T ), X−1

)su
h that (u1, . . . , un) ∈ H1
τ

(
(0, T ), X−1

) solves Equation (3.6). Using on
e againLemma 6.1, we 
on
lude u ∈ L2
(
(−τ, T ), X−1

)
∩H1

(
(0, T ), X−1

). From the Equation(3.6) we further dedu
e u(s) = (r0u)(s + τ) = ϕ(s) for a.e. s ∈ [−τ, 0] and u(0+) =
(r1u)(0) = u0. There remains to show that the integral equation in (3.3) is satis�ed.This will be shown using mathemati
al indu
tion. For a.e. t ∈ [0, τ ], we have
u(t) = S−1(t)u1(0) +

∫ t

0

A−1S−1(t− s)
(
u0(s) + γ1(s)

)
ds+

∫ t

0

S−1(t− s)f1(s)ds

= S−1(t)u
0 +

∫ t

0

(
Ã−1S−1(t− s)

(
u(s− τ)−Dγ(s)

)
+ S−1(t− s)f(s)

)
ds.



14 D. KHUSAINOV, M. POKOJOVY, R. RACKEAssume now that the 
laim is true on [0, kτ ]. If k = n, the 
laim trivially holds.Otherwise, k < n, and we have for a.e. t ∈ [kτ, (k + 1)τ ], t̃ := t− kτ

u(t) = S−1(t̃)uk+1(0) +

∫ t̃

0

(
A−1S−1(t̃− s)

(
uk(s) + γk+1(s)

)
+ S−1(t− s)fk+1(s)

)
ds

= S−1(t̃)uk(τ) +

∫ t̃

0

A−1S−1(t̃− s)
(
uk(s) + γk+1(s)

)
ds+

∫ t̃

0

S−1(t− s)fk+1(s)ds

= S−1(t̃)u(kτ) +

∫ t̃

0

A−1S−1(t̃− s)
(
u((k + 1)τ + s) +Dγ(kτ + s)

)
ds+

∫ t̃

0

S−1(t− s)f((k + 1)τ + s)ds

= S−1(t̃)

(
S−1(kτ)u

0 +

∫ kτ

0

(
Ã−1S−1(kτ − s)

(
u(s− τ)−Dγ(s)

)
+

S−1(kτ − s)f(s)
)
ds

)
+

∫ t̃

0

A−1S−1(t̃− s)
(
u(kτ + s) +Dγ((k + 1)τ + s)

)
ds+

∫ t̃

0

S−1(t− s)f((k + 1)τ + s)ds

= S−1(t)u
0 +

∫ kτ

0

(
Ã−1S−1(t− s)

(
u(s− τ)−Dγ(s)

)
+ S−1(t− s)f(s)

)
ds+

∫ t

kτ

A−1S−1(t− s)
(
u(s− τ) +Dγ(s)

)
ds+

∫ t

0

S−1(t− s)f(s)ds

= S−1(t)u0 +

∫ t

0

(
Ã−1S−1(t− s)

(
u(s− τ)−Dγ(s)

)
+ S−1(t− s)f(s)

)
ds.Thus, we have shown that Equations (3.3) and (3.6) are equivalent.Again, we exploit mathemati
al indu
tion to show that Equation (3.6) possessesa unique solution. Restri
ting Equation (3.6) onto [0, τ ], Theorem 2.6 yields theexisten
e of a unique mild extrapolated solution

u1 ∈ H1
(
(0, τ), X−1

)
= H1

τ

(
(0, τ), X−1

)
.Further, (u0, u1) ∈ L2

τ

(
(−τ, 0), X−1

).Assume now (3.6) to possess a unique solution (u0, . . . , uk) ∈ L2
(
(−τ, kτ), X−1

)su
h that (u1, . . . , uk) ∈ H1
τ

(
(0, kτ), X−1

). Ex
luding the trivial 
ase k = n, we have
k < n. Looking at the Equation (3.6) on the (k + 1)-st interval and exploiting the
ondition uk+1(0) = uk(τ), we get
uk+1(t) = S−1(t)uk(τ) +

∫ t

0

A−1S−1(t− s)
(
uk(s) + γk(s)

)
ds+

∫ t

0

S−1(t− s)fk(s)ds.Using the assumptions and the properties of the semigroup (S−1(t))t≥0, we obtain aunique solution
uk+1 ∈ H1

(
(0, τ), X−1

)
.
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ount the 
ondition uk+1(0) = uk(τ), we �nally 
on
lude (u0, . . . , uk) ∈
L2
τ

(
(−τ, (k+1)τ), X−1

)
∩H1

τ

(
(0, (k+1)τ), X−1

). Thus, the existen
e proof is �nished.The proof of 
ontinuous dependen
e on the initial data is literally the same as inthe strong 
ase in Theorem 3.6 
arried out in X−1 instead of X .Remark 3.11. Though this is not the s
ope of the present paper, we want topoint out that our method 
an be applied to a mu
h more general 
lass of problemsthen paraboli
 ones. For a Bana
h spa
e X and a number p ∈ [1,∞), 
onsider thefollowing general delay equation
∂tu(t) = Au(t) + But + f(t) for t > 0,

u(0+) = u0,

u(t) = ϕ(t) for t ∈ [−τ, 0]where A is a generator of a C0-semigroup of linear, bounded operators on X and
B ∈ L

(
Lp

(
(−τ, 0), X

)
, Lp

(
(−τ, 0), X

)). Note that ut denotes the usual history vari-able given by ut : [−τ, 0] → X, s 7→ u(t+s). If ϕ ∈ Lp
(
(−τ, 0), X), f ∈ Lp

(
(0, T ), X),same arguments 
an be exploited to show the existen
e of a unique mild solution

u ∈ Lp
(
(−τ, T ), X) ∩ W 1,p

(
(0, T ), X) depending 
ontinuously on f and ϕ. Fur-ther, the extrapolation spa
e X−1 
an be de�ned as a 
ompletion of X with respe
tto ‖ · ‖−1 := ‖(A + β)−1 · ‖X , β > 0 su�
iently large. If X is re�exive, the lat-ter 
an be shown to be isomorphi
 to D(A∗)′. Thus, a mild extrapolated solution

u ∈ Lp
(
(−τ, T ), X−1) ∩W 1,p

(
(0, T ), X−1) 
an also be 
onstru
ted. To obtain higherregularity for mild solutions or even strong solutions, more knowledge about the stru
-ture of A and B is though required.3.1. Expli
it Representation of Solutions. In this se
tion, we present anexpli
it solution formula for Equation (3.1).For a, b ∈ R, we 
onsider �rst the following s
alar ordinary delay di�erentialequation

∂tu(t) = au(t) + bu(t− τ) + f(t) for a.e. t ∈ [0, T ],

u(0) = u0,

u(t) = ϕ(t) for a.e. t ∈ [−τ, 0].

(3.7)Following the approa
h in [19℄, we de�ne for a number b ∈ R the delayed exponentialfun
tion expτ (b, ·) : R → R given by
expτ (b, t) :=






0, t < −τ,

1 +

⌊

t
τ

⌋

+1∑
k=1

(t−(k−1)τ)k

k! bk, t ≥ −τ.Note that the de�nition 
an easily be generalized to the 
ase when b is a matrix or abounded linear operator on a Bana
h spa
e X .Theorem 3.12. Let u0 ∈ R, ϕ ∈ L2
(
(−τ, 0),R), f ∈ L2

(
(0, T ),R

). Thedelay di�erential equation (3.7) possesses a unique solution u ∈ L2
(
(−τ, T ),R

)
∩

H1
(
(0, T ),R

) given by
u(t) =





ϕ(t), t ∈ [−τ, 0),
u0, t = 0,

eat expτ (be
−aτ ,t−τ)u0+b

∫

0
−τ

ea(t−s−τ) expτ (be
−aτ ,t−2τ−s)ϕ(s)ds+

∫ t
0
ea(t−s) expτ (be

−aτ ,t−τ−s)f(s)ds,
t ∈ (0, T ]

(3.8)
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Figure 3.1. Delayed exponential fun
tionIf ϕ lies in H1
(
(−τ, 0),R) and satis�es the 
ompatibility 
ondition ϕ(0) = u0, u ∈

H1
(
(−τ, T ),R

) holds additionally.Proof. From [19℄ we know for the 
lassi
al 
ase, i.e., if ϕ ∈ C1
(
[−τ, 0],R

)and ϕ(0) = u0, f ∈ C0
(
[−τ, 0],R

), that (3.7) possesses a unique solution u ∈
C0

(
[−τ, T ],R

)
∩ C1

(
[−τ, 0],R

)
∩ C1

(
[0, T ],R

) given by u(t) = u1(t) + u2(t) where
u1 solves (3.7) for f ≡ 0 and u2 solves (3.7) for u0 = 0 and ϕ ≡ 0. It was furthershown

u1(t) =






ϕ(t), t ∈ [−τ, 0),
u0, t = 0,

expτ (be
−aτ ,t)ea(t−τ)ϕ(−τ)+

∫ 0
−τ

expτ (be
−aτ ,t−τ−s)ea(t−s)(ϕ̇(s)−aϕ(s))ds,

t ∈ (0, T ],

u2(t) =

{
0, t ∈ [−τ, 0],∫ t

0
expτ (be

−aτ , t− τ − s)ea(t−s)f(s)ds, t ∈ (0, T ].Performing partial integration for ϕ̇ in u1, we obtain for t ∈ [0, T ]

u1(t) = expτ (be
−aτ , t)ea(t+τ)ϕ(−τ) +

∫ 0

−τ

ea(t−s) expτ (be
−aτ , t− τ − s)ϕ̇(s)ds−

a

∫ 0

−τ

ea(t−s) expτ (be
−aτ , t− τ − s)ϕ(s)ds

= expτ (be
−aτ , t)ea(t+τ)ϕ(−τ) + ea(t−s) expτ (be

−aτ , t− τ − s)ϕ(s)|s=0
s=−τ−

∫ 0

−τ

(
− aea(t−s) expτ (be

−aτ , t− τ − s)−

bea(t−s−τ) expτ (be
−aτ , t− 2τ − s)ϕ(s)

)
ds−

a

∫ 0

−τ

ea(t−s) expτ (be
at, t− τ − s)ϕ(s)ds

= ea(t+τ) expτ (be
at, t)ϕ(−τ) + eat expτ (be

at, t− τ)ϕ(0) − ea(t+τ) expτ (be
at, t)ϕ(−τ)−

∫ 0

−τ

(
− aea(t−s) expτ (be

at, t− τ − s)− bea(t−s+τ) expτ (be
at, t− 2τ − s)

)
ϕ(s)−
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a

∫ 0

−τ

ea(t−s) expτ (be
−aτ , t− τ − s)ϕ(s)ds

= eat expτ (be
−aτ , t− τ)ϕ(0) + b

∫ 0

−τ

ea(t−s−τ) expτ (be
−aτ , t− 2τ − s)ϕ(s)ds.Taking now an approximation of ϕ and f with smooth fun
tions, we easily dedu
ethe validness of the equation also for the weak 
ase.To better illustrate Equation (3.8), we plot solutions to the following s
alar delayordinary di�erential equation for various values of the parameter a:

∂tu(t) = au(t)− u(t− 0.2) + sin(t)
1+t2 for t ∈ [0, 5],

u(0) = 1,

u(t) = e−t for t ∈ [−0.2, 0).
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Figure 3.2. Solution fun
tions u(·; a)Next, we want to obtain a simple solution representation formula. For this pur-pose, we postulate the following.Assumption 3.13. There exist 
onstants α ∈ R\{0}, β ∈ R su
h that ãij(x) =
αaij(x), b̃i(x) = bi(x) = 0 and c̃(x) = αc(x) + β for a.e. x ∈ Ω. Then, both A and
Ã are ellipti
 operators having eigenfun
tion expansions
Au =

∞∑

n=1

λn〈u, φn〉Xφn, Ãu =

∞∑

n=1

(αλn + β)〈u, φn〉Xφn for u ∈ D(A) = D(Ã)with 
ommon eigenfun
tions forming an orthonormal basis of X and eigenvalues
(λn)n ⊂ R, λn → −∞ for n → ∞. Similar to Se
tion 2.1, we get

A−1u =

∞∑

n=1

λn〈u, φn〉X−1φn, Ã−1u =

∞∑

n=1

(αλn + β)〈u, φn〉X−1φn for u ∈ X.Plugging the ansatz
u(t) :=

∞∑

n=1

un(t)φn for a.e. t ∈ [−τ, T ]into Equation (3.1), we obtain a sequen
e of ordinary delay di�erential equations for
un

∂tun(t) = λnun(t) + (αλn + β)un(t− τ) + 〈f(t), φn〉X−1 − λn〈Dγ(t), φn〉X−1for a.e. t ∈ [0, T ],

un(0) = 〈u0, φn〉X−1 ,

un(t) = 〈ϕ(t), φn〉X−1 for a.e. t ∈ [−τ, 0].

(3.9)



18 D. KHUSAINOV, M. POKOJOVY, R. RACKEBy virtue of Theorem 3.12, there exists a unique solution un ∈ H1
(
(−τ, T ),R

) givenby
un(t) = eλnt expτ ((αλn + β)e−λnτ , t− τ)〈u0, φn〉X−1+

(αλn + β)

∫ 0

−τ

eλn(t−s−τ) expτ ((αλn + β)e−aτ , t− 2τ − s)〈ϕ(s), φn〉X−1ds+

∫ t

0

ea(t−s) expτ (e
−aτ , t− τ − s)〈f(s)− λnDγ(s), φn〉X−1ds for a.e. t ∈ [0, T ].

(3.10)
Again, using Lebesgue's dominated 
onvergen
e theorem for Bo
hner integrals, we�nd for a.e. t ∈ [0, T ]

u(t) =

∞∑

n=1

eλnt expτ ((αλn + β)e−λnτ , t− τ)〈u0, φn〉X−1+

∞∑

n=1

(αλn + β)

∫ 0

−τ

eλn(t−s−τ) expτ ((αλn + β)e−aτ , t− 2τ − s)〈ϕ(s), φn〉X−1ds+

∞∑

n=1

∫ t

0

ea(t−s) expτ (e
−aτ , t− τ − s)〈f(s)− λnDγ(s), φn〉X−1ds.

(3.11)
Additionally, this fun
tion 
oin
ides with the mild extrapolated solution given inTheorem 3.10.3.2. Asymptoti
al Behavior of Solutions for t → ∞. Now we want tostudy the asymptoti
s of solutions to Equation (3.1). For simpli
ity, we begin our
onsiderations by looking at the 
ase of strong solutions. Also, we restri
t ourselvesto the 
ase bi = b̃i ≡ 0 and c = c̃ ≡ 0. But we point out that a similar result 
an beobtained if A and Ã are just positive de�nite. With these simpli�
ations, our problemreads as follows

∂tu(t, x) = ∂i
(
aij(x)∂ju(t, x)

)
+ ∂i

(
ãij(x)∂ju(t− τ, x)

)for (t, x) ∈ (0,∞)× Ω,

u(t, x) = 0 for (t, x) ∈ (0,∞)× ∂Ω,

u(0, x) = u0(x) for x ∈ Ω,

u(t, x) = ϕ(t, x) for (t, x) ∈ (−τ, 0)× Ω.

(3.12)We de�ne the energy asso
iated to the solution u(3.13) E(t) :=
1

2
‖u(t)‖2L2(Ω) +

1

2

∫ t

t−τ

〈ãij(·)∂ju(s), ∂iu(s)〉L2(Ω)ds.Denote
λ̃ := ‖(ãij(·))ij‖L∞(Ω,Rn×n) < ∞.Theorem 3.14. Let the Assumption 3.2 be satis�ed with α̃ > 0 and let u0 ∈

(D(A), X)1/2,2, ϕ ∈ L2
(
(−τ, 0), D(A)

). There exists then a unique strong solution
u ∈ H1

loc

(
(0,∞), X

)
∩ L2

loc

(
(−τ,∞), D(A)

)
.
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oe�
ient matri
es (aij(·))ij , (ãij(·))ij are su
h that the 
ondition
κ > λ̃

√
λ̃
κ̃is satis�ed, there exist 
onstants ω,C > 0, independent from the initial data, with

E(t) ≤ Ce−2ωtE(0) for a.e. t ∈ [0,∞).Proof. From Remark 3.8 we obtain the existen
e of a strong solution on ea
h�nite time inverval. The latter 
an thus be 
ontinued to a global strong solution
u ∈ H1

loc

(
(0,∞), X

)
∩ L2

loc

(
(−τ,∞), D(A)

)
.Note that no regularity assumptions on ∂Ω are required here sin
e homogeneousboundary 
onditions are 
onsidered. The following 
al
ulations should be interpretedin L2

loc

(
(0,∞), X).Multiplying Equation (3.12) with u(t, ·) in L2(Ω) and 
arrying out a partial inte-gration yields

1

2
∂t‖u(t, ·)‖2L2(Ω) = −〈aij(·)∂ju(t, ·), ∂iu(t, ·)〉L2(Ω)−〈ãij(·)∂ju(t− τ, ·), ∂iu(t, ·)〉L2(Ω).Taking into a

ount the uniform positive de�niteness of a, we get for an arbitrarynumber ε > 0

1

2
∂t‖u(t, ·)‖2L2(Ω) ≤ −κ‖∇u(t, ·)‖2L2(Ω) +

λ̃ε
2 ‖∇u(t, ·)‖2L2(Ω)+

λ̃
2ε‖∇u(t− τ, ·)‖2L2(Ω).

(3.14)Following the standard approa
h, we 
onsider the history variable(3.15) z(s, t, ·) := u(t− sτ, ·) for s ∈ [0, 1], t ∈ [0,∞).Then, z is smooth in s and t (
p. [4, Lemma 3.4℄) and there holds in the distributionalsense(3.16) τ∂tz(s, t, ·) + ∂sz(s, t, ·) = 0 for a.e. (s, t) ∈ (0, 1)× (0,∞).Further, a transformation of variables yields
∫ t

t−τ

〈ãij(·)∂ju(s), ∂iu(s)〉L2(Ω)ds = τ

∫ 1

0

〈ãij(·)∂jz(s, t, ·), ∂iz(s, t, ·)〉L2(Ω)ds.For a smooth nonnegative weight fun
tion ρ : [0, τ ] → R to be sele
ted later, wede�ne the fun
tional(3.17) F (t) :=

∫ 1

0

ρ(τs) 〈ãij(x)∂jz(s, t, ·), ∂iz(s, t, ·)〉L2(Ω) ds.Exploiting Equation (3.16) and the identity
∂s

(
ρ(τs)〈∂i

(
ãij(x)∂jz(s, t, ·), z(s, t, ·)〉L2(Ω)

)
=

τρ′(τs)〈∂i
(
ãij(x)∂jz(s, t, ·), z(s, t, ·)〉L2(Ω)+

2Re ρ(τs)〈∂i
(
ãij(x)∂jz(s, t, ·), ∂sz(s, t, ·)〉L2(Ω),
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d

dt
F (t) = − 2

τ
Re

∫ 1

0

ρ(τs)〈∂i
(
ãij(x)∂jz(s, t, ·), ∂sz(s, t, ·)〉L2(Ω)

= −
∫ 1

0

ρ′(τs)〈∂i
(
ãij(x)∂jz(s, t, ·), z(s, t, ·)〉L2(Ω)+

1

τ

∫ 1

0

∂s

(
ρ(τs)〈∂i

(
ãij(x)∂jz(s, t, ·), z(s, t, ·)〉L2(Ω)

)
ds

=

∫ 1

0

ρ′(τs) 〈ãij(x)∂jz(s, t, ·), ∂iz(s, t, ·)〉L2(Ω) ds−

1

τ

(
ρ(τ) 〈ãij(x)∂jz(1, t, ·), ∂iz(1, t, ·)〉L2(Ω) −

ρ(0)〈ãij(x)∂jz(0, t, ·), ∂iz(0, t, ·)〉L2(Ω)

)
.Assuming that ρ is stri
tly monotoni
ally de
reasing, letting

ρ0 := − 1
τ max

s∈[0,τ ]
ρ′(s)and exploiting the uniform positive de�niteness of ã, we obtain the estimate

d

dt
F (t) ≤ −ρ0

∫ t

t−τ

〈ãij(x)∂ju(s, ·), ∂iu(s, ·)〉L2(Ω) ds−

κ̃ρ(τ)
τ ‖∇u(t− τ, ·)‖2L2(Ω) +

λ̃ρ(0)
τ ‖∇u(t, ·)‖2L2(Ω).

(3.18)Now, we 
an de�ne the Lyapunov fun
tional
L(t) :=

1

2
‖u(t, ·)‖2L2(Ω) + F (t).Combining (3.14) and (3.18) we obtain

d

dt
L(t) ≤ −α1‖u(t, ·)‖2L2(Ω) − α2‖u(t− τ, ·)‖2L2(Ω)−

ρ0

∫ t

t−τ

〈ãij(x)∂ju(s, ·), ∂iu(s, ·)〉L2(Ω) ds,where
α1 := κ− λ̃ε

2 − λ̃ρ(0)
τ , α2 := κ̃ρ(τ)

τ − λ̃
2ε .Now, we have to sele
t ε and a smooth, uniformly positive fun
tion ρ : [0, 1] → R, e.g.,a linear fun
tion being uniquely determined by pres
ribing ρ(0) and ρ(τ), su
h that

ρ0, α1, α2 are positive. This yields a system of three inequalities
κ− λ̃ε

2 − λ̃ρ(0)
τ > 0, κ̃ρ(τ)

τ − λ̃
2ε > 0, ρ(0) > ρ(τ).After some simple equivalent transformations, we obtain(3.19) ρ(0) > ρ(τ) > τλ̃

2εκ̃ , κ > λ̃
2

(
ε+ 2ρ(0)

τ

)
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κ > λ̃

2

(
ε+ λ̃

εκ̃

)
=: χ(ε).The fun
tion χ attains its global minimum over ε > 0 in ε∗ =

√
λ̃
κ̃ with χ(ε∗) = λ̃

√
λ̃
κ̃ .Plugging now ε = ε∗ into Equation (3.19), we �nally get the �optimal� 
onditions

ρ(0) > ρ(τ) > τ
2

√
λ̃
κ̃ , κ > λ̃

√
λ̃
κ̃ .The �rst inequality 
an be satis�ed by a proper 
hoi
e of ρ(0) and ρ(τ). The validnessof the se
ond inequality is guaranteed by the assumptions. Thus, we have β :=

min{α1, α2, ρ0} > 0 and therefore(3.20) d

dt
L(t) ≤ −βE(t).Exploiting the monotoni
ity of ρ, we �nd(3.21) min

{
1, 2ρ(τ)τ

}
E(t) ≤ L(t) ≤ max

{
1, 2ρ(0)τ

}
E(t) for a.e. t ∈ [0,∞).Combining (3.20) and (3.21), we further arrive at

d

dt
L(t) ≤ −2ωL(t) for a.e. t ∈ [0,∞)with ω := β

2 min
{
1, τ

2ρ(0)

}. Gronwall's inequality now yields
L(t) ≤ e−2ωL(0).Exploiting on
e again Equation (3.21), the 
laim follows with ω as above and C :=

ρ(0)
ρ(τ) .Taking into a

ount the equivalen
e of u 7→

(
〈ãij(·)u, u〉L2(Ω)

)1/2 and the norms ofinterpolation spa
es (X,D(Ã))1/2,2, (X,D(A))1/2,2, the energy E 
an easily be seento be equivalent with the squared norm of X × L2
(
(−τ, 0), (X,D(A))1/2,2

). Usingthe extrapolation methods, the energy 
an thus be 
ontinously extended onto X−1 ×
L2

(
(−τ, 0), (X−1, X)1/2,2

). By approximating the initial data with regular fun
tionsand applying Theorem 3.14, we get the followingCorollary 3.15. Let the Assumption 3.2 be satis�ed and let u0 ∈ (X−1, X)1/2,2,
ϕ ∈ L2

(
(−τ, 0), X

). There exists then a unique strong extrapolated solution
u ∈ H1

loc

(
(0,∞), X−1

)
∩ L2

loc

(
(−τ,∞), X

)
.Moreover, there exist 
onstants ω,C > 0 independent from the initial data su
h that

‖u(t)‖2X−1
+

∫ t

t−τ

‖u(s)‖2(X−1,X)1/2,2
ds ≤ Ce−2ωt

(
‖u0‖2X−1

+

‖ϕ‖2L2((−τ,0),(X−1,X)1/2,2)

) for a.e. t ≥ 0.



22 D. KHUSAINOV, M. POKOJOVY, R. RACKE4. Ill-Posedness for Lower Order Regularizations. To justify the �sharp-ness� of the results from Se
tion 3, we show that lower order regularizations of theheat equation with pure delay (1.5) lead to an ill-posed problem.Theorem 4.1. Let A be de�ned as in previous se
tion and let α ∈ [0, 1), ε > 0.Let u0 ∈ (X,D(A))1/2,2, ϕ ∈ L2
(
(−τ, 0), D(A)

). Then the problem
∂tu(t) = −ε(−A)αu(t) +Au(t− τ) for t ∈ (0, T ),

u(0) = u0,

u(t) = ϕ(t) for t ∈ (−τ, 0)is ill-posed.More generally, we proveTheorem 4.2. Let A be a self-adjoint positive operator having a 
omplete or-thonormal set of eigenfun
tions (φj)j 
orresponding to eigenvalues (λ̃j) with λ̃j →
−∞ as j → ∞. Let ε > 0, and let α ∈ (−∞, 1). Then, the problem

∂tu(t) = Au(t− τ)− ε(−A)αu(t),

u(0) = u0 ∈ (X,D(A))1/2,2,

u(t) = ϕ(t) for t ∈ (−τ, 0) and ϕ ∈ L2
(
(−τ, 0), D(A)

)is ill-posed. That is, there exists solutions (uj)j with norm ‖uj(t)‖, j ∈ N, su
h that,for any �xed t > 0, the norm tends to in�nity as j → ∞, while the norm of the data
(uj(0), ϕj) remains bounded.Proof. We make the ansatz(4.1) uj(t) = eωjtφj ,looking for suitable ωj su
h that Reωj → ∞. For su
h solutions, the norm of the
orresponding data will remain bounded, but, for any t > 0, ‖uj(t)‖ = eReωjt → ∞as j → ∞.The ansatz (4.1) yields a solution if(4.2) ωj = −λje

−τωj − ελα
j ,where λj := −λ̃j → +∞. For simpli
ity, we drop the index j and de�ne(4.3) v := ω + ελα.Then, v should satisfy(4.4) v = −λeτελ

α

e−τv.Re
alling the proof of Theorem 1.1 from [13℄, there are solutions to (4.4) satisfying
Re v → ∞ as λ → ∞.We shall show that(4.5) Reω = Re v − ελα → ∞is also valid. This is obvious if α ≤ 0, therefore, it remains to 
onsider the 
ase

α ∈ (0, 1). Observing
|v| = λeτ(ελ

α−Re v),
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Re v = ελα − 1

τ ln( |v|λ )and
Reω = 1

τ ln( λ
|v| ).Hen
e, (4.5) is equivalent to proving(4.6) |v|

λ → 0 as λ → ∞.Sin
e we 
on
lude from [13℄ that
Im v → π

τ ,this is equivalent to proving(4.7) Re v
λ → 0.It is interesting to noti
e that we shall prove that Re v goes to in�nity faster thanthe power term λα (
p. (4.5)) by proving that Re v goes less fast to in�nity than thepower term λ (
p. (4.7)). This will be, of 
ourse, possible only be
ause α < 1 holds.To prove (4.7), we apply the rule of de l'Hospital to v as a fun
tion in λ. Therelation (4.4) implies for the derivative of v

v′eτv(1 + τv) = −eτελ
α

(1 + τεαλα)or
v′ = −eτελ

α

(1 + τεαλα)

eτv + τveτv
= −eτελ

α

(1 + τεαλα)

eτv − τλeτελα

= − 1 + τεαλα

eτve−τελα − τλ
=

1 + τεαλα

λ
v + τλ

=
1
λ + τεαλα−1

1
v + τ

.

(4.8)Hen
e, sin
e α < 1, and sin
e v → ∞, we 
on
lude
v′ → 0 as λ → ∞.This 
ompletes the proof of (4.7) and thus the proof of the Theorem 4.1.We 
an extend the ill-posedness result to some higher-order equations of the type(4.9) ∂m

t u(t) = Au(t− τ)− ε(−A)αu(t),where m ≥ 2. Making a similar ansatz as in the proof of Theorem 4.2, the 
orre-sponding equation for ω is given by(4.10) ωm + ελα = −λe−τωAnsatz:(4.11) ω = y1 + iy2 = reiϕm
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π

2m�xed.Then(4.13) ωm = irm,and (4.10) turns into
ελα = −λe−τy1 cos(τy2),(4.14)

(
y21 + y22

)m/2
= λe−τy1 sin(τy2).(4.15)Observing(4.16) y2 = βy1,with(4.17) β = tan(ϕm) > 0,Equations (4.14), (4.15) turn into

ελα = −λe−τx cos(τβx),(4.18)
(1 + β2)mxτm = λe−τx sin(τβx),(4.19)where(4.20) x := y1, (y2 = βx).Here, the 
ondition α < 1 is important to give (4.18) sense as λ → ∞.From (4.19) we have(4.21) 0 < λ =

(1 + β2)mx2m eτx

sin(τβx)
,if(4.22) sin(τβx) > 0.Plugging (4.21) into (4.18) yields(4.23)

f1(x) := εeατx
(
sin(τβx)

)1−α
= (1 + β2)m(1−α)x2m(1−α)

(
− cos(τβx)

)
=: f2(x),being well-de�ned if(4.24) cos(τβx) < 0.The equation (4.23) has in�nitely many solutions xk, k ∈ N, one in ea
h interval(4.25) Ik :=

(
π+4kπ
2τβ , π+2kπ

τβ

)
≡ (ak, bk)
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e g := f1 − f2 satis�es(4.26) g(ak) = f1(ak) > 0 > −f2(bk) = g(bk).Hen
e
Reωk = xk → ∞and for λk, determined by (4.21), we have

λk → ∞.This way, the eigenvalues are not arbitrary, but we 
an de�ne in what follows anasso
iated operator A, for whi
h we then have the ill-posedness result related toequation (4.9). The desired operator A 
an be 
hosen as
A : D(A) ⊂ H → Hin a Hilbert spa
e H with a 
omplete orthonormal system (Φk)k ⊂ H satisfying

AΦk := (−λk)Φk,

D(A) =
{
u ∈ H

∣∣∣
∞∑

k=1

λ2
k|〈u,Φk〉|2 < ∞

}
,

Au =

∞∑

k=1

(−λk)〈u,Φk〉Φk.For the spe
ial 
ase m = 2 we 
an prove a similar result as for the 
ase m = 1, i.e.,we may pres
ribe the sequen
e (−λn)n of eigenvalues. Without loss of generality, wemay assume ε = τ = 1. The 
hara
teristi
 relation
ω2 + λα = −λe−ωis, for

ω = y1 + iy2, (yj ∈ R),equivalent to(4.27) y21 − y22 + λα = −λe−y1 cos(y2),(4.28) 2y1y2 = λe−y1 sin(y2).Looking for solutions satisfying(4.29) y2 ∈ [π/2, π),Equation (4.28) is equivalent to(4.30) y1e
y1 2y2

sin(y2)
= λ.De�ning

h̃2 : [π/2, π) → [π,∞), h̃1 : [0,∞) → [0,∞)
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h̃1(y1) := y1e

y1 , h̃2(y2) :=
2y2

sin(y2)
,we have that h̃′

1 > 0 and h̃′
2 > 0. Let(4.31) h1 := h̃−1

1 : [0,∞) → [0,∞), h2 := h̃−1
2 : [π,∞) → [π2 , π)satisfy(4.32) h1(0) = 0, lim

z→∞
h1(z) = ∞, h2(π) =

π
2 , lim

η→∞
h2(η) = π.A

ording to (4.30), one has to ful�ll

h̃1(y1)h̃2(y2) = λ,hen
e, allowing
π ≤ h̃2(y2) < ∞,one requires
0 < h̃1(y1) ≤ λ

π .Therefore, h1 is 
onsidered restri
ted to(4.33) h1 : (0,
λ
π ] → (0, h1(

λ
π )].Denoting

y1 = h1(z), y2 = h2(η),Equations (4.27), (4.28) turn into(4.34) h2
1(z)− h2

2(z) + λα = −λe−h1(z) cos(h2(η)),(4.35) z η = λ,for(4.36) (z, η) ∈ Gλ := (0, λ
π ]× [π,∞).We look for solutions (zn, ηn) ∈ Gλn to (4.34), (4.35) satisfying zn → ∞ as n → ∞.That is, using (4.35), we wish to solve(4.37) F(λn, z) := h2

1(z)− h2
2(

λ
z ) + λα + λe−h1(z) cos

(
h2(

λ
z )
)
= 0.Sin
e lim

η→∞
h2(η) = π, we have(4.38) lim

z→0
F(λn, z) = −π2 + λα

n − λn < 0if n is large enough, n ≥ n0 for some n0 ∈ N.
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e h2(π) =
π
2 , we have

F(λn,
λn

π ) = h2
1(

λn

π )− π2

4 + λα
n

≥ h2
1(

λn

π )− π2

4 > 0
(4.39)if n ≥ n1 for some n1 ∈ N.On the strength of (4.37), (4.38), we 
on
lude that, if n ≥ n∗ := max{n0, n1},(4.40) ∃z ≡ zn ≡ z(λn) ∈ (0, λn

π ) : F(λn, zn) = 0.There remains to prove that there exists (at least a) subsequen
e (ẑn) of (zn)n su
hthat ẑn → ∞. For this purpose we observe from (4.39) that(4.41) h2
1(zn)

λn
−

h2(
λ
zn
)

λn
+

λα
n

λ
+ e−h1(zn) cos

(
h2(

λn

zn
)
)
= 0.Assuming(4.42) sup

n∈N

h1(zn) < ∞,we 
on
lude from (4.40), using the boundedness of h2 and, in parti
ular, α < 1,(4.43) lim
n→∞

e−h1(zn) cos
(
h2(

λn

zn
)
)
= 0,implying, by assumption (4.40),

lim
n→∞

cosh2(
λn

zn
) = 0,or,(4.44) λn

zn
→ πimplying that (zn)n is unbounded, whi
h implies, for a subsequen
e (ẑn)n, that

ẑn → ∞ whi
h is a 
ontradi
tion to the assumption (4.40). Therefore (h1(zn))nis unbounded, implying the existen
e of a subsequen
e (ẑn)n with ẑn → ∞.Thus, we have provedTheorem 4.3.(i) For m ≥ 2 there are operators A asso
iated to (4.9) for whi
h the problem isill-posed if α < 1.(ii) For m = 2, a result 
orresponding to Theorem 4.2 holds true.Remark 4.4. The arguments do not 
arry over to the 
ase m = 1 sin
e (4.41)does no longer follow (instead e−h1(zn) cosh2(
λn

zn
) → −1).Remark 4.5. The 
ase m ≥ 3 and pres
ribing (−λn)n is still open.5. Physi
al Example. In this last se
tion, we apply the expli
it solution repre-sentation from Se
tion 3.1 to solve a physi
al problem arising from mi
ros
ale thermaltransport phenomena in thin metal �lms. A kineti
 des
ription of the latter 
an bederived from the Boltzmann equation for ele
trons and phonons (see [2℄, [20℄, [37℄).We 
onsider a 50 nm thin gold �lm o

upying the interval (0, L) of the real line(i.e., L = 50 · 10−9 [m℄). Let u, θ, q denote the ele
tron energy density, ele
tron tem-perature, and ele
tron heat �ux, respe
tively. For simpli
ity, we assume the phonon
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onstant and the phonon heat �ux ql ≡ 0 to vanish.If the ele
tron gas is in equilibrium, its energy density is related to the ele
tron tem-perature as u = γ
2 θ

2 for a positive γ. Performing linearization around θl, we obtainthe following 
onstitutive equation:
u = ceθwhere ce := γθl is the ele
tron heat 
apa
ity. The �lm is assumed to undergo a shortpump laser pulse applied to its left surfa
e (i.e., x = 0) 
ausing an in
rease in ele
trontemperature (see [20℄, [23℄, [34℄). The absorption of the laser radiation is modeled bya sour
e term f (
f. [23℄, [34℄). See Table 5.2 for details. Repla
ing Cattaneo's lawNotation Units Value Des
ription

γ Jm−3K−2 67.6 · 10−3 ele
tron heat 
apa
ity in
rease per degree ◦K
ce Jm−3K−1 2.1 · 104 ele
tron heat 
apa
ity
τ s 26 · 10−15 ele
tron relaxation time
λ Wm−1 K−1 315 ele
tron thermal 
ondu
tivity
G Wm−3 K−1 2.6 · 1016 ele
tron-latti
e 
oupling 
onstantTable 5.1Material properties of Au (gold)with a regularized delay law and negle
ting the equations for the phonon variables,Equation (53) from [37℄ is redu
ed to
ce∂tθ(t, x) + ∂xq(t, x) +G · (θ(t, x) − θl) = f(t, x) for (t, x) ∈ (0, T )× (0, L),

q(t, x) + ελ∂xθ(t, x) + λ∂xθ(t− τ, x) = 0 for (t, x) ∈ (0, T )× (0, L)
(5.1)where ρ is the density, cρ the ele
tron heat 
apa
ity, G ele
tron-latti
e 
oupling fa
tor,and λ ele
tron thermal 
ondu
tivity. Eliminating q from Equation (5.1) yields

∂tθ(t, x)− ελ
ce
∂xxθ(t, x) +

G
ce
θ(t, x)− λ

ce
∂xxθ(t− τ, x) = 1

ce
f(t, x) + G

ce
θlfor (t, x) ∈ (0, T )× (0, L).

(5.2)To 
lose the equation, we pres
ribe homogeneous Neumann boundary 
onditions(5.3) ∂xθ(t, 0) = ∂xθ(t, L) = 0 for (t, x) ∈ (0, T )× (0, L)modeling the insulation of �lm surfa
e and the initial 
ondition(5.4) θ(t, x) ≡ θ0 for (t, x) ∈ (−τ, 0)× (0, L), θ(0, x) ≡ θ0 for x ∈ (0, L)with θ0 ≡ 300 [K℄.Figure 5.1 displays the laser intensity at three di�erent points in the �lm.Our theory from Se
tion 3 does not dire
tly apply to the problem (5.2)�(5.4)sin
e Neumann and not Diri
hlet boundary 
onditions are pres
ribed. Nonetheless,an analogous expli
it representation formula as the one obtained in Se
tion 3.1 dire
tlyapplies to this new problem with (λn)n and (φn)n repla
ed by the eigenvalues andorthonormal eigenfun
tions of Neumann-Lapla
ian on Ω := (0, L). The latter read as
λn = π2(n−1)2

L2 , φn(x) =

{ 1√
L
, n = 1,√

2
L cos

( (n−1)πx
L

)
, n > 1,

x ∈ [0, L], for n ∈ N.
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ription
rf � 0.94 re�e
tivity
tp s 96 · 10−15 laser peak time
α−1 m 15 · 10−9 laser radiation penetration depth
J Jm−2 150 total laser energy over the spot 
ross-se
tionTable 5.2Laser sour
e term f(t, x) = 0.94

1−rf

tp
αJ exp

(

−xα− 2.77
(

t

tp

)2
)
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Figure 5.1. Laser intensity at di�erent spa
e pointsUsing f given in Table 5.2, we 
ompute
〈f(t, ·), φn〉 ≈






0.94J
tp

√
L
exp

(−αt2pL+277t2

t2p

)
(−1 + rf )(e

αL − 1), n = 1,

1.33α2L3/2

tpα2L2+9.87n2 exp
(−αt2pL+277t2

t2p

)
(−1 + rf )(e

αL + (−1)n), n > 1.Plugging these data into Equation (3.9) and using the solution formula (3.10), we 
anexpli
itly 
ompute (un)n. We performed this using Simpson's quadrature formula tonumeri
ally evaluate the integrals. The solutions are plotted in Figure 5.2.
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ε = 1 ε = 1.5Figure 5.2. Time-dependent Fourier 
oe�
ients unPlugging this numeri
al solution into Equation (3.11) and 
onsidering �rst n ≤ 5terms in the series, we �nally obtain a numeri
al solution plotted in Figure 5.3. Note
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urate approximation sin
e higher Fourier
oe�
ients pra
ti
ally vanish. The solution fun
tion has a peak somewhere at t̂p =
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ε = 1 ε = 1.5Figure 5.3. Numeri
al solution
(95± 5) · 10−15[s] whi
h is 
lose to the expe
ted peak value tp = 96 · 10−15.When ε in
reases, the solution fun
tion be
omes smoother. For ε < 1, e.g.,
ε = 0.5, the solution fun
tion be
omes very rough due to the high volatility of Fourier
oe�
ients. This observation suggests that the regularization parameter ε should besele
ted to a
hieve best �t with experimental measurements.6. Appendix: Semi-dis
rete Lebesgue and Sobolev Spa
es. Let X be aHilbert spa
e and let a = iτ , b = jτ for some τ > 0 and i, j ∈ N0 with i < j. Weintrodu
e the following semi-dis
rete Hilbert spa
es

L2
τ

(
(a, b), X

)
:=

{
u = (ui, . . . , uj)

∣∣ uk ∈ L2
(
(0, τ), X

) for i ≤ k ≤ j
}
,

H1
τ

(
(a, b), X

)
:=

{
u = (ui, . . . , uj)

∣∣ uk ∈ H1
(
(0, τ), X

)
, uk(τ) = uk+1(0)for i ≤ k < k + 1 ≤ j

}endowed with the standard produ
t topology, i.e.,
‖u‖2L2

τ((a,b),X) =

j∑

k=i

‖uk‖2L2((0,τ),X), ‖u‖2H1
τ((a,b),X) =

j∑

k=i

‖uk‖2H1((0,τ),X).Note that due to the 
ontinuity of the embedding H1
(
(0, τ), X

)
→֒ C0

(
[0, τ ], X

) thespa
e H1
τ

(
(a, b), X

) is well-de�ned.Next, we 
onsider the mapping
R : L2

(
(a, b), X

)
→ L2

τ

(
(a, b), X

)
, u 7→ (riu, . . . , rju)with (rku)(s) = u((k − 1)τ + s) for s ∈ [0, τ ], k = i, . . . , j. Obviously, R is anisomorphism. Moreover, the following assertion holds true.Lemma 6.1. u ∈ H1

(
(a, b), X

) is true if and only if Ru ∈ H1
τ

(
(a, b), X

).Proof. If b−a = τ , the 
laim is trivial. Due to Sobolev embedding, the impli
ation
u ∈ H1

(
(a, b), X

)
⇒ Ru ∈ H1

τ

(
(a, b), X

) also trivially follows. To show the 
onverse,due to [1℄, it su�
es to prove that
Ru ∈ H1

τ

(
(a, b), X

)
⇒ u ∈ W 1,2

(
(a, b), X

)
.
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(
(a, b), X

), we obtain
∫ b

a

u(t) · ∂tφ(t)dt =
j−1∑

k=i

∫ (i+1)τ

iτ

uk(t) · ∂tφ(t)dt

= −
j−1∑

k=i

∫ (i+1)τ

iτ

∂tuk(t) · φ(t)dt+ u(t)φ(t)|t=(k+1)τ
t=kτ

= −
∫ b

a

( j−1∑

k=i

∂tuk(t)χ(kτ,(k+1)τ)(t)
)
· φ(t)dt =: −

∫ b

a

∂tu(t) · φ(t)dtsin
e the boundary terms vanish due to the de�nition of H1
τ

(
(a, b), X

) and the fa
tthat φ(a) = φ(b) = 0. Finally, we observe
∫ b

a

‖∂tu(t)‖2Xdt =

j−1∑

k=i

∫ (i+1)τ

iτ

‖∂tu(t)‖2Xdt < ∞.Thus, u ∈ W 1,2
(
(a, b), X

)
= H1

(
(a, b), X
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