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Abstract: In this paper we study the spatial behavior of solutions to the equations obtained

by taking formal Taylor approximations to the heat conduction dual-phase-lag and three-phase-

lag theories, reflecting Saint-Venant’s principle. Depending on the relative order of derivation

with respect to the time we propose different arguments. One is inspired by the arguments for

parabolic problems and the other one is inspired by the arguments for hyperbolic problems. In

the first case we obtain a Phragmén-Lindelöf alternative for the solutions, and in the second

case we obtain an estimate for the decay as well as a domain of influence result. The main tool

to manage these problems is the use of an exponentially weighted Poincaré inequality

1 Introduction

Fourier’s heat conduction theory implies that thermal perturbations at some point can be

observed in a solid instantly anywhere, however distant. This is a drawback of the model

because it implies that heat waves (seem to) propagate with infinite speed. To overcome

this difficulty and to satisfy the principle of causality, several alternative heat conduction

theories have been suggested in the second part of the last century (see [2, 9, 10]). In the

books [14, 34, 36], several mathematical studies concerning the applicability of different

alternative thermoelastic theories are presented.

Tzou [35] suggested a modification of the Fourier law in 1995. He proposed a the-

ory where the thermal flux and the gradient of temperature have a delay. The basic

constitutive equation is:

q(x, t+ τq) = −k∇u(x, t+ τu), k > 0. (1.1)

Here q is the heat flux vector, u is the temperature and τq, τu are the delay parameters

which are assumed positive. This equation says that the temperature gradient established

across a material volume at the position x at time t+ τu results in a heat flux to flow at a

different instant of time t+ τq. The delays are understood in terms of the microstructure
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of the material. More recently Choudhuri [31] proposed an extension of Tzou’s theory.

For this new proposition the constitutive equation of the heat flux vector is

q(x, t+ τq) = − (k∇u(x, t+ τu) + k∗∇ν(x, t+ τν)) . (1.2)

Here ν is the thermal displacement that satisfies νt = u, k∗ is a parameter which is typical

in the type II and III thermoelastic theories and τν is another delay parameter which is

also assumed positive. It seems that Choudhuri wanted to establish a mathematical model

based on delays in such a way that the Taylor approximations recover the models proposed

by Green and Naghdi [7, 8].

The theories of Tzou and Choudhuri are strongly based on an intuitive point of view,

but there is no a priori thermomechanical foundation. In fact, it has been shown that,

when we combine these constitutive equations with the classical energy equation

−div q(x, t) = cut(x, t), c > 0, (1.3)

there exists a sequence of solutions of the form

un(x, t) = exp(ωnt)Φn(x)

such that the real part ωn tends to infinity [4]. This implies that we cannot obtain con-

tinuous dependence on initial data, and the associated mathematical problem is ill posed

in the sense of Hadamard. This disagrees with the a priori expectation. For this reason a

big interest has been developed to understand different formal Taylor approximations to

these equations [1, 20, 21, 24, 27, 28, 29, 30]. These alternative theories allow to obtain

stability of solutions and the well-posedness of the problems, provided certain conditions

on the parameters hold.

The study of the spatial behavior for partial differential equations is related to Saint-

Venant’s principle. This aspect has been extensively investigated from the mathematical

and also from thermomechanical viewpoints. Spatial decay estimates have been obtained

for elliptic [5], parabolic [11, 12], hyperbolic [6] equations and/or combinations of these

[23] in the last years. They describe how the influence of the perturbations on a part of

the boundary is damped far away from the place where the perturbations were applied.

From a mathematical viewpoint, it is usual to consider a semi-infinite cylinder whose

finite end is perturbed and to see how the solutions decay when the spatial variable

tends to infinity. Spatial behavior of solutions is a topic under deep investigation since a

mathematical perspective [16, 17, 19, 22, 32, 33].

It is worth recalling that several cases where the spatial behavior for dual-phase-lag or

three-phase lag models have been studied, see [13, 25, 26]. However, in these contributions

only equations of third or fourth order with respect to time were analyzed. Arguments for
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a general type of higher-order equations have not yet been considered in the literature.

Here, we propose a contribution of this type, i.e. we will obtain spatial estimates for

solutions to equations of higher order.

We study the spatial behavior of solutions to the equations obtained by taking formal

Taylor approximations for the dual-phase-lag (1.1) or three-phase-lag theories (1.2) of

heat conduction. Plugging these into the energy equation (1.3), we obtain the equation1

a0u+ a1u
(1) + a2u

(2) + · · ·+ anu
(n) = b0Δu+ b1Δu(1) + · · ·+ bmΔu(m). (1.4)

for n > m ∈ N0, where a0, . . . , an, b0, . . . , bm are constants. We will only assume, that the

leading coefficients an, bm are positive.

Typical examples are

u(1) + τqu
(2) +

τ 2q
2
u(3) = kΔu+ kτuΔu(1) + k

τ 2u
2
Δu(2), (1.5)

or,

u(2) + τqu
(3) +

τ 2q
2
u(4) = k∗Δu+ τ ∗νΔu(1) + τ ∗uΔu(2) + k

τ 2u
2
Δu(3). (1.6)

Here τ ∗ν = k∗τν + k and τ ∗u = (k∗τ 2ν + 2kτu)/2.

It is known that, in general, these approximations, together with initial and boundary

conditions, do not always define well-posed problems; they are ill-posed if n−m > 2, (see

[4]). So, we will restrict our attention to the cases

0 < n−m ≤ 2,

where we know that they define a well-posed problem, see [1, 37].

In the next section we propose the basic problems and recall the exponentially weighted

Poincaré inequality. It will be a fundamental tool in our approach.

As the analysis is different for the cases n − m = 2 and n − m = 1, respectively,

reflecting the different character of the equations (typically: hyperbolic resp. parabolic),

we devote a section to each case. The case n − m = 2 is studied in section 3, where,

in particular, we obtain a domain of influence result. When n − m = 1 we obtain a

Phragmén-Lindelöf alternative in section 4. We then also describe how to obtain an

upper bound for the amplitude term when the solution decays in the spatial variable.

2 Preliminaries

In this section we define the basic problem we will study in the paper, and we will recall

a fundamental tool that we use in our approach: it is the exponentially weighted Poincaré

1Here and from now on, g(k) denotes the k-th derivative of the function g with respect to time.
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inequality. As spatial domain, we will consider the semi-infinite cylinder R = [0,∞)×D,

where D is a bounded domain in the two-dimensional Euclidean space, being smooth

enough to guarantee the use of the divergence theorem.

We consider general Taylor approximations to the dual-phase-lag or three-phase-lag

theories of heat conduction of the form:

a0u+ a1u
(1) + a2u

(2) + · · ·+ anu
(n) = b0Δu+ b1Δu(1) + · · ·+ bmΔu(m). (2.1)

where a0, . . . , an, b0, . . . , bm are constants such that an > 0, bm > 0. As explained above,

we here will restrict our attention to the case when n−m = 1, 2. We point out that the

existence of solutions can be obtained using semigroup theory, see [1, 37], and, hence, we

will assume the existence of solutions as well as the necessary regularity required in our

calculations.

In addition to the differential equation (2.1), we have the initial conditions

u(x, 0) = u(1)(x, 0) = · · · = u(n−1)(x, 0) = 0, x ∈ R, (2.2)

and the boundary conditions

u(x1, x2, x3, t) = 0, (x2, x3) ∈ ∂D, t ≥ 0, (2.3)

u(0, x2, x3, t) = f(x2, x3, t), (x2, x3) ∈ D, t ≥ 0. (2.4)

To assure the compatibility, we naturally assume

f(x2, x3, t) = 0, (x2, x3) ∈ ∂D, t ≥ 0.

In view of the usual axioms in thermomechanics, it is natural to assume that the ther-

mal conductivity k is positive and that the delay parameters are always positive. Thus,

for the Taylor approximations to the model proposed by Tzou, all parameters arising in

the differential equation (2.1) are positive. However we do not know any thermomechan-

ical reason to guarantee a priori that the parameter k∗ is positive2. Thus, it is worth

covering the case where this parameter can be negative and in this sense we allow that

the sign of the parameters ai (i = 1 . . . n − 1) and bj (j = 1 . . .m − 1) may be zero or

negative, which has not been considered before. But our results are new even in the case

that all the coefficients are positive.

An important tool in this paper will be the following result (see the appendix of [18]

for a proof), the exponentially weighted Poincaré inequality:

2We should recall that the stability of solutions in type II and III thermoelastodynamics is related to

the positivity of this parameter.
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Assume that f : [0, t]→ R is differentiable and satisfies f(0) = 0. Then the following

inequality

∫ t

0

exp(−2ωs)f 2(s) ds ≤ 4t2

π2 + 4t2ω2

∫ t

0

exp(−2ωs) (f (1)(s)
)2

ds, (2.5)

holds, for every ω > 0. We note that ϕ(t) =
4t2

π2 + 4t2ω2
is a growing function, hence

∫ t

0

exp(−2ωs)f 2(s) ds ≤ ω−2

∫ t

0

exp(−2ωs) (f (1)(s)
)2

ds. (2.6)

As a consequence, we obtain for n > k+1 and for f satisfying f (k)(0) = · · · = f (n−1)(0) =

0, that the estimate

∫ t

0

exp(−2ωs)|f (k)(s)|2 ds ≤ ω−2(n−k−1)

∫ t

0

exp(−2ωs)|f (n−1)(s)|2ds, (2.7)

holds. These inequalities will allow us to deal with lower-order time derivatives in a

comparison with higher-order terms.

3 Case n−m = 2

In this section we analyze the case when n = m+2 with bm > 0 and am+2 > 0. However,

we do not impose conditions on the sign of the other parameters.

The function, the properties of which will describe the spatial behavior, is given, for

z ≥ 0, t ≥ 0, by

Fω(z, t) :=

−
∫ t

0

∫ τ

0

∫
D(z)

exp(−2ωs)
(
b0u,1 + b1u

(1)
,1 + · · ·+ bmu

(m)
,1

)
u(m+1)(a, s)dadsdτ, (3.1)

where ω is a positive constant to be selected later. By u,1 the derivative with respect

to the first variable (x1) is denoted, and D(z) := {z} × D. It is worth noting that the

function Fω is inspired by the functions usually considered for hyperbolic problems [6, 13].

However, in order to control the low time derivatives by means of the high time derivatives

we need to consider an extra integration with respect to the time.

As we shall see later, Fω is non-negative, decreases with respect to z and converges to

zero, describing the asymptotical behavior of u and its time derivatives as z →∞.
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Using the divergence theorem we see that

Fω(z + h, t)− Fω(z, t)

=− 1

2

∫ t

0

∫ z+h

z

∫
D

exp(−2ωτ) [am+2|u(m+1)|2 + bm|∇u(m)|2] (v, τ)dvdτ
−

∫ t

0

∫ τ

0

∫ z+h

z

∫
D

exp(−2ωs) [P + ω(am+2|u(m+1)|2 + bm|∇u(m)|2)] (v, s)dv dsdτ,
(3.2)

where

P := (b0∇u+ · · ·+ bm−1∇u(m−1))∇u(m+1) + (a0u+ · · ·+ am+1u
(m+1))u(m+1). (3.3)

For k = 0, . . . ,m− 1, the following relation

exp(−2ωs)bk∇u(k)∇u(m+1) =
d

ds

(
exp(−2ωs)bk∇u(k)∇u(m)

)
(3.4)

− exp(−2ωs)bk∇u(k+1)∇u(m) + 2ω exp(−2ωs)bk∇u(k)∇u(m),

is satisfied. So we can write

Fω(z + h, t)− Fω(z, t)

= −1

2

∫ t

0

∫ z+h

z

∫
D

exp(−2ωτ) [am+2|u(m+1)|2 + bm|∇u(m)|2] (x, τ)dadx1dτ

−
∫ t

0

∫ z+h

z

∫
D

exp(−2ωs) [b0∇u∇u(m) + · · ·+ bm−1∇u(m−1)∇u(m)
]
(x, τ)dadx1dτ

−
∫ t

0

∫ τ

0

∫ z+h

z

∫
D

exp(−2ωs)ω [
am+2|u(m+1)|2 + bm|∇u(m)|2] (x, τ)dadx1dsdτ

− 2ω

∫ t

0

∫ τ

0

∫ z+h

z

∫
D

exp(−2ωs)[b0∇u∇u(m) + . . .

+ bm−1∇u(m−1)∇u(m)](x, τ)dadx1dsdτ

+

∫ t

0

∫ τ

0

∫ z+h

z

∫
D

exp(−2ωs)[b0∇u(1)∇u(m) + · · ·+ bm−1∇u(m)∇u(m)]dadx1dsdτ

−
∫ t

0

∫ τ

0

∫ z+h

z

∫
D

exp(−2ωs)[a0uu(m+1) + · · ·+ am+1u
(m+1)u(m+1)](x, τ)dadx1dsdτ.

(3.5)
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Thus, we also have

∂Fω

∂z
(z, t) = −1

2

∫ t

0

∫
D

exp(−2ωτ) [am+2|u(m+1)|2 + bm|∇u(m)|2] (z, a, τ)dadτ
−

∫ t

0

∫
D

exp(−2ωτ) [b0∇u∇u(m) + · · ·+ bm−1∇u(m−1)∇u(m)
]
(z, a, τ)dadτ

−
∫ t

0

∫ τ

0

∫
D

exp(−2ωs)ω [
am+2|u(m+1)|2 + bm|∇u(m)|2] (z, a, s)da dsdτ

− 2ω

∫ t

0

∫ τ

0

∫
D

exp(−2ωs)[b0∇u∇u(m) + · · ·+ bm−1∇u(m−1)∇u(m)](z, a, s)dadsdτ

+

∫ t

0

∫ τ

0

∫
D

exp(−2ωs)[b0∇u(1)∇u(m) + · · ·+ bm−1∇u(m)∇u(m)](z, a, s)dadsdτ

−
∫ t

0

∫ τ

0

∫
D

exp(−2ωs)[a0uu(m+1) + · · ·+ am+1u
(m+1)u(m+1)](z, a, s)dadsdτ.

(3.6)

Now we shall demonstrate that for sufficiently large ω the function ∂Fω/∂z is non-

negative. We note that

|
∫ t

0

∫
D

exp(−2ωτ)bk∇u(k)∇u(m)(z, a, τ)dadτ | ≤ (3.7)

|bk|
(∫ t

0

∫
D

exp(−2ωτ)∇u(k)∇u(k)dadτ

)1/2 (∫ t

0

∫
D

exp(−2ωτ)∇u(m)∇u(m)(z, a, τ)dadτ

)1/2

≤ |bk|b−1
m ωk−m

∫ t

0

∫
D

exp(−2ωs)bm∇u(m)∇u(m)(z, a, τ)dadτ,

for k = 0 . . .m− 1. In a similar way

|
∫ t

0

∫ τ

0

∫
D

exp(−2ωs)bk∇u(k)∇u(m)(z, a, s)dadsdτ | (3.8)

≤ |bk|b−1
m ωk−m

∫ t

0

∫ τ

0

∫
D

exp(−2ωs)bm∇u(m)∇u(m)(z, a, s)dadsdτ,

for k = 0 · · · − 1. We also have

|
∫ t

0

∫ τ

0

∫
D

exp(−2ωs)bk∇u(k+1)∇u(m)(z, a, s)dadsdτ | (3.9)

≤ |bk|b−1
m ωk−m+1

∫ t

0

∫ τ

0

∫
D

exp(−2ωs)bm∇u(m)∇u(m)(z, a, s)dadsdτ,

for k = 0 . . .m− 1, and

|
∫ t

0

∫ τ

0

∫
D

exp(−2ωs)aku(k)u(m+1)dadsdτ | (3.10)
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≤ |ak|a−1
m+2ω

k−m+1

∫ t

0

∫ τ

0

∫
D

exp(−2ωs)am+2u
(m+1)u(m+1)(z, a, s)dadsdτ,

for k = 0 . . .m+ 1.

We obtain that there exist three polynomials P1, P2, P3 depending on one real variable

with Pi(0) = 0, i = 1, 2, 3, such that

∂Fω

∂z
(z, t) ≤ −1

2

∫ t

0

∫
D

exp(−2ωτ) [am+2|u(m+1)|2 + bm(1− P1(ω
−1))|∇u(m)|2] (z, a, τ)dadτ

−
∫ t

0

∫ τ

0

∫
D

exp(−2ωs)ω [
am+2(1− P2(ω

−1))|u(m+1)|2

+bm(1− P3(ω
−1))|∇u(m)|2] (z, a, s)dadsdτ.

(3.11)

Since Pi(0) = 0, we can select ω large enough to guarantee that the inequality

∂Fω

∂z
(z, t) ≤ −1

2

∫ t

0

∫
D

exp(−2ωτ) [am+2|u(m+1)|2 + (bm − ε)|∇u(m)|2] (z, a, τ)dadτ
−

∫ t

0

∫ τ

0

∫
D

exp(−2ωs)ω [
am+2(1− ε)|u(m+1)|2 + bm(1− ε)|∇u(m)|2] (z, a, τ)da dsdτ

(3.12)

holds, where we can choose a positive ε as small as we want, provided ω is chosen large

enough. Thus
∂Fω

∂z
(z, t) ≤ 0, (3.13)

i.e, Fω(z, t) is decreasing in z.

Our next step is to evaluate the time derivative of Fω in terms of the spatial derivative.

We have that

∂Fω

∂t
(z, t) = −

∫ t

0

∫
D(z)

exp(−2ωs)
(
b0u,1 + b1u

(1)
,1 + · · ·+ bmu

(m)
,1

)
u(m+1)(a, s)dads.

(3.14)

Noting that

|
∫ t

0

∫
D

bk exp(−2ωs)u(k)
,i u(m+1)(a, s)dads| ≤ (3.15)

≤ Ckω
k−m

∫ t

0

∫
D

exp(−2ωs)((bm − ε)∇u(m)∇u(m) + am+2u
(m+1)u(m+1))(a, s)dads,

for k = 0 . . .m, where

Ck :=
1

2
|bk|(am+2(bm − ε))−1/2.

It follows

|∂Fω

∂t
| ≤ −Ωω

∂Fω

∂z
, (3.16)
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where

Ωω := 2
m∑
k=0

Ckω
(k−m)/2. (3.17)

This inequality implies that

∂Fω

∂t
+ Ωω

∂Fω

∂z
≤ 0, (3.18)

and
∂Fω

∂t
− Ωω

∂Fω

∂z
≥ 0. (3.19)

For arbitrary 0 ≤ z∗ ≤ z, and h : [0,Ω−1
ω (z − z∗)] → R

2, r �→ (Ωωr + z∗, r) we conclude

from (3.18) that
d

dr
Fω(h(r)) ≤ 0,

hence

Fω(z,Ω
−1
ω (z − z∗)) ≤ 0 (3.20)

Similarly, we obtain from (3.19)

Fω(z,Ω
−1
ω (z∗∗ − z)) ≥ 0, (3.21)

for arbitrary z∗∗ ≥ z.

Fixing t, we conclude that when z increases we can find z∗ = z − Ωωt ≥ 0 and

z∗ = z + Ωωt such that f

0 = Fω(z
∗, 0) ≤ F (z, t) ≤ Fω(z

∗∗, 0) = 0.

These inequalities imply that, for each finite time t,

lim
z→∞

Fω(z, t) = 0, (3.22)

expressing the next description of the asymptotic behavior in the spirit of Saint-Venant’s

principle.
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As a corollary, taking the limit h→∞ in (3.5), we obtain

Fω(z, t) =
1

2

∫ t

0

∫
R(z)

exp(−2ωτ) [am+2|u(m+1)|2 + bm|∇u(m)|2] (v, τ)dvdτ
+

∫ t

0

∫
R(z)

exp(−2ωτ) [b0∇u(0)∇u(m) + · · ·+ bm−1∇u(m−1)∇u(m)
]
(v, τ)dvdτ

+

∫ t

0

∫ τ

0

∫
R(z)

exp(−2ωs)ω [
am+2|u(m+1)|2 + bm|∇u(m)|2] (v, s)dv dsdτ

+ 2ω

∫ t

0

∫ τ

0

∫
R(z)

exp(−2ωs)[b0∇u∇u(m) + · · ·+ bm−1∇u(m−1)∇u(m)](v, s)dvdsdτ

−
∫ t

0

∫ τ

0

∫
R(z)

exp(−2ωs)[b0∇u(1)∇u(m) + · · ·+ bm−1∇u(m)∇u(m)](v, s)dvdsdτ

+

∫ t

0

∫ τ

0

∫
R(z)

exp(−2ωs)[a0uu(m+1) + · · ·+ am+1u
(m+1)u(m+1)](v, s)dvdsdτ,

(3.23)

where R(z) := [z,∞)×D (R = R(0)).

Now the inequality (3.18) implies that solutions are decreasing along the lines of slope

Ω−1
ω . Thus we have that

Fω(z, t) ≤ Fω(z
∗, t∗), (3.24)

where and z ≥ z∗ and t are related by t− t∗ = Ω−1
ω (z − z∗). In a similar way, from (3.19)

we get

Fω(z, t) ≥ Fω(z
∗∗, t∗∗), (3.25)

for t− t∗∗ = Ω−1
ω (z∗∗− z), where z ≤ z∗∗. If we consider two points (z, t) and (z∗, t∗) with

z ≥ z∗ such that |t− t∗| ≤ Ω−1
ω (z − z∗), we conclude

Fω(z, t) ≤ Fω(z
∗, t∗), (3.26)

for |t− t∗| ≤ Ω−1
ω (z − z∗). Thus, we have proved

Theorem 3.1. Let u be a solution of the initial-boundary-value problem (2.1)-(2.3) when

n = m + 2. Then the function Fω(z, t) defined in (3.23) (which is a measure on the

solutions for ω sufficiently large) satisfies the inequality (3.26) whenever |t−t∗| ≤ Ω−1
ω (z−

z∗) and z ≥ z∗.

Moreover, we can take z∗∗ ≥ z arbitrary in (3.21), we conclude the non-negativity of

Fω,

Fω(z, t) ≥ 0

for any z ≥ 0, t ≥ 0. On the other hand, we have from (3.20) for 0 ≤ t ≤ z
Ωω

Fω(z, t) ≤ 0.
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This implies that for 0 ≤ t ≤ z
Ωω

Fω(z, t) = 0. (3.27)

Hence we obtain for all z ≥ 0 and 0 ≤ t ≤ z
Ωω

,

0 =
∂Fω

∂z
(z, t) = 0

which implies, using (3.12), (3.13) and the fact that the initial values for u vanish,

u(x1, x2, x3, t) = 0 if 0 ≤ t ≤ x1

Ωω

. (3.28)

This is a domain of influence result. Defining

Ω∞ := lim
ω→∞

Ωω,

we observe that Ωω converges to Ω∞ from above, hence we conclude

u(x1, x2, x3, t) = 0 if 0 ≤ t <
x1

Ω∞
. (3.29)

If one defines the measure

Fω(z, t) =

∫ t

0

Fω(z, r)dr, (3.30)

we get from (3.27) for Ωωt ≥ z

Fω(z, t) =

∫ t

Ω−1
ω z

Fω(z, r)dr.

Now, we set (see [3]) r := (1− z/(Ωωt))s+ z/Ωω and obtain

Fω(z, t) =

(
1− z

Ωωt

)∫ t

0

Fω

(
z,

(
1− z

Ωωt

)
s+

z

Ωω

)
ds.

Since we know from Theorem 3.1 that

Fω

(
z,

(
1− z

Ωωt

)
s+

z

Ωω

)
≤ Fω(0, s),

we conclude

Fω(z, t) ≤
(
1− z

Ωωt

)∫ t

0

Fω(0, r)dr =

(
1− z

Ωωt

)
Fω(0, t).

Theorem 3.2. Let u be a solution of the initial-boundary value problem (2.1)-(2.3) with

n = m + 2 and ω sufficiently large to guarantee that the function defined in (3.22) is a

measure (non-negative) on the solutions. Then

u(x, t) = 0 if Ω∞t ≤ x1, (3.31)

Fω(z, t) ≤
(
1− z

Ωωt

)
Fω(0, t) if Ωωt ≥ z. (3.32)

An upper bound for the amplitude term Fω(0, t) can be obtained in terms of the

boundary conditions, but we do not consider this question here.
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4 Case n−m = 1

In this section we analyze the case when n = m+1, with bm > 0 and am+1 > 0. However,

as in the previous section, we do not impose conditions on the sign of the other parameters.

In this case the analysis starts by considering the function

Gω(z, t) = −
∫ t

0

∫
D(z)

exp(−2ωs)
(
b0u,1 + b1u

(1)
,1 + · · ·+ bmu

(m)
,1

)
u(m)(a, s)dads, (4.1)

where ω is a positive constant to be chosen later. This function is the natural counterpart

to the ones used for parabolic linear equations [15].

Using the divergence theorem we see that

Gω(z + h, t)−Gω(z, t) = −1

2
exp(−2ωt)

∫ z+h

z

∫
D

am+1|u(m)|2(v, t)dv

−
∫ t

0

∫ z+h

z

∫
D

exp(−2ωs) [Q+ ωam+1|u(m)|2 + bm|∇u(m)|2)] (v, s)dvds,
(4.2)

where

Q := (b0∇u+b1∇u(1)+· · ·+bm−1∇u(m−1))∇u(m)+(a0u+a1u
(1)+· · ·+amu

(m))u(m). (4.3)

Thus, we get

∂Gω

∂z
(z, t) = −1

2

∫
D

exp(−2ωt) [am+1|u(m)|2] (z, a, t)da
−

∫ t

0

∫
D

exp(−2ωs) [Q+ ωam+1|u(m)|2 + bm|∇u(m)|2)] (z, a, s)da ds.
(4.4)

To control the function Q we can use a similar argument to the one proposed in the

previous section. If we consider the exponentially weighted Poincaré inequality, we can

obtain the existence of two polynomials Q1 and Q2 satisfying Qi(0) = 0, i = 1, 2 such

that

∂Gω

∂z
(z, t) ≤ −1

2

∫
D

exp(−2ωt) [am+1|u(m)|2] (z, a, t)da
−

∫ t

0

∫
D

exp(−2ωs) [ωam+1(1−Q1(ω
−1))|u(m)|2 + (bm −Q2(ω

−1))|∇u(m)|2)] (z, a, s)da ds.
(4.5)

In particular, we note that, for ω large enough, the following inequality

∂Gω

∂z
≤ −1

2

∫
D

exp(−2ωt) [am+1|u(m)|2] (z, a, t)da
−1

2

∫ t

0

∫
D

exp(−2ωs) [ωam+1|u(m)|2 + bm|∇u(m)|2)] (z, a, s)da ds
≤ 0 (4.6)
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holds.

Our next step is to evaluate the absolute value of Gω in terms of the spatial derivative.

With a sufficiently small ε (obtained for sufficiently large ω as in the previous section),

we can obtain positive constants

Dk := |bk|(2(bm − ε)λ1)
−1/2,

Ω∗
ω := 2

m∑
k=0

Dkω
(k−m)/2, (4.7)

such that

|Gω| ≤ −Ω∗
ω

∂Gω

∂z
. (4.8)

Here, λ1 is the first eigenvalue of the negative Laplace operator −Δ with Dirichlet bound-

ary conditions (clamped membrane) in the domain D. It arises in estimating u(m) by

∇u(m). This inequality is well known in the study of spatial estimates. It implies that

Gω ≤ −Ω∗
ω

∂Gω

∂z
(4.9)

and

−Gω ≤ −Ω∗
ω

∂Gω

∂z
. (4.10)

For fixed t, we distinguish two cases:

(I) If there exists z0 ≥ 0 such that Gω(z0, t) < 0, it follows that Gω(z, t) < 0 for every

z ≥ z0. We conclude that

−Gω(z, t) ≥ −Gω(z0, t) exp

(
z − z0
Ω∗

ω

)
, z ≥ z0. (4.11)

(II) Otherwise we see that Gω(z, t) ≥ 0 for every z ≥ 0. It then follows the spatial decay

estimate

Gω(z, t) ≤ Gω(0, t) exp

(
− z

Ω∗
ω

)
, z ≥ 0. (4.12)

We can summarize this result in the following way:

Theorem 4.1. Let u be a solution of the initial-boundary-value problem (2.1)-(2.3) with

n = m+ 1. Then either the function −Gω(z, t) satisfies the asymptotic condition (4.11),

or the function

0 ≤ Gω(z, t) =
1

2

∫
R(z)

exp(−2ωt) [am+1|u(m)|2] (v, t)dv
+

∫ t

0

∫
R(z)

exp(−2ωs) [Q+ ωam+1|u(m)|2 + bm|∇u(m)|2)] (v, s)dv ds,
(4.13)

satisfies the decay estimate (4.12).
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It is worth noting that when ω increases the parameter (Ω∗
ω)

−1 tends to (2bm/λ1)
1/2.

In the remaining of this section, we will describe how to obtain an upper bound for

the amplitude term Gω(0, t) in terms of the boundary data.

From now on, we restrict our attention to solutions satisfying the decay estimate (4.12)

where ω is large enough to guarantee that

Gω(z, t) ≥ 1

2

∫
R(z)

exp(−2ωt)am+1|u(m)|2(v, t)dv

+
1

2

∫ t

0

∫
R(z)

exp(−2ωs) [ωam+1|u(m)|2 + bm|∇u(m)|2)] (v, s)dv ds.
(4.14)

We shall denote by ξ = ξ(x, t) a function which tends uniformly to zero, rapidly, as

x1 → ∞, and satisfies the same boundary conditions as u. Below, we shall, typically,

choose

ξ(x, t) := exp(−dx1)f(x2, x3, t),

with a positive constant d.

Then we have

Gω(0, t) = −
∫ t

0

∫
D(0)

exp(−2ωs)(b0u,1 + · · ·+ bmu
(m)
,1 )ξ(m)(a, s)dads. (4.15)

After the use of the boundary, asymptotic and the initial conditions, we see that

Gω(0, t) =

∫ t

0

∫
R

exp(−2ωs) [b0∇u+ · · ·+ bm∇u(m)
]∇ξ(m)(v, s)dvds

+

∫ t

0

∫
R

exp(−2ωs) [a0u+ · · ·+ am+1u
(m+1)

]
ξ(m)(v, s)dv ds.

(4.16)

As

exp(−2ωs)u(m+1)ξ(m) =
d

ds
(exp(−2ωs)u(m)ξ(m)) (4.17)

+2ω exp(−2ωs)u(m)ξ(m) − exp(−2ωs)u(m+1)ξ(m+1),

we obtain

Gω(0, t) = I1 + I2 + I3 + I4 + I5, (4.18)

where

I1 :=

∫ t

0

∫
R

exp(−2ωs) [b0∇u+ · · ·+ bm∇u(m)
]∇ξ(m)(v, s)dvds, (4.19)

I2 :=

∫ t

0

∫
R

exp(−2ωs) [a0u+ · · ·+ amu
(m)

]
ξ(m)(v, s)dv ds, (4.20)

I3 := exp(−2ωt)
∫
R

am+1u
(m)ξ(m)(v, t)dv, (4.21)

14



I4 := 2ω

∫ t

0

∫
R

exp(−2ωs)am+1u
(m)ξ(m)(v, s)dv ds, (4.22)

I5 := −
∫ t

0

∫
R

exp(−2ωs)am+1u
(m)ξ(m+1)(v, s)dv ds. (4.23)

By choosing ω large enough, we can take εi = 1 . . . 5 as small as we want and such that

I1 ≤ ε1

∫ t

0

∫
R

exp(−2ωs)bm|∇u(m)|2(v, s)dvds+ C∗
1

∫ t

0

∫
R

exp(−2ωs)|∇ξ(m)|2(v, s)dvds,
(4.24)

I2 ≤ ε2

∫ t

0

∫
R

exp(−2ωs)am+1|u(m)|2(v, s)dvds+ C∗
2

∫ t

0

∫
R

exp(−2ωs)|ξ(m)|2(v, s)dvds,
(4.25)

I3 ≤ ε3 exp(−2ωt)
∫
R

am+1|u(m)|2dv + C∗
3 exp(−2ωt)

∫
R

|ξ(m)|2(v, t)dv, (4.26)

I4 ≤ ε4

∫ t

0

∫
R

exp(−2ωs)am+1|u(m)|2(v, s)dvds+ C∗
4

∫ t

0

∫
R

exp(−2ωs)|ξ(m)|2(v, s)dvds,
(4.27)

I5 ≤ ε5

∫ t

0

∫
R

exp(−2ωs)am+1|u(m)|2(v, s)dvds+ C∗
5

∫ t

0

∫
R

exp(−2ωs)|ξ(m+1)|2(v, s)dvds.
(4.28)

Here C∗
i , i = 1 . . . 5 are constants which can be computed in terms of the data of the

problem, ω and εi. It then follows that

Gω(0, t) ≤ 2(ε1 + · · ·+ ε5)Gω(0, t) + C∗
1J1 + (C∗

2 + C∗
4)J2 + C∗

3J3 + C∗
5J5, (4.29)

where

J1 :=

∫ t

0

∫
R

exp(−2ωs)|∇ξ(m)|2(v, s)dvds (4.30)

J2 :=

∫ t

0

∫
R

exp(−2ωs)|ξ(m)|2(v, s)dvds, (4.31)

J3 := exp(−2ωt)
∫
R

|ξ(m)|2(v, t)dv, (4.32)

J5 :=

∫ t

0

∫
R

exp(−2ωs)|ξ(m+1)|2(v, s)dvds. (4.33)

If we select εi such that ε1 + · · ·+ ε5 < 1/4, we obtain that

Gω(0, t) ≤ 2(C∗
1J1 + (C∗

2 + C∗
4)J2 + C∗

3J3 + C∗
5J5). (4.34)

To obtain a precise upper bound for the Ji, we recall the choice of the function ξ, and we

note that

ξ(m) = exp(−dx1)f
(m)(x2, x3, t), ξ(m+1) = exp(−dx1)f

(m+1)(x2, x3, t), (4.35)
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and

∇ξ(m) = exp(−dx1)(−df (m)(x2, x3, t), f
(m)
,2 (x2, x3, t), f

(m)
,3 (x2, x3, t)). (4.36)

We conclude

J1 ≤
∫ t

0

∫
D(0)

(
d

2
|f (m)|2 + 1

2d
(|f (m)

,3 |2 + |f (m)
,3 |2)

)
(a, s)dads, (4.37)

J2 ≤ 1

2d

∫ t

0

∫
D(0)

|f (m)|2(a, s)dads, J3 ≤ 1

2d

∫
D(0)

|f (m)|2(a, t)da, (4.38)

J5 ≤ 1

2d

∫ t

0

∫
D(0)

|f (m+1)|2(a, s)dads. (4.39)

From the previous inequalities we finally obtain

Gω(0, t) ≤ (dC∗
1 +

C∗
2 + C∗

4

d
)

∫ t

0

∫
D(0)

|f (m)|2(a, s)dads

+
C∗

1

d

∫ t

0

∫
D(0)

(
|f (m)

,3 |2 + |f (m)
,3 |2)

)
(a, s)dads

+
C∗

3

d

∫
D(0)

|f (m)|2(a, t)da+ C∗
5

d

∫ t

0

∫
D(0)

|f (m+1)|2(a, s)dads. (4.40)

We remark that one could optimize the right-hand side by taking a suitable value of the

parameter d, but it does not seem to be an easy task.
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Ecuaciones en Derivadas Parciales de la Termomecánica” submitted to the Spanish Min-

istry of Economy and Competitiveness.

References

[1] K. Borgmeyer, R. Quintanilla and R. Racke, Phase-lag heat conduction: decay rates for

limit problems and well-posedness. Konstanzer Schriften Math. 313(2013).

[2] D. S. Chandrasekharaiah, Hyperbolic thermoelasticity: A review of recent literature, Appl.

Mech. Rev., 51(1998), 705-729.

[3] S. Chirita and R. Quintanilla, On Saint-Venant’s Principle in linear elastodynamics, J.

Elasticity 42(1996), 201-215.

[4] M. Dreher, R. Quintanilla and R. Racke, Ill-posed problems in thermomechanics, Appl.

Math. Letters 22(2009), 1374-1379.

[5] J.N. Flavin, R.J. Knops and L.E. Payne, Decay estimates for the constrained elastic

cylinder of variable cross-section, Quart. Appl. Math. 47(1989), 325–350.

16



[6] J.N. Flavin, R.J. Knops and L.E. Payne, Energy bounds in dynamical problems for a

semi-infinite elastic beam, in “Elasticity: Mathematical Methods and Applications” (eds.

G. Eason and R.W. Ogden), Chichester: Ellis Horwood, (1989), 101-111.

[7] A. E. Green and P. M. Naghdi, On undamped heat waves in an elastic solid, J. Thermal

Stresses 15(1992), 253-264.

[8] A. E. Green and P. M. Naghdi, Thermoelasticity without energy dissipation, J. Elasticity,

31(1993), 189-208.

[9] R. B. Hetnarski and J. Ignaczak, Generalized thermoelasticity, J. Thermal Stresses,

22(1999), 451-470.

[10] R. B. Hetnarski and J. Ignaczak, Nonclassical dynamical thermoelasticity, International

J. Solids Structures, 37(2000), 215-224.

[11] C.O. Horgan, L.E. Payne and L.T. Wheeler, Spatial decay estimates in transient heat

conduction, Quart. Appl. Math., 42(1984), 119-127.

[12] C.O. Horgan and R. Quintanilla, Spatial decay of transient end effects in functionally

graded heat conducting materials. Quart. Appl. Math., 59(2001), 529-542.

[13] C. O. Horgan and R. Quintanilla, Spatial behaviour of solutions of the dual-phase-lag heat

equation, Math. Methods Appl. Sci, 28(2005), 43-57.

[14] J. Ignaczak and M. Ostoja-Starzewski, Thermoelasticity with Finite Wave Speeds, Oxford:

Oxford Mathematical Monographs, (2010).

[15] J. K. Knowles, On the spatial decay of solutions of the heat equation, J. Appl. Math.

Phys. (ZAMP), 22(1971), 1050-1056.

[16] R.J. Knops and C. Lupoli, end effects for plane Stokes flow along a semi-infinte strip. J.

Appl. Math. Phys. (ZAMP), 48(1997) 905-920.

[17] J. Lee and J.C. Song, Spatial decay bounds in a linearized magnetohydrodynamics channel

flow, Communications Pure Appl. Anal., 12, 1439-12361(2013).

[18] M.C. Leseduarte and R. Quintanilla, Phragmén-Lindelöf alternative for an exact heat
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