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Abstract

This paper is concerned with well-posedness and energy decay rates to a class
of nonlinear viscoelastic Kirchhoff plates. The problem corresponds to a class of
fourth order viscoelastic equations with a non-locally Lipschitz perturbation of p-
Laplacian type. The only damping effect is given by the memory component. We
show that no additional damping is needed to obtain uniqueness in the presence of
rotational forces. Then, we show that the general rates of energy decay are similar
to ones given by the memory kernel, but generally not with the same speed, mainly
when we consider the nonlinear problem with large initial data.
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1 Introduction

This paper is motivated by models of Kirchhoff plates subject to a weak viscoelastic
damping

utt − σ∆utt + µ(0)∆2u+

∫ t

−∞
µ′(t− s)∆2u(s) ds = F , (1.1)
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where σ > 0 is the uniform plate thickness, the kernel µ > 0 corresponds to the viscoelastic
flexural rigidity, and F = F(x, t, u, ut, . . .) represents additional damping and forcing
terms. The unknown function u = u(x, t) represents the transverse displacement of
a plate filament with prescribed history u0(x, t), t ≤ 0. The derivation of the linear
mathematical model (1.1) with F = 0 is given in Lagnese [16] and Lagnese and Lions
[17], by assuming viscoelastic stress-strain laws on an isotropic material occupying a region
of R3 and constant Poisson’s ratio.

Lagnese [16, Chapter 6] studied the behavior of the energy associated to the linear
model (1.1) in a bounded domain Ω ⊂ R2, by introducing boundary feedback laws which
induce further dissipation in the system, geometrical descriptions of ∂Ω, and also

µ ∈ C2[0,∞), µ(t) > 0, µ′(t) < 0, µ′′(t) ≥ 0, µ(∞) > 0,

see also Lagnese [15]. Muñoz Rivera and Naso [26] considered an abstract model which
encompasses equation (1.1) in the cases F = −ut or else F = ∆ut. They showed that the
associated semigroup is not exponential stable in the first case (weak damping) whereas
in the second case (strong damping) the corresponding semigroup is exponential stable.
We note that in both cases F introduces an additional dissipation to the system.

More recently, Jorge Silva and Ma [13, 14] investigated the asymptotic behavior of a
N -dimensional system like (1.1) with σ = 0 (without rotational inertia), by considering
F = ∆pu−f(u) +h(x) + ∆ut, where ∆pu := div(|∇u|p−2∇u), p ≥ 2. Then (1.1) becomes
to

utt + µ(0)∆2u−∆pu+ f(u) +

∫ t

−∞
µ′(t− s)∆2u(s) ds−∆ut = h(x),

In such case the strong damping plays an important role to obtain global well-posedness
(mainly uniqueness) in higher dimensions N ≥ 3 due to the presence of the p-Laplacian
term ∆pu.

If we take u0 = 0 for t ≤ 0, µ(0) = 1 and g(t) = −µ′(t), then (1.1) can be rewritten
as follows,

utt − σ∆utt + ∆2u−
∫ t

0

g(t− s)∆2u(s) ds = F . (1.2)

Barreto et al. [3] investigated problem (1.2) in a bounded domain Ω ⊂ R2 with mixed
boundary condition, suitable geometrical hypotheses on ∂Ω, and F = 0. They established
that the energy decays to zero with the same rate of the kernel g such as exponential and
polynomial decay. To do so in the second case they made assumptions on g, g′ and g′′

which means that g ≈ (1+ t)−p for p > 2. Then they obtained the same decay rate for the
energy. However, their approach can not be applied to prove similar results for 1 < p ≤ 2.

Concerning N -dimensional systems which cover the system (1.2) with σ = 0, both
Cavalcanti et al. [5] and Andrade et al. [1] investigated the global existence, uniqueness
and stabilization of energy. By taking a bounded or unbounded open set Ω and F =
−M

(∫
Ω
|∇u| dx

)
ut as a kind of non-degenerated weak damping, where M(s) > m0 > 0

for all s ≥ 0, the authors showed in [5] that the energy goes to zero exponentially provided
that g goes to zero at the same form. In [1] the authors studied the same concepts by
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considering a bounded domain and F = ∆pu − f(u) + ∆ut, but replacing the fourth

order memory term in (1.2) by a weaker memory of the form
∫ t

0
g(t − s)∆u(s) ds. It is

worth noting that in both cases, respectively, the weak or strong damping constitutes an
important role to obtain uniqueness and energy decay.

If we consider (1.2) with the Laplace operator instead of the bi-harmonic one we get
the model

utt − σ∆utt −∆u+

∫ t

0

g(t− s)∆u(s) ds = F , (1.3)

which corresponds to a viscoelastic wave equation of second order. Equation (1.3) and
related quasilinear problems with |ut|ρutt instead, ρ > 0, have been extensively studied
by many researches with possible external forces F like source f1(u) and damping f2(ut).
See for instance [4, 6, 10, 11, 12, 19, 20, 22, 23, 24, 30, 31, 32] and the references therein.

In 2008 Messaoudi [22, 23] established a general decay of the energy solution to a
viscoelastic equation corresponding to (1.3) with σ = 0, by taking F = 0 and F =
|u|γu, γ > 0. More precisely, he considered the following decay condition on the memory
kernel

g′(t) ≤ −ξ(t)g(t), ∀ t > 0, (1.4)

under proper conditions on ξ(t) > 0, and proved general decay of energy such as

E(t) ≤ c0 e
−c1

∫ t
0 ξ(s) ds, ∀ t ≥ 0, (1.5)

for some c0, c1 > 0 depending on the weak initial data. Ever since several authors have
used this condition to obtain arbitrary decay of energy for problems related to (1.3). See
for instance the papers by Han and Wang [10, 11], Liu [19], Liu and Sun [21], Park and
Park [30]. It is worth pointing that in all papers mentioned above when authors deal with
nonlinear systems then c1 is a proportional constant to E(0) (denoted here by c1 ∼ E(0)),
but it is not specified how this occurs. More recently, in [12], the author has illustrated
that (1.5) provides decay rates which are faster than exponential one in the linear case.
See also Messaoudi et al. [18, 25], Tatar [31] and Wu [32] for other kinds of interesting
arbitrary decay rates in viscoelastic wave models related to (1.3).

There are also previous and recent works which encompass viscoelastic wave equations
in a history framework and only employ memory dissipation to treat asymptotic behavior
of solutions. We refer, for instance, the papers by Dafermos [7], Giorgi et al. [9], Muñoz
Rivera and Salvatierra [27], and Pata [28, 29], Fabrizio et al. [8] and Araújo [2].

Our main goal in the present paper is to discuss the well-posedness and the asymptotic
behavior of energy to the following nonlinear viscoelastic Kirchhoff plate equation

utt − σ∆utt + ∆2u− divF (∇u)−
∫ t

0

g(t− s)∆2u(s) ds = 0 in Ω× R+, (1.6)

with simply supported boundary condition

u = ∆u = 0 on ∂Ω× R+, (1.7)
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and initial conditions

u( · , 0) = u0 and ut( · , 0) = u1 in Ω, (1.8)

where Ω is a bounded domain of RN with smooth boundary ∂Ω, σ ≥ 0, F : RN → RN is
a vector field and g : [0,∞)→ R+ is a real function. The hypotheses are given later.

Essentially, we consider the model (1.2) with F = divF (∇u) which constitutes a
nonlinear and non-locally Lipschitz perturbation. Our main results are Theorems 2.3, 2.8
and 2.10. Making a comparison with the above related papers on the viscoelastic plate
model (1.2) our main results yield the following improvements and contributions:

1. The only damping effect is caused by the memory term. Besides, our condition on
the kernel g like (1.4) is less restrictive than those used in [3, 26, 5, 1]. Nevertheless,
our general decay of energy (see (2.14) and (2.17)) generalizes all results on stability
obtained in [1, 3, 26, 5]. We also specify how the decay rate depends on the initial
data.

2. The p-Laplacian term ∆pu is considered as a particular case. We show that in the
presence of the rotational inertia term (σ > 0) the well-posedness of (1.6)-(1.8) is
achieved without strong damping term. Moreover, for σ ≥ 0 all results on stability
are shown by exploiting only the memory dissipation. No additional weak or strong
dissipation is necessary. Therefore our results improve those ones given in [1, 5, 13].

3. No further C2-smoothness is imposed on the relaxation function g as regarded e.g.
in [3, 5]. Moreover, the decay rate (1 + t)−κ holds for every κ > 0 when g has a
polynomial behavior. We note that the case 0 < κ ≤ 2 was not approached in [3].

4. The parameter σ is related to the uniform plate thickness and the results on stability
hold by moving σ ∈ [0,∞) uniformly. Further, there is no result by now which treats
the asymptotic behavior for plates with perturbation of p-Laplacian type just using
dissipation from the memory. We also exemplify other interesting types of decay
rates of energy beyond exponential and polynomial ones.

Remark 1.1. It is worth pointing out that the parameter σ changes the character of
the system (1.6) depending whether it is null or not. In the case of choosing σ > 0, the
term −σ∆utt acts as a regularizing term by allowing us to consider stronger solutions and
uniqueness (see Theorem 2.3). This is possible because the rotational inertia term gives
a way to control the nonlinear perturbation divF (∇u). On the other hand, if we consider
σ = 0 in (1.6) then we can also check the existence of weak solutions (see Theorem 2.10
(i)) but uniqueness and stronger solutions are not provided once the term divF (∇u) spoils
the estimates along with lack of regularity for ut. In spite of having two different systems
according to parameter σ all results on stability hold in both cases (see Theorems 2.8 and
2.10 (ii)). In the second case (when σ = 0) the stability is obtained first for approximate
solutions and then for weak solutions by taking lim inf on the approximate energy.

The rest of the paper is organized as follows. In Section 2 we fix some notations and
present our assumptions and main results. Section 3 is devoted to show that problem
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(1.6)-(1.8) is well posed. Section 4 is dedicated to the proof of the energy decay. Finally,
section 5 consists in an appendix where we first give some examples for different rates of
decay. Then we provide some properties and examples for the vector field F .

2 Assumptions and main results

We begin by introducing the following Hilbert spaces

V0 = L2(Ω), V1 = H1
0 (Ω), V2 = H2(Ω) ∩H1

0 (Ω),

and
V3 = {u ∈ H3(Ω) ∩H1

0 (Ω); ∆u ∈ H1
0 (Ω)},

with norms

‖u‖V0 = ‖u‖2, ‖u‖V1 = ‖∇u‖2, ‖u‖V2 = ‖∆u‖2, and ‖u‖V3 = ‖∇∆u‖2,

respectively. As usual, ‖ · ‖p means the Lp-norm as well as (·, ·) denotes either the L2-
inner product or else a duality pairing between a Banach space V and its dual V ′. The
constants λ0, λ1, λ2, λ > 0 represent the embedding constants

λ0‖u‖2
2 ≤ ‖∇u‖2

2, λ1‖u‖2
2 ≤ ‖∆u‖2

2, λ2‖∇u‖2
2 ≤ ‖∆u‖2

2, λ =
1

λ1

+
1

λ2

,

for u ∈ V1. We also consider the following phase spaces with their respective norms

H = V2 × V1 with ||(u, v)||2H = ||∆u||22 + ||∇v||22,
H1 = V3 × V2 with ||(u, v)||2H1

= ||∇∆u||22 + ||∆v||22,
W = V2 × V0 with ||(u, v)||2W = ||∆u||22 + ||v||22.

2.1 The problem with rotational inertia

Let us first consider (1.6) with σ > 0. Without loss of generality we can take σ = 1.
Setting I = [0, T ] with T > 0 arbitrary, weak solutions are defined as follows.

Given initial data (u0, u1) ∈ H, we call a function U := (u, ut) ∈ C(I,H) a weak
solution of the problem (1.6)-(1.8) on I if U(0) = (u0, u1) and, for every ω ∈ V2,

d

dt

[
(ut(t), ω) + (∇ut(t),∇ω)

]
+ (∆u(t),∆ω)

+ (F (∇u(t)),∇ω)−
∫ t

0

g(t− s)(∆u(s),∆ω) ds = 0 a.e. in I.

The energy corresponding to the problem with rotational inertia is defined as

E(t) =
1

2
‖ut(t)‖2

2 +
1

2
‖∇ut(t)‖2

2 +
h(t)

2
‖∆u(t)‖2

2 +
1

2
(g�∆u)(t) +

∫
Ω

f(∇u(t)) dx, (2.1)
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where h(t) is given below in (2.6) and

(g�w)(t) :=

∫ t

0

g(t− s)‖w(t)− w(s)‖2
2ds.

Now let us precise the hypotheses on g and F .

Assumption A1. The C1-function g : [0,∞)→ R+ satisfies

l := 1−
∫ ∞

0

g(s) ds > 0 and g′(t) ≤ 0, ∀ t ≥ 0. (2.2)

Assumption A2. F : RN → RN is a C1-vector field given by F = (F1, . . . , FN) such
that

|∇Fj(z)| ≤ kj(1 + |z|(pj−1)/2), ∀ z ∈ RN , (2.3)

where, for every j = 1, . . . , N, we consider kj > 0 and pj satisfying

pj ≥ 1 if N = 1, 2 and 1 ≤ pj ≤
N + 2

N − 2
if N ≥ 3. (2.4)

Moreover, F is a conservative vector field with F = ∇f , where f : RN → R is a real
valued function satisfying

−α0 −
αl

2
|z|2 ≤ f(z) ≤ F (z) · z +

αl

2
|z|2, ∀ z ∈ RN , (2.5)

with α0 ≥ 0 and α ∈ [0, λ2).

Remark 2.1. From the choice of l and α we have

h(t) := 1−
∫ t

0

g(s) ds ≥ l, t ≥ 0, and β := l

(
1− α

λ2

)
> 0. (2.6)

Also, applying (2.4) it follows from Sobolev embedding that

V2 ↪→ W
1,pj+1
0 (Ω), ∀ j = 1, . . . , N. (2.7)

Thereby, the constants µp1 , . . . , µpN > 0 represent the embedding constants for

‖∇u‖pj+1 ≤ µpj‖∆u‖2, j = 1, . . . , N.

Remark 2.2. Without loss of generality we can consider F (0) = 0. Indeed, if F (0) =
F0 6= 0, then we define G(z) = F (z) − F0 so that G satisfies G(0) = 0, |∇Gj(z)| =

|∇Fj(z)|, j = 1, . . . , N, and G(z) = ∇f̃(z), where f̃(z) = f(z) − F0 · z. Also, it is easy

to check that f̃ and G(z) satisfy (2.5) for some constants α̃0 ≥ 0, α̃ ∈ [0, λ2). Therefore,
G is a C1-conservative vector field satisfying (2.3)-(2.5). In the Section 5 we give some
examples of vector fields satisfying such properties.
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Our first two main results establish the Hadamard well-posedness of (1.6)-(1.8) with
respect to weak solutions, and a general decay rate of the energy.

Theorem 2.3 (Well-Posedness). Under Assumptions A1 and A2 we have:

(i) If (u0, u1) ∈ H1, then problem (1.6)-(1.8) has a stronger weak solution satisfying

u ∈ L∞loc(R+,V3), ut ∈ L∞loc(R+,V2), (I −∆)utt ∈ L∞loc(R+,V ′1). (2.8)

(ii) If (u0, u1) ∈ H, then problem (1.6)-(1.8) has a weak solution satisfying

u ∈ L∞loc(R+,V2), ut ∈ L∞loc(R+,V1), (I −∆)utt ∈ L∞loc(R+,V ′2). (2.9)

(iii) In both cases we have continuous dependence on initial data in H, that is, given
U0 = (u0, u1), V0 = (v0, v1) ∈ H, let us consider the corresponding weak solutions
U = (u, ut), V = (v, vt) of the problem (1.6)-(1.8). Then

‖U(t)− V (t)||H ≤ CT ||U0 − V0||H, ∀ t ∈ I, (2.10)

for some constant CT = C(‖U0‖H, ‖V0‖H, T ) > 0. In particular, problem (1.6)-(1.8)
has a unique weak solution.

Remark 2.4. The proof of existence is given by the Faedo-Galerkin method. We first
prove the existence of stronger (weak) solutions and then the existence of a weak solution
is given by density arguments. The uniqueness follows as a consequence of the continuous
dependence of stronger and weak solutions. The proofs are given in Section 3.

Lemma 2.5. Under the assumptions of Theorem 2.3 the energy E(t) satisfies

d

dt
E(t) =

1

2
(g′�∆u)(t)− g(t)

2
‖∆u(t)‖2

2, ∀ t > 0. (2.11)

Remark 2.6. From conditions (2.2) and (2.11) it follows that t 7→ E(t) is nonincreasing.
Since g(t) ≤ g(0), for each t ≥ 0, if we take g(0) = 0 then g, g′ ≡ 0 and Lemma 2.5 implies
that E(t) is constant That is, the system (1.6)-(1.8) is conservative. This motivates us to
define the following decay condition on the memory kernel g(t).

Assumption A3. g(0) > 0, and there exist a constant ξ0 ≥ 0 and a C1-function ξ :
[0,∞)→ R+ such that

g′(t) ≤ −ξ(t)g(t), ∀ t > 0, (2.12)

and

ξ(t) > 0, ξ′(t) ≤ 0,

∣∣∣∣ξ′(t)ξ(t)

∣∣∣∣ ≤ ξ0, ∀ t ≥ 0. (2.13)

Remark 2.7. The first two conditions in (2.13) allow us to conclude that

ξ(t) ≤ ξ(0) := ξ1 > 0, ∀ t ≥ 0.

Also, condition (2.12) implies that the memory kernel has the uniform decay

g(t) ≤ g(0)e−
∫ t
0 ξ(s) ds, ∀ t ≥ 0.
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Then our second main result is given by the following

Theorem 2.8. Under the assumptions of Theorem 2.3, let (u, ut) be the weak solution
of problem (1.6)-(1.8) with given initial data (u0, u1) ∈ H. If we additionally assume
Assumption A3 and α0 = 0 in (2.5), then

E(t) ≤ c e−γ
∫ t
0 ξ(s) ds, ∀ t ≥ 0, (2.14)

where c = 3E(0) eγ
∫ 1
0 ξ(s) ds > 0, and

γ ∼ k

1 + [E(0)]
p−1
2

with k > 0 and p =

 max
j=1,...,N

{pj} if E(0) ≥ 1,

min
j=1,...,N

{pj} if E(0) < 1.

Remark 2.9. Theorem 2.8 is proved in Section 4. Concerning to estimate (2.14) it is
worth point out two issues: (i) when every component of F = (F1, . . . , FN) is linear,
namely, when p1, . . . , pN = 1 in (2.3) and so p = 1, then the general estimate (2.14)
is similar to the decay of the memory kernel g and provides us several kinds of decay
according to the feature of ξ(t) independently of the size of the initial data; (ii) otherwise,
in the presence of the nonlinear perturbation F , then estimate (2.14) can be very slow for
large initial data even if the memory kernel g decays quickly. In the Section 5 we consider
some concrete examples for function ξ(t).

2.2 The problem without rotational inertia

Let us now consider (1.6) with σ = 0. Let us also take I = [0, T ] with T > 0.

Given initial data (u0, u1) ∈ W , we say a function U := (u, ut) ∈ C(I,W) is a weak
solution of (1.6)-(1.8) on I if U(0) = (u0, u1) and, for every ω ∈ V2,

d

dt
(ut(t), ω) + (∆u(t),∆ω) + (F (∇u(t)),∇ω)−

∫ t

0

g(t− s)(∆u(s),∆ω) ds = 0 a.e. in I.

Now the energy associated to the problem without rotational inertia is given by

E(t) =
1

2
‖ut(t)‖2

2 +
h(t)

2
‖∆u(t)‖2

2 +
1

2
(g�∆u)(t) +

∫
Ω

f(∇u(t)) dx. (2.15)

Our third main result is the following theorem.

Theorem 2.10. Under Assumptions A1 and A2, we have:

(i) If (u0, u1) ∈ W, then problem (1.6)-(1.8) has a weak solution in the class

u ∈ L∞loc(R+,V2), ut ∈ L∞loc(R+,V0), utt ∈ L∞loc(R+,V ′2). (2.16)

(ii) Besides, if Assumption A3 holds and α0 = 0 in (2.5), then E(t) also satisfies

E(t) ≤ c e−γ
∫ t
0 ξ(s) ds, ∀ t ≥ 0, (2.17)

where c > 0 and γ > 0 are given in terms of E(0) as in Theorem 2.8.
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Remark 2.11. To prove Theorem 2.10 (i) one also uses the Faedo-Galerkin method.
Only one a priori estimate is necessary to get a weak solution satisfying (2.16). Since we
do not have regularity for ut the estimate (2.17) is shown first for the approximate energy.
Then the proof of Theorem 2.10 (ii) will hold true by passing the approximate energy to
the limit. The details of the proof of Theorem 2.10 are very similar to those ones used in
the proofs of Theorem 2.3 and Theorem 2.8. Thus we omit them here.

3 Well-posedness

In this section we prove Theorem 2.3. We start with the following approximate problem

(untt(t), ωj) + (∇untt(t),∇ωj) + (∆un(t),∆ωj) (3.1)

+ (F (∇un(t)),∇ωj)−
∫ t

0

g(t− s)(∆un(s),∆ωj) ds = 0,

un(0) = un0 and unt (0) = un1 , (3.2)

for j = 1, . . . , n, which has a local solution

un(t) =
n∑
j=1

yjn(t)ωj ∈ [ω1, . . . , ωn],

on [0, tn), n ∈ N, given by ODE theory, where (ωj)j∈N is an orthonormal basis in V0 given
by eigenfunctions of ∆2 with boundary condition (1.7). The a priori estimates below imply
that the local solution can be extended to the interval [0, T ] and allow us to concluded
the existence of a weak solution.

Proof of Theorem 2.3 (i). Let us take regular initial data (u0, u1) ∈ H1 := V3 × V2.
Then we consider the approximate problem (3.1)-(3.2) with

un0 → u0 in V3 and un1 → u1 in V2. (3.3)

A Priori Estimate I. Replacing wj by unt (t) in (3.1) and since it hold∫ t

0

g(t− s)(∆un(s),∆unt (t)) ds = −1

2

d

dt

{
(g�∆un) (t)−

(∫ t

0

g(s) ds

)
‖∆un(t)‖2

2

}
+

1

2
(g′�∆un) (t)− 1

2
g(t)‖∆un(t)‖2

2, (3.4)

and ∫
Ω

F (∇un(t)) · ∇unt (t) dx =

∫
Ω

∇f(∇un(t)) · ∇unt (t) dx

=
d

dt

∫
Ω

f(∇un(t)) dx, (3.5)

it follows that

d

dt
En(t) =

1

2
(g′�∆un) (t)− 1

2
g(t)‖∆un(t)‖2

2, t > 0, (3.6)
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where

En(t) =
1

2
‖unt (t)‖2

2 +
1

2
‖∇unt (t)‖2

2 +
h(t)

2
‖∆un(t)‖2

2 +
1

2
(g�∆un)(t) +

∫
Ω

f(∇un(t)) dx.

Assumption (2.2) and (3.6) imply that En(t) ≤ En(0). From (2.6) and the first condition
in (2.5) we get

h(t)

2
‖∆un(t)‖2

2 +

∫
Ω

f(∇un(t)) dx ≥ β

2
‖∆un(t)‖2

2 − α0|Ω|,

and consequently,

1

2
‖∇unt (t)‖2

2 +
β

2
‖∆un(t)‖2

2 ≤ En(t) + α0|Ω| ≤ En(0) + α0|Ω|.

From (3.3), second condition in (2.5), (5.3) and Hölder’s inequality we conclude

‖∇unt (t)‖2
2 + ‖∆un(t)‖2

2 ≤M1, ∀ t ∈ [0, T ], ∀ n ∈ N, (3.7)

where M1 = M1(‖∇u1‖2, ‖∆u0‖2, |Ω|) > 0.

A Priori Estimate II. Replacing wj by −∆unt (t) in (3.1), since (3.4) holds with ∇∆ in the
place of ∆, and also∫

Ω

F (∇un(t)) · ∇∆unt (t) dx =
d

dt

∫
Ω

F (∇un(t)) · ∇∆un(t) dx+ JF ,

with JF given by

JF = −
∫

Ω

[(
∇F1(∇un(t)) · ∇unt (t), . . . ,∇FN(∇un(t)) · ∇unt (t)

)]
· ∇∆un(t) dx,

then we infer

d

dt
F n(t) =

1

2
(g′�∇∆un) (t)− 1

2
g(t)‖∇∆un(t)‖2

2 + JF ≤ JF , t > 0, (3.8)

where

F n(t) =
1

2
‖∇unt (t)‖2

2 +
1

2
‖∆unt (t)‖2

2 +
h(t)

2
‖∇∆un(t)‖2

2 +
1

2
(g�∇∆un) (t)− IF

with

IF =

∫
Ω

F (∇un(t)) · ∇∆un(t) dx.

Let us estimate the right hand side of (3.8). Using assumption (2.3), generalized Hölder
inequality, and (2.7) we get

|JF | ≤
N∑
j=1

∫
Ω

|∇Fj(∇un(t))| |∇unt (t)| |∇∆un(t)| dx

≤
N∑
j=1

kj

∫
Ω

(
1 + |∇un(t)|(pj−1)/2

)
|∇unt (t)| |∇∆un(t)| dx

≤
N∑
j=1

kjµpj

(
|Ω|

pj−1

2(pj+1) + ‖∇un(t)‖
pj−1

2
pj+1

)
‖∆unt (t)‖2‖∇∆un(t)‖2.
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From estimate (3.7) and using again (2.7) we obtain

N∑
j=1

kjµpj

(
|Ω|

pj−1

2(pj+1) + ‖∇un(t)‖
pj−1

2
pj+1

)
≤ C <∞.

From this and Young’s inequality there exists a constant C1 = C1 (||∇u1||2, ||∆u0||2) > 0
such that

|JF | ≤ C1

(
‖∆unt (t)‖2

2 + ‖∇∆un(t)‖2
2

)
. (3.9)

Inserting (3.9) in (3.8) and integrating from 0 to t ≤ T , yields

F n(t) ≤ F n(0) + C1

∫ t

0

(
‖∆unt (s)‖2

2 + ‖∇∆un(s)‖2
2

)
ds, t ≥ 0. (3.10)

On the other hand, from (5.3) in the appendix with F (0) = 0 and Hölder’s inequality,
we have

|IF | ≤
∫

Ω

|F (∇un(t))| |∇∆un(t)| dx

≤ K
N∑
j=1

∫
Ω

(
|∇un(t)|+ |∇un(t)|(pj+1)/2

)
|∇∆un(t)| dx

≤ K

(
N‖∇un(t)‖2 +

N∑
j=1

‖∇un(t)‖
pj+1

2
pj+1

)
‖∇∆un(t)‖2.

Moreover, the estimates (3.7) and (2.7) imply

K

(
N‖∇un(t)‖2 +

N∑
j=1

‖∇un(t)‖
pj+1

2
pj+1

)
≤ C <∞.

Using Young’s inequality there exists a constant C2 = C2 (||∇u1||2, ||∆u0||2) > 0 such that

|IF | ≤ C2 +
l

4
‖∇∆un(t)‖2

2.

Since h(t) ≥ l, then

h(t)

2
‖∇∆un(t)‖2

2 − IF ≥
l

4
‖∇∆un(t)‖2

2 − C2,

and, consequently,

l

4
‖∆unt (t)‖2

2 +
l

4
‖∇∆un(t)‖2

2 ≤ F n(t) + C2. (3.11)

Combining (3.10) and (3.11) we arrive at

‖∆unt (t)‖2
2 + ‖∇∆un(t)‖2

2 ≤
4

l
(C2 + F n(0)) +

4C1

l

∫ t

0

(
‖∆unt (s)‖2

2 + ‖∇∆un(s)‖2
2

)
ds.
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Taking into account (3.3) and applying Gronwall’s inequality, we finally conclude

‖∆unt (t)‖2
2 + ‖∇∆un(t)‖2

2 ≤M2, ∀ t ∈ [0, T ], ∀ n ∈ N, (3.12)

where M2 = M2(||∆u1||2, ||∇∆u0||2, |Ω|, T ) > 0.

The estimates (3.7) and (3.12) are sufficient to pass to the limit in the approximate
problem (3.1)-(3.2) and to obtain a stronger weak solution

(u, ut) ∈ C ([0, T ],H) ∩ L∞(0, T ;H1), T > 0, (3.13)

satisfying

(I −∆)utt = −∆2u+ divF (∇u) +

∫ t

0

g(t− s)∆2u(s) ds in L∞ (0, T ;V ′1) . (3.14)

This finishes the proof of the existence of regular weak solutions.

Remark 3.1. Unless for the term which involves divF (∇u), the limit on the other terms
in the approximate system can be done in a usual way. With respect to this term we only
need to apply estimates (3.7) and (5.2) along with the Aubin-Lions Lemma. Then it will
hold later in the case of weak solutions, see for instance [1, 13].

Proof of Theorem 2.3 (iii) (stronger weak solutions). We first show that solution
in (3.13) satisfies the continuous dependence property (2.10).

Let us consider two stronger weak solutions U = (u, ut), V = (v, vt) of the problem
(1.6)-(1.8) corresponding to initial data U0 = (u0, u1), V0 = (v0, v1) ∈ H1, respectively.
By setting w = u− v, then function (w,wt) = U − V solves the equation

wtt −∆wtt + ∆2w −
∫ t

0

g(t− s)∆2w(s) ds = divF (∇u)− divF (∇v) (3.15)

in L∞ (0, T ;V ′1) , with initial data (w(0), wt(0)) = U0 − V0.

Since wt(t) ∈ V2 ↪→ V1, then multiplying equation (3.15) by wt(t) and integrating over
Ω, we get

d

dt
W (t) =

1

2
(g′�∆w) (t)− 1

2
g(t)‖∆w(t)‖2

2 + LF ≤ LF , t > 0, (3.16)

where

W (t) =
1

2
‖wt(t)‖2

2 +
1

2
‖∇wt(t)‖2

2 +
h(t)

2
‖∆w(t)‖2

2 +
1

2
(g�∆w)(t), t ≥ 0,

and

LF = −
∫

Ω

[F (∇u(t))− F (∇v(t))] · ∇wt(t) dx.

12



Estimate (5.2) from the appendix, the generalized Hölder inequality, and (2.7) imply

|LF | ≤
∫

Ω

|F (∇u(t))− F (∇v(t))| |∇wt(t)| dx

≤ K

N∑
j=1

∫
Ω

(
1 + |∇u(t)|(pj−1)/2 + |∇v(t)|(pj−1)/2

)
|∇w(t)| |∇wt(t)| dx

≤ K
N∑
j=1

µpj

(
|Ω|

pj−1

2(pj+1) + ‖∇u(t)‖
pj−1

2
pj+1 + ‖∇v(t)‖

pj−1

2
pj+1

)
‖∆w(t)‖2‖∇wt(t)‖2.

From (2.7) and (3.13) we obtain

K

N∑
j=1

µpj

(
|Ω|

pj−1

2(pj+1) + ‖∇u(t)‖
pj−1

2
pj+1 + ‖∇v(t)‖

pj−1

2
pj+1

)
≤ C <∞,

and making use of Young inequality there exists a constant C3 = C3 (||∇u1||2, ||∆u0||2) > 0
such that

|LF | ≤ C3

(
‖∆w(t)‖2

2 + ‖∇wt(t)‖2
2

)
. (3.17)

Inserting (3.17) into (3.16) and integrating from 0 to t ≤ T , one has

W (t) ≤ W (0) + C3

∫ t

0

(
‖∆w(s)‖2

2 + ‖∇wt(s)‖2
2

)
ds, t ≥ 0. (3.18)

On the other hand it is easy to check that

‖∆w(t)‖2
2 + ‖∇wt(t)‖2

2 ≤
2

l
W (t), t ≥ 0, (3.19)

and

W (0) ≤ 1

2

(
1 +

1

λ0

)(
‖∆w(0)‖2

2 + ‖∇wt(0)‖2
2

)
. (3.20)

Combining (3.18)-(3.20) and applying Gronwall’s inequality we conclude(
‖∆w(t)‖2

2 + ‖∇wt(t)‖2
2

)
≤ C2

T

(
‖∆w(0)‖2

2 + ‖∇wt(0)‖2
2

)
, ∀ t ∈ [0, T ], (3.21)

for some constant CT = C(‖U0‖H, ‖V0‖H, T ) > 0. This shows that the estimate (2.10) is
guaranteed for regular solutions since we have (w,wt) = U − V .

Proof of Theorem 2.3 (ii). Let us take initial data (u0, u1) ∈ H. Then there exists a
sequence (un0 , u

n
1 ) ∈ H1 such that

un0 → u0 in V2 and un1 → u1 in V1. (3.22)

For each regular initial data (un0 , u
n
1 ), n ∈ N, there exists a regular solution (un, unt )

satisfying (3.13)-(3.14). Taking the multiplier unt (t) in (3.14) and proceeding analogously
as in (3.4)-(3.6) then estimate (3.7) holds true. This implies

(un, unt )
∗
⇀ (u, ut) in L∞(0, T ;H). (3.23)
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Besides, if we consider m,n ∈ N, m ≥ n, and w = um − un, then function (w,wt)
satisfies

wtt −∆wtt + ∆2w −
∫ t

0

g(t− s)∆2w(s) ds = divF (∇um)− divF (∇un)

in L∞ (0, T ;V ′1) , with initial data (w(0), wt(0)) = (um0 −un0 , um1 −un1 ). Taking the multiplier
wt(t) and using analogous arguments as given in (3.16)-(3.20), the estimate (3.21) also
holds. This means that

‖∆(um(t)− un(t))‖2
2 + ‖∇(umt (t)− unt (t))‖2

2 ≤ C
(
‖∆(um0 − un0 )‖2

2 + ‖∇(um1 − un1 )‖2
2

)
,

for any t ∈ [0, T ], and some constant C = C(‖(u0, u1)‖H, T ) > 0. From (3.13) and (3.22),
and since C is a constant depending only on the initial data in H, we infer

(un, unt ) → (u, ut) in C([0, T ],H). (3.24)

Finally, we note that the limits (3.23) and (3.24) are enough to pass to the limit in
the approximate problem (3.1)-(3.2) and to obtain a weak solution (u, ut) ∈ C ([0, T ],H)
satisfying (2.9) and

(I −∆)utt = −∆2u+ divF (∇u) +

∫ t

0

g(t− s)∆2u(s) ds in L∞ (0, T ;V ′2) .

This concludes the proof on existence of weak solutions.

Remark 3.2. In a similar procedure we can check that condition (3.23) also holds in the
problem without rotational inertia, namely,

(un, unt )
∗
⇀ (u, ut) in L∞(0, T ;W).

This is sufficient to pass the limit on the corresponding approximate problem to obtain

utt = −∆2u+ divF (∇u) +

∫ t

0

g(t− s)∆2u(s) ds in L∞ (0, T ;V ′2) .

Therefore, we can also conclude the proof of Theorem 2.10 (i).

Proof of Theorem 2.3 (iii) (weak solutions). Given initial data U0 = (u0, u1), V0 =
(v0, v1) ∈ H, let us consider the corresponding initial regular data Un

0 = (un0 , u
n
1 ), V n

0 =
(vn0 , v

n
1 ) ∈ H1 such that

(Un
0 , V

n
0 ) → (U0, V0) in H×H, (3.25)

and the respective regular solutions Un = (un, unt ), V n = (vn, vnt ) converging to the weak
solutions U = (u, ut), V = (v, vt) as in (3.24), namely

(Un, V n) → (U, V ) in C([0, T ],H×H). (3.26)

Since (2.10) holds for stronger weak solutions we have

‖Un(t)− V n(t)||H ≤ CT ||Un
0 − V n

0 ||H, t ∈ [0, T ], n ∈ N, (3.27)

for some constant CT = C(‖U0‖H, ‖V0‖H, T ) > 0.

Therefore, (2.10) is given for weak solutions after passing (3.27) to the limit when
n→∞ and applying (3.25)-(3.26). In particular, we have uniqueness of solution in both
cases. This completes the proof of Theorem 2.3.
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4 Uniform decay of the energy

Our methods on stability are similar to (but not equal to) those for viscoelastic wave
equations, see for instance [11, 19, 22, 23, 30, 31]. The proofs of Lemma 2.5 and The-
orem 2.8 are given first for regular solutions. Then by standard density arguments the
conclusion of Theorem 2.8 also holds for weak solutions.

Proof of Lemma 2.5. By taking the multiplier ut with (1.6) and using the identities
(3.4)-(3.5) for the solution, then the energy defined in (2.1) satisfies (2.11). Therefore,
the proof of Lemma 2.5 follows readily.

Before proving Theorem 2.8 we need to state some technical lemmas.

Lemma 4.1. Under the assumptions of Theorem 2.3 we have

d

dt
E(t) ≤ 1

2
(g′�∆u)(t) ≤ 0, ∀ t > 0. (4.1)

Proof. Inequality (4.1) is an immediate consequence of Lemma 2.5.

Let us first define the functionals

φχ(t) =

∫
Ω

(∫ t

0

g(t− s)|χ(t)− χ(s)| ds
)2

dx,

ψχ(t) =

∫
Ω

(
−
∫ t

0

g′(t− s)|χ(t)− χ(s)| ds
)2

dx,

ζχ(t) =

∫
Ω

(∫ t

0

g(t− s)|χ(s)| ds
)2

dx.

Lemma 4.2. Under the assumptions of Theorem 2.3 we have:

(a) φu(t) ≤
(1− l)
λ1

(g�∆u)(t), ∀ t ≥ 0.

(b) φ∇u(t) ≤
(1− l)
λ2

(g�∆u)(t), ∀ t ≥ 0.

(c) φ∆u(t) ≤ (1− l)(g�∆u)(t), ∀ t ≥ 0.

(d) ψu(t) ≤
g(0)

λ1

(−g′�∆u)(t), ∀ t ≥ 0.

(e) ψ∇u(t) ≤
g(0)

λ2

(−g′�∆u)(t), ∀ t ≥ 0.

(f) ζ∆u(t) ≤ 2(1− l)(g�∆u)(t) + 2(1− l)2‖∆u(t)‖2
2, ∀ t ≥ 0.
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Proof. To prove the items (a)-(e) it is enough to apply Hölder’s inequality along with the
embeddings V2 ↪→ V1 ↪→ V0 and the first condition in (2.6). Moreover, from (2.6) and
item (c) of Lemma 4.2, we prove the item (f) as follows.

ζ∆u(t) ≤
∫

Ω

(∫ t

0

g(t− s)
(
|∆u(t)−∆u(s)|+ |∆u(t)|

)
ds

)2

dx

≤
∫

Ω

(∫ t

0

g(t− s)|∆u(t)−∆u(s)| ds+

∫ t

0

g(t− s) ds|∆u(t)|
)2

dx

≤ 2φ∆u(t) + 2

(∫ t

0

g(s) ds

)2

‖∆u(t)‖2
2

≤ 2(1− l)(g�∆u)(t) + 2(1− l)2‖∆u(t)‖2
2.

Let us now define the functionals

G(t) = E(t) + ε1Φ(t) + ε2Ψ(t), t ≥ 0, (4.2)

where ε1, ε2 > 0 will be fixed later and

Φ(t) = ξ(t)

∫
Ω

(
ut(t)−∆ut(t)

)
u(t) dx, (4.3)

Ψ(t) = −ξ(t)
∫

Ω

(
ut(t)−∆ut(t)

)(∫ t

0

g(t− s)(u(t)− u(s))ds

)
dx. (4.4)

Lemma 4.3. Under the assumptions of Theorem 2.8 there exists a constant c0 > 0 such
that Φ(t) given in (4.3) satisfies

d

dt
Φ(t) ≤ c0ξ(t)

[
‖ut(t)‖2

2 + ‖∇ut(t)‖2
2 + (g�∆u)(t)

]
− ξ(t)

[
β1

2
‖∆u(t)‖2

2 + E(t)

]
, ∀ t > 0, (4.5)

where β1 = β/2 > 0.

Proof. Differentiating t 7→ Φ(t), using equation (1.6) and integrating by parts we get

d

dt
Φ(t) = ξ(t)

[
‖ut(t)‖2

2 + ‖∇ut(t)‖2
2

]
+ ξ′(t)J1 + ξ(t)J2

− ξ(t)
[
‖∆u(t)‖2

2 +

∫
Ω

F (∇u(t)) · ∇u(t) dx
]
, (4.6)

where

J1 = (ut(t), u(t)) + (∇ut(t),∇u(t)),

J2 =

∫ t

0

g(t− s)(∆u(s),∆u(t)) ds.
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Now, applying Young’s inequality with η1 > 0 and η2 > 0, it is easy to check that

|J1| ≤ η1λ‖∆u(t)‖2
2 +

1

4η1

(
‖ut(t)‖2

2 + ‖∇ut(t)‖2
2

)
,

|J2| ≤
(∫ t

0

g(s) ds

)
‖∆u(t)‖2

2 + η2‖∆u(t)‖2
2 +

1

4η2

(g�∆u)(t).

Inserting these two last estimates into (4.6), using the third condition in (2.13), Adding
and subtracting ξ(t)E(t), we obtain

d

dt
Φ(t) ≤ ξ(t)

(
3

2
+

ξ0

4η1

)[
‖ut(t)‖2

2 + ‖∇ut(t)‖2
2

]
+ ξ(t)

(
1

2
+

1

4η2

)
(g�∆u)(t)

− ξ(t)h(t)

2
‖∆u(t)‖2

2 + ξ(t)

∫
Ω

[
f(∇u(t))− F (∇u(t)) · ∇u(t)

]
dx

+ ξ(t)(λξ0η1 + η2)‖∆u(t)‖2
2 − ξ(t)E(t).

Now applying assumption (2.5) and condition (2.6), we have

d

dt
Φ(t) ≤ ξ(t)

(
3

2
+

ξ0

4η1

)[
‖ut(t)‖2

2 + ‖∇ut(t)‖2
2

]
+ ξ(t)

(
1

2
+

1

4η2

)
(g�∆u)(t)

− ξ(t)
(
β

2
− λξ0η1 − η2

)
‖∆u(t)‖2

2 − ξ(t)E(t). (4.7)

Since β1 = β
2
> 0, so choosing η2 = η1 ≤ β1

2(1+λξ0)
, and setting c0 = max

{
3
2

+ ξ0
4η1
, 1

2
+ 1

4η1

}
in (4.7), we conclude that (4.5) holds true. This completes the proof of Lemma 4.3.

Lemma 4.4. Under the assumptions of Theorem 2.8, and given any δ > 0, then there
exists a constant cδ > 0 such that Ψ defined in (4.4) satisfies

d

dt
Ψ(t) ≤

(
δ(1 + ξ0)−

∫ t

0

g(s) ds

)
ξ(t)

[
‖ut(t)‖2

2 + ‖∇ut(t)‖2
2

]
+ 4δξ(t)‖∆u(t)‖2

2

+ cδ

(
1 + [E(0)]

p−1
2

)
ξ(t)(g�∆u)(t) + cδ(−g′�∆u)(t), ∀ t > 0, (4.8)

where

p =

{
max{p1, . . . , pN} if E(0) ≥ 1,
min{p1, . . . , pN} if E(0) < 1.

Proof. Differentiating Ψ, using equation (1.6) and integrating by parts we get

d

dt
Ψ(t) = −

(∫ t

0

g(s) ds

)
ξ(t)

[
‖ut(t)‖2

2 + ‖∇ut(t)‖2
2

]
+

6∑
j=1

Ij + IF , (4.9)
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where

I1 = −ξ′(t)
∫

Ω

ut(t)

(∫ t

0

g(t− s)(u(t)− u(s)) ds

)
dx,

I2 = −ξ′(t)
∫

Ω

∇ut(t)
(∫ t

0

g(t− s)(∇u(t)−∇u(s)) ds

)
dx,

I3 = ξ(t)

∫
Ω

∆u(t)

(∫ t

0

g(t− s)(∆u(t)−∆u(s)) ds

)
dx,

I4 = −ξ(t)
∫

Ω

(∫ t

0

g(t− s)∆u(s) ds

)(∫ t

0

g(t− s)(∆u(t)−∆u(s)) ds

)
dx,

I5 = ξ(t)

∫
Ω

ut(t)

(
−
∫ t

0

g′(t− s)(u(t)− u(s)) ds

)
dx,

I6 = ξ(t)

∫
Ω

∇ut(t)
(
−
∫ t

0

g′(t− s)(∇u(t)−∇u(s)) ds

)
dx,

IF = ξ(t)

∫
Ω

F (∇u(t))

(∫ t

0

g(t− s)(∇u(t)−∇u(s)) ds

)
dx,

Now let us estimate Ij, j = 1, . . . , 6, and IF . From Young’s inequality with δ > 0, item
(a) of Lemma 4.2 and assumption (2.13) we obtain

|I1| ≤
∣∣∣∣ξ′(t)ξ(t)

∣∣∣∣ ξ(t)(δ‖ut(t)‖2
2 +

1

4δ
φu(t)

)
≤ δξ0ξ(t)‖ut(t)‖2

2 +
ξ0

4δλ1

(1− l)ξ(t)(g�∆u)(t) (4.10)

Analogously, but using items (b) and (c) of Lemma 4.2 instead of (a), we have

|I2| ≤ δξ0ξ(t)‖∇ut(t)‖2
2 +

ξ0

4δλ2

(1− l)ξ(t)(g�∆u)(t), (4.11)

|I3| ≤ δξ(t)‖∆u(t)‖2
2 +

1

4δ
(1− l)ξ(t)(g�∆u)(t). (4.12)

Again from Young’s inequality with δ > 0, items (c), (f) and (d) of Lemma 4.2, we deduce

|I4| ≤ δξ(t)ζ∆u(t) +
1

4δ
ξ(t)φ∆u(t)

≤ 2δ(1− l)2ξ(t)‖∆u(t)‖2
2 +

(
2δ +

1

4δ

)
(1− l)ξ(t)(g�∆u)(t), (4.13)

and

|I5| ≤ δξ(t)‖ut(t)‖2
2 +

1

4δ
ξ(t)ψu(t)

≤ δξ(t)‖ut(t)‖2
2 + g(0)

ξ1

4δλ1

(−g′�∆u)(t). (4.14)
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Similarly with item (e) in the place of (d) in Lemma 4.2, we also have

|I6| ≤ δξ(t)‖∇ut(t)‖2
2 + g(0)

ξ1

4δλ2

(−g′�∆u)(t). (4.15)

Now with respect to IF we have

|IF | ≤ ξ(t)

∫ t

0

g(t− s)
(∫

Ω

|F (∇u(t))||∇u(t)−∇u(s)| dx
)

︸ ︷︷ ︸
:=I1F

ds.

Applying (5.3) from the appendix with F (0) = 0, Hölder’s inequality, Young’s inequality

with δ > 0, and since V2 ↪→ W
1,pj+1
0 (Ω) ↪→ V1, j = 1, . . . , N , we infer

I1
F ≤ K

∫
Ω

(
N∑
j=1

(
1 + |∇u(t)|(pj−1)/2

))
|∇u(t)||∇u(t)−∇u(s)| dx

≤ K
N∑
j=1

(
|Ω|

pj−1

2(pj+1) + ‖∇u(t)‖
pj−1

2
pj+1

)
‖∇u(t)‖pj+1‖∇u(t)−∇u(s)‖2

≤ ‖∆u(t)‖2

[
K

λ2

N∑
j=1

µpj

(
|Ω|

pj−1

2(pj+1) + ‖∇u(t)‖
pj−1

2
pj+1

)]
‖∆u(t)−∆u(s)‖2

≤ δ‖∆u(t)‖2
2 +

1

4δ

[
K

λ2

N∑
j=1

µpj

(
|Ω|

pj−1

2(pj+1) + ‖∇u(t)‖
pj−1

2
pj+1

)]2

︸ ︷︷ ︸
:=I2F

‖∆u(t)−∆u(s)‖2
2.

Since ‖∇u(t)‖pj+1 ≤ µpj‖∆u(t)‖2 and β
2
‖∆u(t)‖2

2 ≤ E(t) ≤ E(0) for any t > 0, then

I2
F ≤ 2K2

λ2
2

(
N∑
j=1

µpj |Ω|
pj−1

2(pj+1)

)2

+
2K2

λ2
2

 N∑
j=1

µ
pj+1

2
pj

(
2

β

) pj−1

4

[E(0)]
pj−1

4

2

≤ µ1 + µ2[E(0)]
p−1
2 ,

where we consider

p :=

{
max{p1, . . . , pN} if E(0) ≥ 1,
min{p1, . . . , pN} if E(0) < 1,

µ1 :=
2K2

λ2
2

(
N∑
j=1

µpj |Ω|
pj−1

2(pj+1)

)2

and µ2 :=
2K2

λ2
2

 N∑
j=1

µ
pj+1

2
pj

(
2

β

) pj−1

4

2

.

Thus,

I1
F ≤ δ‖∆u(t)‖2

2 +
1

4δ

(
µ1 + µ2[E(0)]

p−1
2

)
‖∆u(t)−∆u(s)‖2

2

from where it follows that

|IF | ≤ δξ(t)‖∆u(t)‖2
2 +

1

4δ

(
µ1 + µ2[E(0)]

p−1
2

)
ξ(t)(g�∆u)(t). (4.16)
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Inserting (4.10)-(4.16) into (4.9), and since 1− l < 1, yields

d

dt
Ψ(t) ≤

(
δ(1 + ξ0)−

∫ t

0

g(s) ds

)
ξ(t)

[
‖ut(t)‖2

2 + ‖∇ut(t)‖2
2

]
+ 4δξ(t)‖∆u(t)‖2

2 + g(0)
ξ1λ

4δ
(−g′�∆u)(t)

+
1

4δ

(
2 + ξ0λ+ 8δ2 + µ1 + µ2[E(0)]

p−1
2

)
ξ(t)(g�∆u)(t).

Therefore, inequality (4.8) follows by taking cδ = 1
4δ

max{2 + ξ0λ+ 8δ2 + µ1, µ2, g(0)ξ1λ}.
This concludes the proof of Lemma 4.4.

Lemma 4.5. Under the assumptions of Theorem 2.8 and fixing any t0 > 0, then

d

dt
G(t) ≤ −ε1ξ(t)E(t), ∀ t ≥ t0, (4.17)

for some positive constant ε1 ∼ c1

1+[E(0)]
p−1
2
, with c1 > 0 independent of the initial data.

Proof. From definition of G(t) in (4.2), and Lemmas 4.1, 4.3 and 4.4, we get

d

dt
G(t) ≤

(
ε1c0 + ε2

(
δb1 −

∫ t

0

g(s) ds
))

ξ(t)
[
‖ut(t)‖2

2 + ‖∇ut(t)‖2
2

]
−
(
ε1
β1

2
− 4δε2

)
ξ(t)‖∆u(t)‖2

2 − ε1ξ(t)E(t) (4.18)

+
(
ε1c0 + ε2cδ

(
1 + [E(0)]

p−1
2

))
ξ(t)(g�∆u)(t) +

(
1

2
− ε2cδ

)
(g′�∆u)(t),

for any δ, ε1, ε2 > 0, where we denote b1 = 1 + ξ0 > 0. By fixing any t0 > 0 we note that∫ t

0

g(s) ds ≥
∫ t0

0

g(s) ds := g0 > 0, ∀ t ≥ t0.

From this and condition (2.12) we can rewrite (4.18) as follows

d

dt
G(t) ≤ −

(
ε2(g0 − δb1)− ε1c0

)
ξ(t)

[
‖ut(t)‖2

2 + ‖∇ut(t)‖2
2

]
−
(
ε1
β1

2
− 4δε2

)
ξ(t)‖∆u(t)‖2

2 − ε1ξ(t)E(t) (4.19)

+

(
1

2
− ε1c0 − 2ε2cδ

(
1 + [E(0)]

p−1
2

))
(g′�∆u)(t),

for every t ≥ t0. Now we first choose 0 < δ ≤ min{ g0
2b1
, g0β1

32c0
}. Thus

g0 − δb1 ≥
g0

2
and 4δ ≤ g0β1

8c0

. (4.20)
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Once fixed δ > 0 we pick out ε1 > 0 and ε2 > 0 small enough such that

1

2
ε2 <

2c0

g0

ε1 < ε2 < min

 1

2g0

,
1

8cδ

(
1 + [E(0)]

p−1
2

)
 . (4.21)

Therewith (4.20)-(4.21) imply that

ε2(g0 − δb1)− ε1c0 > 0, ε1
β1

2
− 4δε2 > 0,

1

2
− ε1c0 − 2ε2cδ

(
1 + [E(0)]

p−1
2

)
> 0.

Therefore, since g′ ≤ 0, we obtain from (4.19) that estimate (4.17) holds true for some

positive constant ε1 ∼ c1/
(

1 + [E(0)]
p−1
2

)
, where c1 > 0 is independent of the initial data.

This completes the proof of Lemma 4.5.

With the lemmas above we have obtained the main ingredients to prove Theorem 2.8.

Proof of Theorem 2.8. First of all we note that

1

2
E(t) ≤ G(t) ≤ 3

2
E(t), ∀ t ≥ 0, (4.22)

where we take ε1 and ε2 such that

0 < ε1, ε2 < β1 min

{
1

2ξ1

,
1

λξ1

}
. (4.23)

Indeed, to prove (4.22) we use Hölder and Young inequalities, Lemma 4.2 (a)-(b), and
(2.5) with α0 = 0.

Now let us fix t0 = 1 and choose ε1 > 0 and ε2 > 0 so that (4.21) and (4.23) are
satisfied. Then from Lemma 4.5 and (4.22) we have

d

dt
G(t) ≤ −ε1ξ(t)E(t) ≤ −2ε1

3
ξ(t)G(t), ∀ t ≥ 1.

A straightforward computation implies that

G(t) ≤ G(1)e−γ
∫ t
1 ξ(s) ds, ∀ t ≥ 1,

where γ = 2ε1
3
∼ k/

(
1 + [E(0)]

p−1
2

)
, for some k > 0. Applying again (4.22) and since

E(t) is nonincreasing we obtain

E(t) ≤ 3E(1) e−γ
∫ t
1 ξ(s) ds ≤

(
3E(0) eγ

∫ 1
0 ξ(s) ds

)
e−γ

∫ t
0 ξ(s) ds,

from where it follows that

E(t) ≤ c e−γ
∫ t
0 ξ(s) ds, ∀ t ≥ 1, (4.24)

where c = 3E(0) eγ
∫ 1
0 ξ(s) ds, and γ ∼ k/

(
1 + [E(0)]

p−1
2

)
for some positive constant k.
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On the other hand, since 0 < ξ(t) ≤ ξ1 > 0 for any t ≥ 0, we see that

1 < eγ
∫ 1
t ξ(s) ds =

(
eγ

∫ 1
0 ξ(s) ds

)
e−γ

∫ t
0 ξ(s) ds < eγξ1 <∞, ∀ t ∈ [0, 1].

Then, since E(0) eγ
∫ 1
0 ξ(s) ds < c, we get

E(t) ≤ E(0) ≤ c e−γ
∫ t
0 ξ(s) ds, ∀ t ∈ [0, 1]. (4.25)

Therefore, the uniform decay (2.14) is ensured by estimates (4.24)-(4.25). The proof
of Theorem 2.8 is now complete.

Remark 4.6. The proof of Theorem 2.10 (ii) can be done with minor changes on the
above calculations. In fact, we can formally check that the energy E(t) satisfies (2.17) by
excluding the terms appearing due to the presence of rotational inertia term.

5 Appendix

5.1 Rates of energy decay

We emphasize below that (2.14) provides several rates of energy decay according to the
function ξ(t). In fact, the Examples 5.1-5.4 are motivated by [22, 23, 19, 31, 32, 25].
Besides, the Examples 5.5 and 5.6 were first shown in [12] and illustrate the wide variety
of decay rates provided by (2.14) which are faster than pure exponential decay when we
consider small initial data or else the linear case.

Example 5.1. Let us consider ξ(t) = κ > 0. Then condition (2.13) is fulfilled and from
(2.14) we obtain the following exponential decay

E(t) ≤ c e−κγt, t ≥ 0.

Example 5.2. Let us also consider ξ(t) = κ ln(a+ 1), where a > 0 and κ > 0. Then, ξ(t)
satisfies (2.13) and applying (2.14) results

E(t) ≤ c (a+ 1)−κγt, t ≥ 0.

Example 5.3. Let us take a rational function ξ(t) = κ
t+1
, with κ > 0. It is also easy to

check that condition (2.13) holds true. From (2.14) we have the following polynomial-type
decay

E(t) ≤ c

(t+ 1)κγ
, t ≥ 0.

The case 0 < κγ ≤ 2 is contemplated if we consider κ small enough. However, the
interesting case consists in considering polynomial decay of higher order which is possible
by taking large values for κ.
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Example 5.4. Let us now take ξ(t) = κ
(t+e) ln(t+e)

, with κ > 0, then

ξ′(t) = −κ ln(t+ e) + 1

[(t+ e) ln(t+ e)]2
< 0 and

∣∣∣∣ξ′(t)ξ(t)

∣∣∣∣ =
1

(t+ e) ln(t+ e)
+

1

t+ e
<

2

e
,

for every t ≥ 0. From (2.14) we get the logarithmic decay type

E(t) ≤ c

[ln(t+ e)]κγ
, t ≥ 0.

Example 5.5. If ξ(t) = κ coth(t+ θ), t ≥ 0, where κ > 0 and θ = ln(1 +
√

2), then

ξ′(t) = −κ[cosh(t+ θ)]2 < 0 and

∣∣∣∣ξ′(t)ξ(t)

∣∣∣∣ =
1

cosh(t+ θ) sinh(t+ θ)
< 1,

for every t ≥ 0. From (2.14) we obtain the following hyperbolic decay

E(t) ≤ c

[sinh(t+ θ)]κγ
, t ≥ 0.

Example 5.6. We also consider ξ(t) = κ(1+2 ln(t+e1/2))

t+e1/2
, t ≥ 0, where κ > 0. Thus ξ(t) > 0,

and

ξ′(t) =
κ(1− 2 ln(t+ e1/2))

(t+ e1/2)2
≤ 0 and

∣∣∣∣ξ′(t)ξ(t)

∣∣∣∣ ≤ 1

t+ e1/2
<

1

e1/2
,

for every t ≥ 0, see for instance [12]. So ξ(t) also fulfills condition (2.13). From (2.14) we
conclude that the energy has a transcendental decay like

E(t) ≤ cκ

(t+ e1/2)κγ(1+ln(t+e1/2))
,

for all t ≥ 0, where cκ = e3κ/4c > 0.

5.2 The vector field F

In this section we show an interesting property to vector fields which satisfy a condition
like (2.3). This is given as an application of the Mean Value Inequality.

Lemma 5.1. Let F : RN → RN be a C1-vector field given by F = (F1, . . . , FN).

(a) If there exist positive constants k1, . . . , kN and q1, . . . , qN such that

|∇Fj(z)| ≤ kj(1 + |z|qj), ∀ z ∈ RN , ∀ j = 1, . . . , N. (5.1)

Then, there exists a constant K = K(kj, qj, N) > 0, j = 1, . . . , N, such that

|F (x)− F (y)| ≤ K
N∑
j=1

(1 + |x|qj + |y|qj) |x− y|, ∀ x, y ∈ RN . (5.2)
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(b) In particular, we have

|F (x)| ≤ |F (0)|+K

N∑
j=1

(1 + |x|qj) |x|, ∀ x ∈ RN . (5.3)

Proof. (a) From condition (5.1) it is not so difficult to check that F ′ : RN → L(RN)
satisfies

||F ′(z)||L(RN ) ≤ N
N∑
j=1

kj(1 + |z|qj), ∀ z ∈ RN .

Given x, y ∈ RN , we consider z ∈ [x, y] ⊂ RN written as

z = (1− θ)y + θx, θ = θ(x, y) ∈ [0, 1].

Thus,
|z|qj ≤ 2qj(|x|qj + |y|qj), ∀ j = 1, . . . , N,

from where it follows that

||F ′(z)||L(RN ) ≤ K
N∑
j=1

(1 + |x|qj + |y|qj), ∀ z ∈ [x, y],

where K = N max
1≤j≤N

{2qjkj}. Applying the Mean Value Inequality we obtain (5.2).

(b) It is suffices to define G(z) = F (z)− F (0).

5.3 Examples for F

We finally give examples of vector fields satisfying conditions like (2.3) and (2.5). More
generally, we show below some applications of conservative C1-vector fields F = ∇f such
that (5.1) holds and also

−a0 − a1|z|2 ≤ f(z) ≤ F (z) · z + a2|z|2, ∀ z ∈ RN , (5.4)

for some nonnegative constants a0, a1, a3 ≥ 0.

Example 5.7. Let us first consider

F : RN −→ RN

z 7−→ F (z) = |z|qz, q ≥ 0.

Denoting by F (z) = (F1(z), . . . , FN(z)) and z = (z1, . . . , zN) ∈ RN , then

Fj(z) = |z|qzj, j = 1, . . . , N.

If we consider 0 6= z ∈ RN and i, j = 1, . . . , N, we have

∂

∂zi
Fj(z) = q|z|q−2zizj for i 6= j,

∂

∂zj
Fj(z) = q|z|q−2z2

j + |z|q for i = j.
(5.5)
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It is also easy to check by definition that

∂

∂zi
Fj(0) = 0 = lim

z→0

∂

∂zi
Fj(z), i, j = 1, . . . , N.

Thus, the components F1, . . . , FN are C1-functions in RN . Besides, from (5.5) we get∣∣∣∣ ∂∂ziFj(z)

∣∣∣∣ ≤ (1 + q)|z|q, i, j = 1, . . . , N.

This is suffices to ensure that (5.1) holds true. Moreover, we note that F = ∇f , where

f : RN −→ R

z 7−→ f(z) =
1

q + 2
|z|q+2,

and then condition (5.4) is readily verified for any a0, a1, a2 ≥ 0.

Therefore, this vector field generates the following operator

divF (∇u) = div (|∇u|q∇u) ,

which consists a p-Laplacian one by taking p = 2q + 1 satisfying (2.4).

Example 5.8. The above argument can be applied to the vector field F = ∇f , where

f(z) =
k

q + 2
|z|q+2 + τ · z, z = (z1, . . . , zN) ∈ RN ,

with q ≥ 0, k > 0, and τ = (τ1, . . . , τN) ∈ RN . Thus, condition (5.1) follows analogously

as above whereas (5.4) is fulfilled with a0 = |τ |2
2
a1 = 1

2
, and any a2 ≥ 0.

Example 5.9. Another case of p-Laplacian operator arises when we consider the vector
field F = (F1, . . . , FN) whose components Fj, j = 1, . . . , N, are given by

Fj(z) = |zj|p−2zj, ∀ z = (z1, . . . , zN) ∈ RN ,

where p ≥ 2. In this case

divF (∇u) =
N∑
j=1

∂

∂xj

(∣∣∣∣ ∂u∂xj
∣∣∣∣p−2

∂u

∂xj

)
.

Example 5.10. To illustrate another vector field, different one of p-Laplacian type, we
consider F = ∇f , where the potential function is given by

f(z) = ln
(√
|z|2 + 1

)
, z = (z1, . . . , zN) ∈ RN .

In such case we have
F (z) =

z

|z|2 + 1
, ∀ z ∈ RN ,

which vanishes when z →∞. It is easy to check that F and f satisfy (5.1) and (5.4).
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