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ABSTRACT. We investigate the compressible Navier-Stokes equations where the constitutive law
for the stress tensor given by Maxwell’s law is revised to a system of relaxation equations for
two parts of the tensor. The global well-posedness is proved as well as the compatibility with
the classical compressible Navier-Stokes system in the sense that, for vanishing relaxation pa-
rameters, the solutions to the Maxwell system are shown to converge to solutions of the classical
system.
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1. INTRODUCTION

The classical compressible Navier-Stokes equations in R™, n = 2, 3, are given by

Op + div(pu) = 0,
O(pu) + div(pu ® u) + Vp = div(9), (1.1)
A (p(e+ Fu?)) + div(pu(e + Ju?) + up) — kAO = div(uS),

with the constitutive law for a Newtonian fluid,
T 2. .
S =p(Vu+Vu' — =divu ) + Adivu I,,. (1.2)
n

Here, p, u = (u1, - ,uy,), p, S, e and 0 represent fluid density, velocity, pressure, stress tensor,
specific internal energy per unit mass and temperature, respectively. I, denotes the identity
matrix in R™. The equations are the consequence of conservation of mass, momentum and energy,
respectively. k, u, A are positive constants.

Maxwell’s relaxation replaces (1.2) by the differential equation

2
7S + S = pu(Vu + Vul — =divu I,,) + Adivu I,, (1.3)
n

with the relaxation parameter 7 > 0. For 7 — 0 we formally recover (1.2). For incompressible
Navier-Stokes equations this relaxation has been discussed by Racke & Saal [20, 21] and Schowe
[23, 24] proving global well-posedness for small data and rigorously investigating the singular limit
as 7 — 0.
A splitting of the tensor S was discussed by Yong [28] in the isentropic case leading to the
following system with a revised Maxwell law, now for the non-isentropic case, that we are going
1
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to further investigate here:

Op + div(pu) = 0,

O(pu) + div(pu ® u) + Vp = div(Sy) + V.Sa,

A (p(e+ 3u?)) + div(pu(e + 3u?) + up) — kA0 = div(u(S1 + S21,,)), (1.4)
710:S1 + S1 = p(Vu + Vul — %divuln)7

T90:Sg + So = Adivu,

where S is a n X n square matrix and symmetric and traceless if it was initially, and S5 is a scalar
variable.

A similar revised Maxwell model was considered by Chakraborty & Sader [1] for a compressible
viscoelastic fluid (isentropic case), where 71 counts for the shear relaxation time, and 75 counts
for the compressional relaxation time. The importance of this model for describing high frequency
limits is underlined together with the presentation of numerical experiments. The authors conclude
that it provides a general formalism with which to characterize the fluid-structure interaction of
nanoscale mechanical devices vibrating in simple liquids.

We consider the more complex non-isentropic case with general equations of state assuming that
the pressure p = p(p,0) and e = e(p, §) are smooth functions of (p,#) satisfying

p*ep(p,0) = p(p,0) — Opo(p, ), (1.5)

where 6 denotes the absolute temperature. In particular, the case of a polytropic gas p = Rpf,e =
c,0 is included here.
We investigate the Cauchy problem for the functions

(p,u,0) : R" x [0,400) = Ry x R" x Ry
with initial condition

(p(x,O),u(x,()),@(:z:,O)) = (p07U0790)- (16)

In [28] a local existence result is presented exploiting a entropy dissipation structure found. Here
we first present a local existence theorem in suggesting an explicit transformation to a symmetric-
hyperbolic system. Moreover, we prove a global existence theorem for small data. The strategy
follows our paper [7].

As second topic we consider the singular limit 7 := 7y = 75 — 0, being more complex than the
local in time singular limit studied in [28] for the isentropic case. For 7 = 0, the relaxed system
(1.4) turns into the classical Newtonian compressible Navier-Stokes system (1.1), (1.2). For the
latter, because of its physical importance and mathematical challenges, the well-posedness has
been widely studied, see [2, 3, 4, 5, 6, 8, 10, 11, 12, 14, 16, 17, 18, 22, 26]. In particular, the local
existence and uniqueness of smooth solutions was established by Serrin [22] and Nash [18] for initial
data far away from vacuum. Later, Matsumura and Nishida [16] got global smooth solutions for
small initial data without vacuum. For large data, Xin [26], Cho and Jin [2] showed that smooth
solutions must blow up in finite time if the initial data has a vacuum state.

We will show the convergence of solutions to the relaxed system (1.4) to the the classical system
(1.1), (1.2) rigorously and also obtain the convergence order with respect to 7. The energy method
is used extending [7, 28].

To summarize the main new contributions, we mention

e a first discussion of the non-isentropic compressible Navier-Stokes equations with revised
Maxwell’s law,

e the proof of global well-posedness via finding appropriate symmetric structures,

e the description of the singular limit to the classical Newtonian case in terms of order of
convergence in the relaxation parameter 7.
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The paper is organized as follows. In Section 2 we prove the local well-posedness as well as a
global existence result for small data for the Cauchy problem (1.4), (1.6). The singular limit as
7 — 0 is subject of Section 3, where a convergence result is proved. In the Appendix in Section 4,
we provide Moser-type inequalities.

Finally, we introduce some notation. W™P = W"™P(R"), 0 < m < oo, 1 < p < 0o, denotes
the usual Sobolev space with norm || ||, . For convenience, H™ and L? stand for W™?2(Q) and
WOoP(Q) with norms || - ||, and || - || », respectively. For p = 2, we denote the norm || - ||z by |- ||.

2. LocAL AND GLOBAL WELL-POSEDNESS

In this part, we prove the local and the global well-posedness for the Cauchy problem (1.4),
(1.6). For this we need the following assumptions A.1 and A.2. As in [7] we try to transform the
system with symmetrizers to finally be able to apply the results from Kawashima, see [13] or [25].

e A.1. The initial data satisfy

{(po,Uo,eo,Slo,Szo)(Jj) S Rn} C [p*,p*] X [—Cl,C’l]” X [0*,0*] X [_C«l’Cl]nxn X [—01,01]
= Go,
where C7 > 0 aswellas 0 < p, <1 < p* <ooand 0 < 6, <1< 0* < oo are constants.

e A.2. For each given G; satisfying Gy CC G1 CC G, Y(p,u,0,S51,52) € G1, the pressure p
and the internal energy e satisfy

p(pa 9)7]79(9; 9)7pp(pa 9)760(,0, 9) > C(G1) >0,

where C'(G1) is a positive constants depending on Gj.

For the standard assumption A.2 see for example [9, 17].

Theorem 2.1. (Local eristence) Let s > so + 1 with so > [§] + 1 be integers. Suppose that the
Assumptions A.1 and A.2 hold and that the initial data (po — 1,uo,00 — 1, S10,S20) are in H*.
Then, for each convexr open subset G satisfying Go CC Gy CC G, there exists To, > 0 such that
the system (1.4) has an unique classical solution (p,u, 0,51, S2) satisfying

(2.1)

(P - 1aua S17SZ) € C([OaTex]aHs) N Cl([OaTex]aH571)7
0—1¢€ C([O,TMLHS) N Cl([OvTez}aH572)

and
(p,u,0,51,S2)(x,t) € G1, V(z,t) € R" x [0, Tey].

Proof. First we consider the three-dimensional case n = 3. Using (1.5), we rewrite the system
(1.4) as

Op + uVp + pdivu = 0,

pOru + puVu + peVO + p,Vp = divS; + V5o,

pegdi0 + peguV o + Opgdive = kAG + (S1 + So15)Vu, (2.2)
11051 + 51 = p(Vu + (Vu)T — %diVU/I?,),

T90:Sg + So = Adivu.

Without loss of generality, we assume S to take the following form:

ail a2 ais
Sl = aip Aa22 a93 . (23)
a13 a23 —ai1 — 22



4 YUXI HU AND REINHARD RACKE
Let w = (p, u,ai1,a12, ais, agz, ass, S2). Then, we have

3
Ap(w)ws + > Aj(w)0z;w + L(w)w = fi(w,0,V0), (2.4)
j=1 .
pegdi — kAO = fo(w, 0, Vw, VH).
Here, f1(w,0,V0) = (0,p9V0,0,0,0,0,0,0), folw, 8, Vw, V) = SVu — peguVh — Opgdivu and
. 3m 1 T 3 T T
Ao(w)Zdlag{IZ),p,p7p7 - 71 71 71 71 2};

3 11 3 11
L(w):diag{0?0)0707ua77a)}a

5 %Ug Ppé O1x5 OT
_ | pe€ puls  Cszxs(§) —¢€
;A](w)gj Os5x1  Dsx3(§)  Osxs 0 ’
0 —£ O1x5 0
where
& & & 0 0 =& & 0
Csxs5(8) = 0 =& 0 —& & | Dsx3() =] & 0 =&
1§ 0 &—-& 0 =& %1 & &
0 —& —&

for each £ € S3.

3
Note that the matrix ) A;&; is not symmetric. Therefore, the theory of symmetric hy-
j=1
perbolic parabolic system does not apply directly. Fortunately, we can perform a transforma-

tion to overcome this problem. Let by; := W%,bgg = #1222 This particularly implies
a1] = b11 + b227a22 = b11 - b22. Let @ := (p, U,bll, a12,013, b22,a23, SQ) Then system (24) can be
rewritten as
- 3 . -
Ag(@)w + > Aj(@)0,,@ + L(@)o = f1(@,0,V0), 2.5)
Jj=1 .
peg0id — KAO = fao(w,V@,0,V0).

Here, f1(@,0,V0) = (0,p9V0,0,0,0,0,0,0), fo, V,0,VE) = SVu — peguVl — Oppdivu and

~ 3 ~ 311111
Ao<@)=diag{p;,p,p,p,ﬁ nonnn Tz},L(@:diag{o,o,o,o?M fffff }

u 9 ﬂ 9 /1/ b M b ’LL b A 9 M, M? /1/7 ’LL7 )\
and
, %ug Pp€ 0 0
P ove | €T pulls  Caxs(§) —€T
= LEOG=1T Dose 0 0o |’
’ 0 —¢ 0 0
where
&1 —& 283
3 & & &G & 0 3 —& —& 0
Csxs(§)=| & & 0 & =& |,Dsx3)=]| & 0 =&
263 0 =& 0 =& & & 0

0 —& —&
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Note that Csxs(€) = DI, 4(€) for each & € S3. Therefore, the system (2.5) is a symmetric
hyperbolic parabolic system and the local existence theorem follows, see [15, 13, 19].

In the two-dimensional case n = 2, we only remark that one can easily check that the system
can be written in a symmetric form immediately. This is different from the 3-d case, for which we
needed further transformations to get a system in a symmetric form. O

Remark 2.1. In the isentropic case, Yong [28] proved a local existence theorem by checking that
the system satisfies an entropy dissipation condition. A global existence theorem is not proved. In
contrast to [28], our method is to write out the corresponding system explicitly for each component,
see (2.4) and to try to find a symmetrizer explicitly, see (2.5). This methods allow us to deal with
the non-isentropic case and more importantly, to get the global solutions by checking the so called
Kawashima condition, see Theorem 2.2 below.

Theorem 2.2. (Global existence) Let s > so + 1 with so > [§] + 1 be integers. Suppose that
the initial data satisfy (po — 1,u0,0p — 1,510, S20) € H®. Then there exists a positive constant §
such that if || (po — 1, uo, 0o — 1, S10, 520)||s < 9, there exists a global unique solution (p,u,0,S1,S2)
satisfying

{(p —1,u,51,5) € C([0,00), H?) N CL([0, 00), H*1), 26)

(0 —1) € C([0,00), H*) N C*([0, 00, H*™2).
Proof. Again the interesting case is the tree-dimensional case n = 3.

Let U = (p,u 0,b11,a12, a13, bag, ass, S2). Linearizing the system (2.5) around the steady state
U=(p,u,0 b117a12,a137b22,a23,5’2) (1,0,1,0,0,0,0,0,0), one gets

Bo(U 6tU+ZB aC]U+ZZDJk By, U + L(U)U = 0. (2.7)
Jj=1 j=1k=1
Here, Bo(U) = diag {5, 1,1, 1,6, %20, 2, 2 2. 21 22 [(0) = diag {0,0,0,0,0,3, 1,1, 1 1 11,
Z Zng( 7)¢,& = diag {0,0,0,0, %,0,0,0,0,0,0} and
j=1k=1
0 Dpé 0 O1x5 0
3 ~ T Osus & Asus(§) &F
ZBj(U)fj = 0 Poé 0 O1x5 0 1,
j=1 Osx1 Afes(6) 0 O5x5 0
0 § 0 O1x5 0
where p, :=p,(1,1),€ :=eg(1,1) and
=& & & & 0
Azxs(@) = =& & 0 & =&
25 0 =& 0 =&
Define
0 &2 0 0 0
3 —fT 0 0 P3><5 0
Y Kig=al 0 0 0 0 0 (2.8)
j=1 0 —(PM)IL, 0 0 o0
0 0 0 0 0
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where ¢ := /D, and M = diag { ?;j,ﬁ ﬁ, ,lu ,IL} The positive parameter o and the matrix Psxs

will be determined later. A simple calculation gives

0 e 0 0 0
3 —ceT 0 0 PM 0
> KjgAg=a 0 0 o o0 o |, (2.9)
j=1 0 —(PMYT 0 0 O
0 0 0 0 0
which is an anti-symmetric square matrix. On the other hand, we have
1 3.3 3 3
522 (K& A + (K& ARE)T) + D) D& + L
Jj=1k=1 j=1k=1
0 2o Ze(A-PM) 2
L(PAT+APT)—c%¢"¢ 0 0 0
Zpe 0 £ —Le¢pPMm 0 ,
< (AT—(PM) )T 0 —re (PM)TgT L-3((PM)TA+ATPM) —L(PM)TET
0 0 —lepm) £
where J = dlag ; ; %, %7 ;} We need to show that the matrix @) is a symmetric positive definite

matrix in order to explore the theory of symmetric hyperbolic parabolic system, see [13, 25]. Let
n = (n1,m2,73,14,75) Where 11,713,175 € R and n3 € R? 1y € R5. Then we have

) 1. 1. 1.
nQn" = {04771 + 502100773 + 502774(AT§T —(PM)TET) + 202775] m
Tl
+ |mlG(PAT + APT) — 26T¢) |
1 1
- 552179771 + — i — p;m(PM)TfT] 73

(1 1 1 1
+ |58 m(EA = EPM) — %GnaéPM + 1 (QJ - (PM)TA+ ATPM)) - 2n5§PM] i

|2

1 1 1
+ =& — 57)4(PM)T£T + a/\ng,} s

al
+ &pomns + e na(ATET — (PM)TEM)m + mins — pona(PM)T ¢ 03 — ns€PMnj

1
+ 12 <2(PAT + APT) — anTg) nt.

_ 1 1 1
—647]%4» 773 +"74 (az]z((PM)TA+ATPM)> 77{4»777?

From the above formula, by choosing « sufficiently small, we see that the positive definiteness of
Q is equivalent to the positive definiteness of %(PAT + APT) — &2¢T¢. Therefore, our aim is to
choose P such that 1(PAT + APT) — e2¢T¢ is a positive definite matrix for each ¢ € S%. Let

=& —& & —& 0
P=c| & -& 0 & &
&3 0 -& 0 —&
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One easily calculates

. 1 0 -3ag

§(PAT + APT) — Egng =& 0 1 363

—34& —3864 1
Note that the first and second leading principal minors of the above matrix is 1. The third leading
principal minors is
1_9 202 90 2_1_2 2(1 _ g2
1636 - Lkl = 1- 280 - &),

Define a function f(z) =1— 2z(1 —),0 < 2 < 1. It is not difficult to see that ming<,<1 f(z) =
f (l) = % > 0. Therefore, the matrix %(PAT + APT) — 22¢T¢ is is a positive definite matrix for

2
each ¢ € S3. So, Kawashima’s condition follows and the proof is completed. O

Remark 2.2. We note that a smallness condition on the LP-norm of the initial data is not nec-
essary since there are no quadratic terms of the type |(p — 1,u,0 — 1,51, S2)|? in our system, see
[13]. In fact, one can see that in our system (2.2) the nonlinear terms appear in the form U -VU.
We also have that the conditions n > 3 and s > sg+ 2 there are changed inton > 2 and s > sg+1
here since there are no quadratic terms of this type.

Remark 2.3. Kawashima’s results also imply decay properties of the solutions, that is,
(p—1,u,0 —1,51,52) | s—(so+1) — 0, as t — oo.

Moreover, for n = 3, if we further assume s > so+ 2 and |[(p — 1,u,0 — 1,51, 52)||Lr < & where
p €[, %}, then the solutions have the following decay

311
[(p—1,u,0 — 1,81, 8)||ls-1 < C(A+1)" 20 2)||(P0*1,U0,90*1,510,520)Hs—1,p,

where the constant C' is neither depending on t nor on the data.

3. CONVERGENCE RESULTS

In this part, we show the compatibility of the revised Maxwell law with the Newtonian law.
This has been done for a similar singular limit in the isentropic case in [28], and for a singular limit
for compressible Navier-Stokes equations with hyperbolic heat conduction in [7]. There and here,
the energy method combined with sophisticated estimates of the nonlinear terms is used.

For simplicity, we assume 7, = 79 = 7. We shall show the uniform convergence of the system
(1.4) to the classical compressible Navier-Stokes system as 7 go to zero. To this end, we need the
following natural compatibility condition on the initial data, that is we assume

S10 = u(Vug + (Vue)™ — %divuo I,), Sz = Mdivug. (3.1)
Denote by (p7,u", 07,57, .57) the solutions given by Theorem 2.1 with G; satisfying Go CC G; CC
G. Denote
T, =sup{T >0,(p" —1,u",0" —1,57,57) € C([0,T],H®), (p",u",07,57,53) € G1}.
Then we have the following theorem.

Theorem 3.1. Let (p,u,0) be a smooth solution to the classical compressible Navier-Stokes equa-
tions with (p(x,0),u(z,0),0(x,0)) = (po, uo, 6p) satisfying

p e C([0,T.), HT3) nCY([0,T.], H**?), (u,0) € C([0,T.], H*3) n C*([0, T.], H*™)
with Ty > 0 (finite). Then there are positive constants 79 and C such that for T < 79,
H(pTauT’eT)(t?') - (pauﬂ)(t»')Hs <Cr (32)
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and
2 1 1
I1ST (£, ) — p (Vu + (Vu)T — ndivuIn> (t,)s <Crz, ||ST(t,-) — Adivu(t, )]s < C72  (3.3)

fort € [0, min{T,T:}), where C does not depend on 7.
Theorem 3.1 in particular implies that T’ is independent of 7, see [7, 27, 28].
Theorem 3.2. Under the condition of Theorem 3.1, for any Gy satisfying
GoUGy cCc Gy cC G,

where Gy = {U(p, u, 0, u(Vu+ (V)T — 2divul,), Adivu)(z,t), (z,t) € R" x [0,T,]}, we have that
T, > T holds for T > 0 sufficiently small.

Remark 3.1. We note that if the initial data are sufficiently small, there exists a global solution for
classical compressible Navier-Stokes equations, see [16]. Therefore, we can establish a convergence
results for any fized interval [0, Te,] for small data.

Proof. (of Theorem 3.1) We introduce the variables S := u(Vu + Vu® — 2divul,), 59 := Adivu
and define

pt = pTT_p,ud = UTT_uﬁd = al _975‘11 _Sic S?,Sg = 5% = SS. (3.4)
Our aim is to show that, for small 7 and for ¢ < min{T, T},
(%, u,6%)(t, )]s < C, [IVT(ST, 85)(t:)lls < C, (3.5)

where C' > 0 denotes constants not depending on 7 or t. The equations for the difference variables
(p?,ud, 04, 8¢, S9) can be written as

Oip? +u™Vp? + pTdivud = —utVp — pidivu =: fi,

ut + uTVud + Vg 4 LTt — L (div(SY) + VSY)

= —=ptu — = {(p7u” — pu)Vu+ (py — pp)Vp + (py — pe)VO} =: fo,

007 +uTVO! + Ll divut — Lok A0T — Lo (STVu + S{Vu + Spdivud + Sgdiva)  (3.6)
= 2 {(p7e) — peg)0il + (pTeju” — pequ)VO + (07 ph — Opg)divu} =: fa,

TpT ey
79,5¢ + S — p(Vud + (Vuh)T — 2divull,) = —9,5) =: fu,
70:8¢ + S¢ — Mivu? = —0,89 =: fs.
Here, we note that the expression for f3 is different from that in our previous paper [7], f3 there
does not include the term“ (STVud 4 ---)”. This is due to the fact that the velocity u? in

our case does not have enough dissipation compared to that in [7] and the term [|[V**1ud|| can
not be controlled. Instead, we shall use the dissipation of § to control such terms in the following
estimates. Now we define

1
pTeg

E:= sup [[(p,u,0)lls4+3+ sup [[pells42+ sup [[(ue, 0¢)ls41
0<t<T 0<t<T 0<t<T

and
E:= sup [[(p%,u,0% /TS, V/TS5)|s-
0<t<T
Note that
E<C (3.7)
and

(o7, uT,67)]ls < C+TE |I(ST, 87)lls < C + v/TE. (3.8)
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Here and in the sequel we often use the Moser-type inequalities from Lemma 4.1 in the Appendix.
We also need the following two lemmas in order to continue the proof of Theorem 3.1. We will use
the letter C to denote various positive constants.

Lemma 3.3. For 0 < |a| < s, we have the following estimates
IVefill < CEL ||V fof| < C(EY + 7(EY)?), |V f5]| < C(E* + 7(EY)?). (3.9)

Proof. The proof of Lemma 3.3 can be found in our previous paper [7], we recall it here for
completeness. First, by Sobolev’s imbedding theorem and the Moser-type inequalities, using (3.7),
we have

VSl = [V (—u?Vp — pidivul|
< |NVollLes [[Vou| + [u?| Lo [V pl| 4 [|divel| Lo [|[ Vo] + || p%]| L= |V | < CEX.
Remember that both (p, u,0) and (p™,u", 07, ST, S7) take values in a convex compact subset of the

state space, we have

1

HW(prdut)

d d
vl + |1
4 Pl

< CEY + C|lp% 1= |Vop7|| < C(E + 7(EY)?).

< Jugll =

]

[V % |
o0

Similarly, we have
1
HV“ (W(pTuT - pu)Vu> H < C(E*+7(EY)?).
Recalling that p(p, ) is a smooth function of (p,#) and using the mean value theorem, we obtain

HV“ (T/lf (0], —po)Vp+ (pf — pe)V9)> H

<C

ve (plT(pd + 60 (Vp + v9)> H < C(EY +1(EY?).

By assumption A.2 and using the mean value theorem, we have

(e} 1 T _ T
(g o)

1 p?
v ( —(ep — 69)> + || Ve ( ~ 7_69(975)
Teg prey

< CE +1(BY)?),

S ‘

where we used the fact that
IV (el < o7 Il lIV eIl + lleglle< VoIl < C + TE.

Similarly, we get

1
HVO‘ ( —(0"py — 9p9)divu) H < C(E* +7(E%?)
TP ey

and

1
ve ( — (pTepu” — peeu)VQ) H < C(EY +7(EY?).
TpTey

This completes the proof of Lemma 3.3. (]
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Lemma 3.4. We have for 7 <1 that

d

(P )2 <O+ (EY? 4 r(EHY. (3.10)

Proof. Applying V¢ to the equations (3.6) and multiplying the result by %V“pd, pTVeul, ";—fgvaed,
1 V“Sl, XV“SZ, respectively, we get

1d
2 dt

s [{geon s st Lo as

pT «a T (7 "ep o T @ z o
{pi(v o) o (Vo) o E (VR0 4 (VST + (Y S%)z}dx

5 3
§ZFi+ZTi+ZG¢+D+N, (3.11)
=1 =1 =1
where
Fy = /vaflp—ivapddx, Fy = /Vo‘fngVauddx,
F3 = /vaf ik 9V“9ddx Fy = /V“f4Vanda:,F5 = /V“f5VaS§lda:
_ % a d\2 _ T a, d\2 _ preg apnd\2
T = o (Ve oda, Ty = [ pl(V*u®)2da, Ts = o (V4O%) dx
t t
D /{(va(”Aad) - ”va(md)) P gogi vt )vaﬂodvaad}
el pTeg 0T 07
N= [ (

Gl = / Va(uTVpd)];—iVapddz, Gy = / Vo‘(pTdivud)p—iVO‘pddx,

TVul + S{Vu + S3divud + S‘fdlvu)) Vede,

Gs = /V”‘(uTVud)pTV”‘uddx, Gy = /Va(p—’;Vpd)pTVauddx,
Gs = / vo (ke 059%™V uldz, Gg = / va< (divS? +v52)> P Veulde,

Gy = /va Tved)”ge‘) Vo9idar, Gy _/va< "Po % div )pgf"vaeddx,

Gy = / §VO‘ (Vud + (Vuh)T — ndivudln) vesddz, Gip = / Ve (divu?) vV Sddz.

In the sequel, we keep in mind that some inequalities such as the Cauchy-Schwarz inequality, the
Holder inequality or the Moser-type inequalities will be frequently used without being mentioned
explicitly (for exemplarily detailed estimates see (3.12) - (3.16) below). From Lemma 3.3 we know
that

F; < C((BY)? + 7(E)?),

for each i = 1,2,3 and Fy + F5 < C(e) + &(||VYSE|? + ||[V2SE||?) (for € > 0, with C(e) at most
depending on ¢; here we use the fact that 0,(SY) = pu(Vu, + (Vuy)” — 2divuel), 9,59 = Mivy,
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and ||u¢lls+1 < C). Moreover, we have

ID| < Hva ( A9d> — v (n6%)

P €y

p‘reg apd
—2Vl
5

pTeg

v a+1lpd apd
+||V ()] vesretioee
pTeg

=¢ (H ( >
pTe;
(Moser inequalities Lemma 4.1 (ii))

+ |avee e (v ()] 1o

IVt A0 + [ A0 L

oo

= A+[B] (3.12)
with
B< s||V‘““9d||2 +C(e) ((Ed)2 + T(Ed)3 + T2(Ed)4) (3.13)
and
A < ”V( “T> ||Va+19d|| 'l) eevaed
pTey ) |l oo
A0 ||V ( )H H” % yogd
Prep
= A+ A,. (3.14)
We have
Ay <e||[ VY12 4 C(e) (BY)? + 7(BET)? + 72 (EH?) (3.15)
and
Ay < C(EY?||Ve ( ”T> H < C(EH?(1 +7EY), (3.16)
ey

where we used

1 1
v ()| < e ivet < .

P o717
which follows from the Moser-type inequalities Lemma 4.1 (i). Summarizing (3.12) - (3.16) we
have

ID| < || VY12 + C(e) (BY)? + 7(BY)? + (B . (3.17)

The term N can be divided into two terms:
N = / vo (
= /Va(

—: N, + Ny.

TVul + S{Vu + S3divu? + S dlvu)) V*0dz

TVul + S3divu )) Vehdz + /va ( —(S{Vu+ S¢ d1vu)> Vehdx
0

We estimate the term Nj as follows: for @ = 0, we have

|N1| = / rer (STVu® + S7divu?) 0%dx
pTe

<" ,97, . SD = IVl [[llo?]] < C(ED? + vr(EY)?);
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for 1 < a <'s, we have for 7 < 1 that

1
|Ny| = ’/va—l ( (S;vud+sgdivud)) verlgddy

prey

< (IGo7, 07, ST, S | Loe IV u || + |V || e |V (07, 67, ST, S9)||) [V F167)
< e VEHOYP + Cle) (BD)? + VT (BT +7(BY)).
For the term Ns, we can get

1 1
-Vu)ll + [l —
P €y

<ell(S7, S3)II; + Cle) (BY)* + 7(BEY)? + 7°(EY)*).
Therefore, we obtain
IN] < e(IVoHo> + [[(ST, S)I12) + C(e)(ED)? + m(BET)*).

Now, we estimate G; for each 1.

Ny < (||<Sf,s§>||m||va< wnmnvawf,S@n) oo

Te

/U/T

|Gl| = ’/ {(V‘X(Uﬂ'vpd) _ uTva-i-lpd)%vapd + pfpva-l—lpdvapd} dz

o, T T a a quT
< O(IVp o V2] + [V | |70 I ¥ pd||+HV< p)\

Ivep?®
Lo

< C((EY? + 7(EY®).
G3 and G7 can be estimated in the same way.

|G2 + G4|
= 1vu — 1v u)— i
‘/(Va(p‘rd- d) p-rd- v d)iivapdd
+ /{Vo‘(iind)pTVo‘ud p;VO‘deV"‘ud}dx - /Vp;V“udV"‘pddx

-

. o T p
< Ol (divu, Vo) e (| V07| + pri)

\)(HV%H vy

T

. D
+ ||[(Vp?, Vpy, p%) [Veut |||Vl < C(ED)? + 7(ET)).
LOO
G5 + Gg can also be estimated similarly, while
|G6 + Gg + G10|

1 1
— ‘ / {va (pT(divSf + vsg)> - (divves] + va“sg)}pfvauddx

<NV(ST, S L= IV IV || + Vo7 | oo [V (ST, SV *u|
<e|l(ST, SN2 + Ce)(BEY)? + 7(EY)® + r2(EY)Y),
where we used the cancelation relations
1 2
/ (VedivS{)Voulder = — / 5va(vud + (Vuh)T — Edivudln)vasfdgc
and

/ V(VSHVeuddr = — / Ve (divud) Ve Sddz,
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which can be easily shown to hold by doing partial integration and using the fact that S¢ is a
symmetric and traceless matrix. Such cancelation relations are essential in our estimates which
implies the necessity of dividing the stress tensor S into S; and S5I,, and do relaxation for S; and
So, respectively. In fact, it is not difficult to see that if we only do a relaxation for S, then the
cancelation relation fails and the validity of the estimates will be destroyed.

For the terms T;,7 = 1,2, 3, we have

T3] < l[(p7, 6]) | o= (ED)? < C(L+7(|(pf, 07) || 1) (E)?
< C(L+7(BY+ (BT +|(S1, 53) 1)) (E)?
< CE((ED? +7(B) + 72(BY)") +ll(ST, 593
By choosing ¢ sufficiently small, using assumption A.2 and summing « for 0 to s, we conclude for
7 <1 that
d

T EDHIVOTE +110ST, )13

< O(L+ (BN + v7(BY)? + 1(BEY)*) < C(1 + (BY)? + 7(EY)).
Therefore, (3.10) holds and this completes the proof of Lemma 3.4. g

Using Lemma 3.4, we can finally show that E? is uniformly bounded. Let g := (E%)2, we have
d
39S C+g+797), (3.18)

We assume a priori that

g < et 1. (3.19)

We will show that g < %(ezCT —1) holds if we choose 7 sufficiently small. This justifies the a priori
estimate (3.19) and thus proves our result. In fact, if 7 < ﬁ, we get g < % and thus 7¢% < g.
Hence, the inequality (3.18) turns into

d
39 <C0+29)

Solving the above inequality, we immediately get g < %(62CT —1). This finishes the proof of the
main Theorem 3.1. (]

4. APPENDIX

The following Moser-type inequalities have been used in Section 3 and can be found as a standard
tool for example in [15, 19].

Lemma 4.1. (i) Let rrm,n € N,1 < p < oo, h € C"(R™), B := ||hHCT(m). Then there is
a constant ¢ = c(r,m,n,p) > 0 such that for all w = (wy,...,wy) € WHP(R™) N L>(R™) with

||lw]|Lee <1 the inequality
197 h(w) 2 < ¢ B [97w]l1 (4.1)
holds.

(ii) Let m € N. Then there is a constant ¢ = c(m,n) > 0 such that for all f,g € W™2 N L>® and
a € NJ, |a| < m, the following inequalities hold:
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(1
2]
(3]
(4]
(5]
(6]
(7]
(8]

[10]
(11]
(12]
(13]
(14]
[15]
[16]
(17]
18]
(19]
20]
21]

[22]
23]

[24]

YUXI HU AND REINHARD RACKE

IVl < cllflle=lV"gll2 + V™ fll2llgll ), (4.2)
IV (fg) = fVel2 < clIVFL=lV™ gl + IV Fll2llgll o). (4.3)
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