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Abstract. We investigate the compressible Navier-Stokes equations where the constitutive law

for the stress tensor given by Maxwell’s law is revised to a system of relaxation equations for
two parts of the tensor. The global well-posedness is proved as well as the compatibility with

the classical compressible Navier-Stokes system in the sense that, for vanishing relaxation pa-

rameters, the solutions to the Maxwell system are shown to converge to solutions of the classical
system.
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1. Introduction

The classical compressible Navier-Stokes equations in Rn, n = 2, 3, are given by
∂tρ+ div(ρu) = 0,

∂t(ρu) + div(ρu⊗ u) +∇p = div(S),

∂t(ρ(e+ 1
2u

2)) + div(ρu(e+ 1
2u

2) + up)− κ4θ = div(uS),

(1.1)

with the constitutive law for a Newtonian fluid,

S = µ(∇u+∇uT − 2

n
divu In) + λdivu In. (1.2)

Here, ρ, u = (u1, · · · , un), p, S, e and θ represent fluid density, velocity, pressure, stress tensor,
specific internal energy per unit mass and temperature, respectively. In denotes the identity
matrix in Rn. The equations are the consequence of conservation of mass, momentum and energy,
respectively. κ, µ, λ are positive constants.

Maxwell’s relaxation replaces (1.2) by the differential equation

τ∂tS + S = µ(∇u+∇uT − 2

n
divu In) + λdivu In, (1.3)

with the relaxation parameter τ > 0. For τ → 0 we formally recover (1.2). For incompressible
Navier-Stokes equations this relaxation has been discussed by Racke & Saal [20, 21] and Schöwe
[23, 24] proving global well-posedness for small data and rigorously investigating the singular limit
as τ → 0.

A splitting of the tensor S was discussed by Yong [28] in the isentropic case leading to the
following system with a revised Maxwell law, now for the non-isentropic case, that we are going
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to further investigate here:

∂tρ+ div(ρu) = 0,

∂t(ρu) + div(ρu⊗ u) +∇p = div(S1) +∇S2,

∂t(ρ(e+ 1
2u

2)) + div(ρu(e+ 1
2u

2) + up)− κ4θ = div(u(S1 + S2In)),

τ1∂tS1 + S1 = µ(∇u+∇uT − 2
ndivuIn),

τ2∂tS2 + S2 = λdivu,

(1.4)

where S1 is a n×n square matrix and symmetric and traceless if it was initially, and S2 is a scalar
variable.

A similar revised Maxwell model was considered by Chakraborty & Sader [1] for a compressible
viscoelastic fluid (isentropic case), where τ1 counts for the shear relaxation time, and τ2 counts
for the compressional relaxation time. The importance of this model for describing high frequency
limits is underlined together with the presentation of numerical experiments. The authors conclude
that it provides a general formalism with which to characterize the fluid-structure interaction of
nanoscale mechanical devices vibrating in simple liquids.

We consider the more complex non-isentropic case with general equations of state assuming that
the pressure p = p(ρ, θ) and e = e(ρ, θ) are smooth functions of (ρ, θ) satisfying

ρ2eρ(ρ, θ) = p(ρ, θ)− θpθ(ρ, θ), (1.5)

where θ denotes the absolute temperature. In particular, the case of a polytropic gas p = Rρθ, e =
cvθ is included here.

We investigate the Cauchy problem for the functions

(ρ, u, θ) : Rn × [0,+∞)→ R+ × Rn × R+

with initial condition

(ρ(x, 0), u(x, 0), θ(x, 0)) = (ρ0, u0, θ0). (1.6)

In [28] a local existence result is presented exploiting a entropy dissipation structure found. Here
we first present a local existence theorem in suggesting an explicit transformation to a symmetric-
hyperbolic system. Moreover, we prove a global existence theorem for small data. The strategy
follows our paper [7].

As second topic we consider the singular limit τ := τ1 = τ2 → 0, being more complex than the
local in time singular limit studied in [28] for the isentropic case. For τ = 0, the relaxed system
(1.4) turns into the classical Newtonian compressible Navier-Stokes system (1.1), (1.2). For the
latter, because of its physical importance and mathematical challenges, the well-posedness has
been widely studied, see [2, 3, 4, 5, 6, 8, 10, 11, 12, 14, 16, 17, 18, 22, 26]. In particular, the local
existence and uniqueness of smooth solutions was established by Serrin [22] and Nash [18] for initial
data far away from vacuum. Later, Matsumura and Nishida [16] got global smooth solutions for
small initial data without vacuum. For large data, Xin [26], Cho and Jin [2] showed that smooth
solutions must blow up in finite time if the initial data has a vacuum state.

We will show the convergence of solutions to the relaxed system (1.4) to the the classical system
(1.1), (1.2) rigorously and also obtain the convergence order with respect to τ . The energy method
is used extending [7, 28].

To summarize the main new contributions, we mention

• a first discussion of the non-isentropic compressible Navier-Stokes equations with revised
Maxwell’s law,

• the proof of global well-posedness via finding appropriate symmetric structures,
• the description of the singular limit to the classical Newtonian case in terms of order of

convergence in the relaxation parameter τ .
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The paper is organized as follows. In Section 2 we prove the local well-posedness as well as a
global existence result for small data for the Cauchy problem (1.4), (1.6). The singular limit as
τ → 0 is subject of Section 3, where a convergence result is proved. In the Appendix in Section 4,
we provide Moser-type inequalities.

Finally, we introduce some notation. Wm,p = Wm,p(Rn), 0 ≤ m ≤ ∞, 1 ≤ p ≤ ∞, denotes
the usual Sobolev space with norm ‖ · ‖m,p. For convenience, Hm and Lp stand for Wm,2(Ω) and
W 0,p(Ω) with norms ‖ · ‖m and ‖ · ‖Lp , respectively. For p = 2, we denote the norm ‖ · ‖L2 by ‖ · ‖.

2. Local and Global Well-Posedness

In this part, we prove the local and the global well-posedness for the Cauchy problem (1.4),
(1.6). For this we need the following assumptions A.1 and A.2. As in [7] we try to transform the
system with symmetrizers to finally be able to apply the results from Kawashima, see [13] or [25].

• A.1. The initial data satisfy

{(ρ0, u0, θ0, S10, S20)(x) : x ∈ Rn} ⊂ [ρ∗, ρ
∗]× [−C1, C1]n × [θ∗, θ

∗]× [−C1, C1]n×n × [−C1, C1]

=: G0,

where C1 > 0 as well as 0 < ρ∗ < 1 < ρ∗ <∞ and 0 < θ∗ < 1 < θ∗ <∞ are constants.
• A.2. For each given G1 satisfying G0 ⊂⊂ G1 ⊂⊂ G, ∀(ρ, u, θ, S1, S2) ∈ G1, the pressure p

and the internal energy e satisfy

p(ρ, θ), pθ(ρ, θ), pρ(ρ, θ), eθ(ρ, θ) > C(G1) > 0,

where C(G1) is a positive constants depending on G1.

For the standard assumption A.2 see for example [9, 17].

Theorem 2.1. (Local existence) Let s ≥ s0 + 1 with s0 ≥ [n2 ] + 1 be integers. Suppose that the
Assumptions A.1 and A.2 hold and that the initial data (ρ0 − 1, u0, θ0 − 1, S10, S20) are in Hs.
Then, for each convex open subset G1 satisfying G0 ⊂⊂ G1 ⊂⊂ G, there exists Tex > 0 such that
the system (1.4) has an unique classical solution (ρ, u, θ, S1, S2) satisfying{

(ρ− 1, u, S1, S2) ∈ C([0, Tex], Hs) ∩ C1([0, Tex], Hs−1),

θ − 1 ∈ C([0, Tex], Hs) ∩ C1([0, Tex], Hs−2)
(2.1)

and

(ρ, u, θ, S1, S2)(x, t) ∈ G1, ∀(x, t) ∈ Rn × [0, Tex].

Proof. First we consider the three-dimensional case n = 3. Using (1.5), we rewrite the system
(1.4) as 

∂tρ+ u∇ρ+ ρdivu = 0,

ρ∂tu+ ρu∇u+ pθ∇θ + pρ∇ρ = divS1 +∇S2,

ρeθ∂tθ + ρeθu∇θ + θpθdivu = κ4θ + (S1 + S2I3)∇u,
τ1∂tS1 + S1 = µ(∇u+ (∇u)T − 2

3divuI3),

τ2∂tS2 + S2 = λdivu.

(2.2)

Without loss of generality, we assume S1 to take the following form:

S1 =

 a11 a12 a13

a12 a22 a23

a13 a23 −a11 − a22

 . (2.3)
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Let ω = (ρ, u, a11, a12, a13, a22, a23, S2). Then, we haveA0(ω)ωt +
3∑
j=1

Aj(ω)∂xjω + L(ω)ω = f1(ω, θ,∇θ),

ρeθ∂tθ − κ4θ = f2(ω, θ,∇ω,∇θ).
(2.4)

Here, f1(ω, θ,∇θ) = (0, pθ∇θ, 0, 0, 0, 0, 0, 0), f2(ω, θ,∇ω,∇θ) = S∇u− ρeθu∇θ − θpθdivu and

A0(ω) = diag

{
pρ
ρ
, ρ, ρ, ρ,

3τ1
4µ

,
τ1
µ
,
τ1
µ
,

3τ1
4µ

,
τ1
µ
,
τ2
λ

}
,

L(ω) = diag

{
0, 0, 0, 0,

3

4µ
,

1

µ
,

1

µ
,

3

4µ
,

1

µ
,

1

λ

}
,

3∑
j=1

Aj(ω)ξj =


pρ
ρ uξ pρξ 01×5 0

pρξ
T ρuξI3 C3×5(ξ) −ξT

05×1 D5×3(ξ) 05×5 0
0 −ξ 01×5 0

 ,

where

C3×5(ξ) =

 −ξ1 −ξ2 −ξ3 0 0
0 −ξ1 0 −ξ2 −ξ3
ξ3 0 ξ3 − ξ1 0 −ξ2

 , D5×3(ξ) =


−ξ1 ξ2

2
ξ3
2

−ξ2 −ξ1 0
−ξ3 0 −ξ1
ξ1
2 −ξ2 ξ3

2
0 −ξ3 −ξ2


for each ξ ∈ S3.

Note that the matrix
3∑
j=1

Ajξj is not symmetric. Therefore, the theory of symmetric hy-

perbolic parabolic system does not apply directly. Fortunately, we can perform a transforma-
tion to overcome this problem. Let b11 := a11+a22

2 , b22 := a11−a22

2 . This particularly implies
a11 = b11 + b22, a22 = b11 − b22. Let ω̃ := (ρ, u, b11, a12, a13, b22, a23, S2). Then system (2.4) can be
rewritten as Ã0(ω̃)ω̃t +

3∑
j=1

Ãj(ω̃)∂xj ω̃ + L̃(ω̃)ω̃ = f1(ω̃, θ,∇θ),

ρeθ∂tθ − κ4θ = f2(ω̃,∇ω̃, θ,∇θ).
(2.5)

Here, f1(ω̃, θ,∇θ) = (0, pθ∇θ, 0, 0, 0, 0, 0, 0), f2(,∇ω̃, θ,∇θ) = S∇u− ρeθu∇θ − θpθdivu and

Ã0(ω̃) = diag

{
pρ
ρ
, ρ, ρ, ρ,

3τ1
µ
,
τ1
µ
,
τ1
µ
,
τ1
µ
,
τ1
µ
,
τ2
λ

}
, L̃(ω̃) = diag

{
0, 0, 0, 0,

3

µ
,

1

µ
,

1

µ
,

1

µ
,

1

µ
,

1

λ

}
and

3∑
j=1

Ãj(ω̃)ξj =


pρ
ρ uξ pρξ 0 0

pρξ
T ρuξI3 C̃3×5(ξ) −ξT

0 D̃5×3(ξ) 0 0
0 −ξ 0 0

 ,

where

C̃3×5(ξ) =

 −ξ1 −ξ2 −ξ3 −ξ1 0
−ξ2 −ξ1 0 ξ2 −ξ3
2ξ3 0 −ξ1 0 −ξ2

 , D̃5×3(ξ) =


−ξ1 −ξ2 2ξ3
−ξ2 −ξ1 0
−ξ3 0 −ξ1
−ξ1 ξ2 0

0 −ξ3 −ξ2

 .
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Note that C̃3×5(ξ) = D̃T
5×3(ξ) for each ξ ∈ S3. Therefore, the system (2.5) is a symmetric

hyperbolic parabolic system and the local existence theorem follows, see [15, 13, 19].
In the two-dimensional case n = 2, we only remark that one can easily check that the system

can be written in a symmetric form immediately. This is different from the 3-d case, for which we
needed further transformations to get a system in a symmetric form. �

Remark 2.1. In the isentropic case, Yong [28] proved a local existence theorem by checking that
the system satisfies an entropy dissipation condition. A global existence theorem is not proved. In
contrast to [28], our method is to write out the corresponding system explicitly for each component,
see (2.4) and to try to find a symmetrizer explicitly, see (2.5). This methods allow us to deal with
the non-isentropic case and more importantly, to get the global solutions by checking the so called
Kawashima condition, see Theorem 2.2 below.

Theorem 2.2. (Global existence) Let s ≥ s0 + 1 with s0 ≥ [n2 ] + 1 be integers. Suppose that
the initial data satisfy (ρ0 − 1, u0, θ0 − 1, S10, S20) ∈ Hs. Then there exists a positive constant δ
such that if ‖(ρ0− 1, u0, θ0− 1, S10, S20)‖s ≤ δ, there exists a global unique solution (ρ, u, θ, S1, S2)
satisfying {

(ρ− 1, u, S1, S2) ∈ C([0,∞), Hs) ∩ C1([0,∞), Hs−1),

(θ − 1) ∈ C([0,∞), Hs) ∩ C1([0,∞, Hs−2).
(2.6)

Proof. Again the interesting case is the tree-dimensional case n = 3.
Let U = (ρ, u, θ, b11, a12, a13, b22, a23, S2). Linearizing the system (2.5) around the steady state

Ū = (ρ̄, ū, θ̄, b̄11, ā12, ā13, b̄22, ā23, S̄2) = (1, 0, 1, 0, 0, 0, 0, 0, 0), one gets

B0(Ū)∂tU +

3∑
j=1

Bj(Ū)∂xjU +

3∑
j=1

3∑
k=1

Djk(Ū)∂xjxkU + L(Ū)U = 0. (2.7)

Here, B0(Ū) = diag
{
p̄ρ, 1, 1, 1, ēθ,

3τ1
µ ,

τ1
µ ,

τ1
µ ,

τ1
µ ,

τ1
µ ,

τ2
λ

}
, L(Ū) = diag

{
0, 0, 0, 0, 0, 3

µ ,
1
µ ,

1
µ ,

1
µ ,

1
µ ,

1
λ

}
,

3∑
j=1

3∑
k=1

Djk(Ū)ξjξk = diag {0, 0, 0, 0, κ, 0, 0, 0, 0, 0, 0} and

3∑
j=1

Bj(Ū)ξj =


0 p̄ρξ 0 01×5 0

p̄ρξ
T 03×3 p̄θξ

T A3×5(ξ) ξT

0 p̄θξ 0 01×5 0
05×1 AT3×5(ξ) 0 05×5 0

0 ξ 0 01×5 0

 ,

where p̄ρ := pρ(1, 1), ēθ := eθ(1, 1) and

A3×5(ξ) =

 −ξ1 −ξ2 −ξ3 −ξ1 0
−ξ2 −ξ1 0 ξ2 −ξ3
2ξ3 0 −ξ1 0 −ξ2

 .

Define

3∑
j=1

Kjξj = α


0 c̄2ξ 0 0 0
−ξT 0 0 P3×5 0

0 0 0 0 0
0 −(PM)T5×3 0 0 0
0 0 0 0 0

 (2.8)
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where c̄ :=
√
p̄ρ and M = diag

{
3τ
µ ,

τ
µ ,

τ
µ ,

τ
µ ,

τ
µ

}
. The positive parameter α and the matrix P3×5

will be determined later. A simple calculation gives

3∑
j=1

KjξjA0 = α


0 c̄2ξ 0 0 0

−c̄2ξT 0 0 PM 0
0 0 0 0 0
0 −(PM)T 0 0 0
0 0 0 0 0

 , (2.9)

which is an anti-symmetric square matrix. On the other hand, we have

Q :=
1

2

3∑
j=1

3∑
k=1

(
KjξjAkξk + (KjξjAkξk)T

)
+

3∑
j=1

3∑
k=1

Djkξjξk + L

= α


c̄4 0 c̄2

2 pθ
c̄2

2 ξ(A−PM) c̄2

2

0 1
2 (PAT+APT )−c̄2ξT ξ 0 0 0

c̄2

2 pθ 0 κ
α − pθ2 ξPM 0

c̄2

2 (AT−(PM)T )ξT 0 − pθ2 (PM)T ξT 1
αJ−

1
2 ((PM)TA+ATPM) − 1

2 (PM)T ξT

c̄2

2 0 0 − 1
2 ξ(PM) 1

αλ

 ,

where J = diag
{

3
µ ,

1
µ ,

1
µ ,

1
µ ,

1
µ

}
. We need to show that the matrix Q is a symmetric positive definite

matrix in order to explore the theory of symmetric hyperbolic parabolic system, see [13, 25]. Let
η = (η1, η2, η3, η4, η5) where η1, η3, η5 ∈ R1 and η3 ∈ R3, η4 ∈ R5. Then we have

ηQηT =

[
c̄4η1 +

1

2
c̄2pθη3 +

1

2
c̄2η4(AT ξT − (PM)T ξT ) +

1

2
c̄2η5

]
η1

+

[
η2(

1

2
(PAT +APT )− c̄2ξT ξ)

]
ηT2

+

[
1

2
c̄2pθη1 +

1

α
κη3 −

pθ
2
η4(PM)T ξT

]
η3

+

[
1

2
c̄2η1(ξA− ξPM)− pθ

2
η3ξPM + η4

(
1

α
J − 1

2
((PM)TA+ATPM)

)
− 1

2
η5ξPM

]
ηT4

+

[
1

2
c̄2η1 −

1

2
η4(PM)T ξT +

1

αλ
η5

]
η5

= c̄4η2
1 +

κ

α
η2

3 + η4

(
1

α
J − 1

2
((PM)TA+ATPM)

)
ηT4 +

1

αλ
η2

5

+ c̄2pθη1η3 + c̄2η4(AT ξT − (PM)T ξT )η1 + c̄2η1η5 − pθη4(PM)T ξT η3 − η5ξPMηT4

+ η2

(
1

2
(PAT +APT )− c̄2ξT ξ

)
ηT2 .

From the above formula, by choosing α sufficiently small, we see that the positive definiteness of
Q is equivalent to the positive definiteness of 1

2 (PAT + APT ) − c̄2ξT ξ. Therefore, our aim is to

choose P such that 1
2 (PAT +APT )− c̄2ξT ξ is a positive definite matrix for each ξ ∈ S3. Let

P = c̄2

 −ξ1 −ξ2 −ξ3 −ξ1 0
−ξ2 −ξ1 0 ξ2 −ξ3
ξ3 0 −ξ1 0 −ξ2

 .
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One easily calculates

1

2
(PAT +APT )− c̄2ξT ξ = c̄2

 1 0 − 3
2ξ1ξ3

0 1 − 3
2ξ2ξ3

− 3
2ξ1ξ3 − 3

2ξ2ξ3 1

 .

Note that the first and second leading principal minors of the above matrix is 1. The third leading
principal minors is

1− 9

4
ξ2
2ξ

2
3 −

9

4
ξ2
1ξ

2
3 = 1− 9

4
ξ2
3(1− ξ2

3).

Define a function f(x) = 1− 9
4x(1− x), 0 ≤ x ≤ 1. It is not difficult to see that min0≤x≤1 f(x) =

f
(

1
2

)
= 7

16 > 0. Therefore, the matrix 1
2 (PAT + APT )− c̄2ξT ξ is is a positive definite matrix for

each ξ ∈ S3. So, Kawashima’s condition follows and the proof is completed. �

Remark 2.2. We note that a smallness condition on the Lp-norm of the initial data is not nec-
essary since there are no quadratic terms of the type |(ρ − 1, u, θ − 1, S1, S2)|2 in our system, see
[13]. In fact, one can see that in our system (2.2) the nonlinear terms appear in the form U · ∇U .
We also have that the conditions n ≥ 3 and s ≥ s0 + 2 there are changed into n ≥ 2 and s ≥ s0 + 1
here since there are no quadratic terms of this type.

Remark 2.3. Kawashima’s results also imply decay properties of the solutions, that is,

‖(ρ− 1, u, θ − 1, S1, S2)‖s−(s0+1) → 0, as t→∞.

Moreover, for n = 3, if we further assume s ≥ s0 + 2 and ‖(ρ − 1, u, θ − 1, S1, S2)‖Lp ≤ δ where
p ∈ [1, 3

2 ], then the solutions have the following decay

‖(ρ− 1, u, θ − 1, S1, S2)‖s−1 ≤ C(1 + t)−
3
2 ( 1
p−

1
2 )‖(ρ0 − 1, u0, θ0 − 1, S10, S20)‖s−1,p,

where the constant C is neither depending on t nor on the data.

3. Convergence Results

In this part, we show the compatibility of the revised Maxwell law with the Newtonian law.
This has been done for a similar singular limit in the isentropic case in [28], and for a singular limit
for compressible Navier-Stokes equations with hyperbolic heat conduction in [7]. There and here,
the energy method combined with sophisticated estimates of the nonlinear terms is used.

For simplicity, we assume τ1 = τ2 ≡ τ . We shall show the uniform convergence of the system
(1.4) to the classical compressible Navier-Stokes system as τ go to zero. To this end, we need the
following natural compatibility condition on the initial data, that is we assume

S10 = µ(∇u0 + (∇u0)T − 2

n
divu0 In), S20 = λdivu0. (3.1)

Denote by (ρτ , uτ , θτ , Sτ1 , S
τ
2 ) the solutions given by Theorem 2.1 with G1 satisfying G0 ⊂⊂ G1 ⊂⊂

G. Denote

Tτ = sup {T > 0, (ρτ − 1, uτ , θτ − 1, Sτ1 , S
τ
2 ) ∈ C([0, T ], Hs), (ρτ , uτ , θτ , Sτ1 , S

τ
2 ) ∈ G1} .

Then we have the following theorem.

Theorem 3.1. Let (ρ, u, θ) be a smooth solution to the classical compressible Navier-Stokes equa-
tions with (ρ(x, 0), u(x, 0), θ(x, 0)) = (ρ0, u0, θ0) satisfying

ρ ∈ C([0, T∗], H
s+3) ∩ C1([0, T∗], H

s+2), (u, θ) ∈ C([0, T∗], H
s+3) ∩ C1([0, T∗], H

s+1)

with T∗ > 0 (finite). Then there are positive constants τ0 and C such that for τ ≤ τ0,

‖(ρτ , uτ , θτ )(t, ·)− (ρ, u, θ)(t, ·)‖s ≤ Cτ (3.2)
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and

‖Sτ1 (t, ·)− µ
(
∇u+ (∇u)T − 2

n
divuIn

)
(t, ·)‖s ≤ Cτ

1
2 , ‖Sτ2 (t, ·)− λdivu(t, ·)‖s ≤ Cτ

1
2 (3.3)

for t ∈ [0,min{T∗, Tτ}), where C does not depend on τ .

Theorem 3.1 in particular implies that Tτ is independent of τ , see [7, 27, 28].

Theorem 3.2. Under the condition of Theorem 3.1, for any G1 satisfying

G0 ∪ G̃0 ⊂⊂ G1 ⊂⊂ G,

where G̃0 =
{
∪(ρ, u, θ, µ(∇u+ (∇u)T − 2

ndivuIn), λdivu)(x, t), (x, t) ∈ Rn × [0, T∗]
}

, we have that
Tτ > T∗ holds for τ > 0 sufficiently small.

Remark 3.1. We note that if the initial data are sufficiently small, there exists a global solution for
classical compressible Navier-Stokes equations, see [16]. Therefore, we can establish a convergence
results for any fixed interval [0, Tex] for small data.

Proof. (of Theorem 3.1) We introduce the variables S0
1 := µ(∇u +∇uT − 2

ndivuIn), S0
2 := λdivu

and define

ρd :=
ρτ − ρ
τ

, ud :=
uτ − u
τ

, θd :=
θτ − θ
τ

, Sd1 :=
Sτ1 − S0

1

τ
, Sd2 :=

Sτ2 − S0
2

τ
. (3.4)

Our aim is to show that, for small τ and for t < min{T∗, Tτ},
‖(ρd, ud, θd)(t, ·)‖s ≤ C, ‖

√
τ(Sd1 , S

d
2 )(t, ·)‖s ≤ C, (3.5)

where C > 0 denotes constants not depending on τ or t. The equations for the difference variables
(ρd, ud, θd, Sd1 , S

d
2 ) can be written as

∂tρ
d + uτ∇ρd + ρτdivud = −ud∇ρ− ρddivu =: f1,

∂tu
d + uτ∇ud +

pτθ
ρτ∇θ

d +
pτρ
ρτ∇ρ

d − 1
ρτ (div(Sd1 ) +∇Sd2 )

= − 1
ρτ ρ

dut − 1
τρτ

{
(ρτuτ − ρu)∇u+ (pτρ − pρ)∇ρ+ (pτθ − pθ)∇θ

}
=: f2,

∂tθ
d + uτ∇θd +

θτpτθ
ρτeτθ

divud − 1
ρτeτθ

κ4θd − 1
ρτeτθ

(Sτ1∇ud + Sd1∇u+ Sτ2 divud + Sd2divu)

= 1
τρτeτθ

{(ρτeτθ − ρeθ)∂tθ + (ρτeτθu
τ − ρeθu)∇θ + (θτpτθ − θpθ)divu} =: f3,

τ∂tS
d
1 + Sd1 − µ(∇ud + (∇ud)T − 2

ndivudIn) = −∂tS0
1 =: f4,

τ∂tS
d
2 + Sd2 − λdivud = −∂tS0

2 =: f5.

(3.6)

Here, we note that the expression for f3 is different from that in our previous paper [7], f3 there
does not include the term“ 1

ρτeτθ
(Sτ1∇ud + · · · )”. This is due to the fact that the velocity ud in

our case does not have enough dissipation compared to that in [7] and the term ‖∇s+1ud‖ can
not be controlled. Instead, we shall use the dissipation of θ to control such terms in the following
estimates. Now we define

E := sup
0≤t≤T

‖(ρ, u, θ)‖s+3 + sup
0≤t≤T

‖ρt‖s+2 + sup
0≤t≤T

‖(ut, θt)‖s+1

and

Ed := sup
0≤t≤T

‖(ρd, ud, θd,
√
τSd1 ,

√
τSd2 )‖s.

Note that

E ≤ C (3.7)

and

‖(ρτ , uτ , θτ )‖s ≤ C + τEd, ‖(Sτ1 , Sτ2 )‖s ≤ C +
√
τEd. (3.8)
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Here and in the sequel we often use the Moser-type inequalities from Lemma 4.1 in the Appendix.
We also need the following two lemmas in order to continue the proof of Theorem 3.1. We will use
the letter C to denote various positive constants.

Lemma 3.3. For 0 ≤ |α| ≤ s, we have the following estimates

‖∇αf1‖ ≤ CEd, ‖∇αf2‖ ≤ C(Ed + τ(Ed)2), ‖∇αf3‖ ≤ C(Ed + τ(Ed)2). (3.9)

Proof. The proof of Lemma 3.3 can be found in our previous paper [7], we recall it here for
completeness. First, by Sobolev’s imbedding theorem and the Moser-type inequalities, using (3.7),
we have

‖∇αf1‖ = ‖∇α(−ud∇ρ− ρddivu‖

≤ ‖∇ρ‖L∞‖∇αud‖+ ‖ud‖L∞‖∇α+1ρ‖+ ‖divu‖L∞‖∇αρd‖+ ‖ρd‖L∞‖∇α+1u‖ ≤ CEd.

Remember that both (ρ, u, θ) and (ρτ , uτ , θτ , Sτ1 , S
τ
2 ) take values in a convex compact subset of the

state space, we have ∥∥∥∥∇α(− 1

ρτ
ρdut)

∥∥∥∥
≤ ‖ut‖L∞

∥∥∥∥∇α(
ρd

ρτ
)

∥∥∥∥+

∥∥∥∥ρdρτ
∥∥∥∥
L∞
‖∇αut‖

≤ CEd + C‖ρd‖L∞‖∇αρτ‖ ≤ C(Ed + τ(Ed)2).

Similarly, we have ∥∥∥∥∇α( 1

τρτ
(ρτuτ − ρu)∇u

)∥∥∥∥ ≤ C(Ed + τ(Ed)2).

Recalling that p(ρ, θ) is a smooth function of (ρ, θ) and using the mean value theorem, we obtain∥∥∥∥∇α( 1

τρτ
(
(pτρ − pρ)∇ρ+ (pτθ − pθ)∇θ

))∥∥∥∥
≤ C

∥∥∥∥∇α( 1

ρτ
(ρd + θd)(∇ρ+∇θ)

)∥∥∥∥ ≤ C(Ed + τ(Ed)2).

By assumption A.2 and using the mean value theorem, we have∥∥∥∥∇α( 1

τρτeτθ
(ρτeτθ − ρeθ)θt

)∥∥∥∥
≤
∥∥∥∥∇α( 1

τeτθ
(eτθ − eθ)

)∥∥∥∥+

∥∥∥∥∇α( ρd

ρτeτθ
eθθt

)∥∥∥∥
≤ C(Ed + τ(Ed)2),

where we used the fact that

‖∇α(ρτeτθ )‖ ≤ ‖ρτ‖L∞‖∇αeτθ‖+ ‖eτθ‖L∞‖∇ρτ‖ ≤ C + τEd.

Similarly, we get ∥∥∥∥∇α( 1

τρτeτθ
(θτpτθ − θpθ)divu

)∥∥∥∥ ≤ C(Ed + τ(Ed)2)

and ∥∥∥∥∇α( 1

τρτeτθ
(ρτeτθu

τ − ρeθu)∇θ
)∥∥∥∥ ≤ C(Ed + τ(Ed)2).

This completes the proof of Lemma 3.3. �
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Lemma 3.4. We have for τ ≤ 1 that

d

dt
(Ed)2 ≤ C(1 + (Ed)2 + τ(Ed)4). (3.10)

Proof. Applying∇α to the equations (3.6) and multiplying the result by
pτρ
ρτ∇

αρd, ρτ∇αud, ρ
τeτθ
θτ ∇

αθd,
1

2µ∇
αSd1 , 1

λ∇
αSd2 , respectively, we get

1

2

d

dt

∫ {
pτρ
ρτ

(∇αρd)2 + ρτ (∇αud)2 +
ρτeτθ
θτ

(∇αθd)2 +
τ

2µ
(∇αSd1 )2 +

τ

λ
(∇αSd2 )2

}
dx

+

∫ {
κ

θτ
(∇α+1θd)2 +

1

2λ
(∇αSd1 )2 +

1

µ
(∇αSd2 )2

}
dx

≤
5∑
i=1

Fi +

3∑
i=1

Ti +

10∑
i=1

Gi +D +N, (3.11)

where

F1 =

∫
∇αf1

pτρ
ρτ
∇αρddx, F2 =

∫
∇αf2ρ

τ∇αuddx,

F3 =

∫
∇αf3

ρτeτθ
θτ
∇αθddx, F4 =

∫
∇αf4∇αSd1dx, F5 =

∫
∇αf5∇αSd2dx

T1 =

∫ (
pτρ
ρτ

)
t

(∇αρd)2dx, T2 =

∫
ρτt (∇αud)2dx, T3 =

∫ (
ρτeτθ
θτ

)
t

(∇αθd)2dx,

D =

∫ {(
∇α(

κ

ρτeτθ
4θd)− κ

ρτeτθ
∇α(4θd)

)
ρτeτθ
θτ
∇αθd +∇(

κ

θτ
)∇α+1θd∇αθd

}
dx,

N =

∫
∇α
(

1

ρτeτθ
(Sτ1∇ud + Sd1∇u+ Sτ2 divud + Sd1divu)

)
∇αθdx,

G1 =

∫
∇α(uτ∇ρd)

pτρ
ρτ
∇αρddx, G2 =

∫
∇α(ρτdivud)

pτρ
ρτ
∇αρddx,

G3 =

∫
∇α(uτ∇ud)ρτ∇αuddx, G4 =

∫
∇α(

pτρ
ρτ
∇ρd)ρτ∇αuddx,

G5 =

∫
∇α(

pτθ
ρτ
∇θd)ρτ∇αuddx, G6 =

∫
∇α
(

1

ρτ
(divSd1 +∇Sd2 )

)
ρτ∇αuddx,

G7 =

∫
∇α(uτ∇θd)ρ

τeτθ
θτ
∇αθddx,G8 =

∫
∇α
(
θτpτθ
ρτeτθ

divud
)
ρτeτθ
θτ
∇αθddx,

G9 =

∫
1

2
∇α
(
∇ud + (∇ud)T − 2

n
divudIn

)
∇αSd1dx, G10 =

∫
∇α(divud)∇αSd2dx.

In the sequel, we keep in mind that some inequalities such as the Cauchy-Schwarz inequality, the
Hölder inequality or the Moser-type inequalities will be frequently used without being mentioned
explicitly (for exemplarily detailed estimates see (3.12) - (3.16) below). From Lemma 3.3 we know
that

Fi ≤ C((Ed)2 + τ(Ed)3),

for each i = 1, 2, 3 and F4 + F5 ≤ C(ε) + ε(‖∇αSd1‖2 + ‖∇αSd2‖2) (for ε > 0, with C(ε) at most
depending on ε; here we use the fact that ∂t(S

0
1) = µ(∇ut + (∇ut)T − 2

3divutI), ∂tS
0
2 = λdivut
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and ‖ut‖s+1 ≤ C). Moreover, we have

|D| ≤
∥∥∥∥∇α( κ

ρτeτθ
4θd

)
− κ

ρτeτθ
∇α(4θd)

∥∥∥∥∥∥∥∥ρτeτθθτ
∇αθd

∥∥∥∥
+
∥∥∥∇( κ

θτ

)∥∥∥
L∞
‖∇α+1θd‖‖∇αθd‖

≤ C
(∥∥∥∥∇( κ

ρτeτθ

)∥∥∥∥
L∞
‖∇α−1∆θd‖+ ‖∆θd‖L∞

∥∥∥∥∇α( κ

ρτeτθ

)∥∥∥∥)∥∥∥∥ρτeτθθτ
∇αθd

∥∥∥∥
(Moser inequalities Lemma 4.1 (ii))

+

[
ε‖∇α+1θd‖2 + C(ε)

(∥∥∥∇( κ
θτ

)∥∥∥2

L∞
‖∇αθd‖2

)]
≡ A+ [B] (3.12)

with

B ≤ ε‖∇α+1θd‖2 + C(ε)
(
(Ed)2 + τ(Ed)3 + τ2(Ed)4

)
(3.13)

and

A ≤
∥∥∥∥∇( κ

ρτeτθ

)∥∥∥∥
L∞
‖∇α+1θd‖

∥∥∥∥ρτeτθθτ
∇αθd

∥∥∥∥
+‖∆θd‖L∞

∥∥∥∥∇α( κ

ρτeτθ

)∥∥∥∥∥∥∥∥ρτeτθθτ
∇αθd

∥∥∥∥
≡ A1 +A2. (3.14)

We have

A1 ≤ ε‖∇α+1θd‖2 + C(ε)
(
(Ed)2 + τ(Ed)3 + τ2(Ed)4

)
(3.15)

and

A2 ≤ C(Ed)2

∥∥∥∥∇α( κ

ρτeτθ

)∥∥∥∥ ≤ C(Ed)2(1 + τEd), (3.16)

where we used ∥∥∥∥∇α( 1

ρτ

)∥∥∥∥ ≤ C 1

‖ρτ‖2L∞
‖∇αρτ‖ ≤ C‖ρτ‖s

which follows from the Moser-type inequalities Lemma 4.1 (i). Summarizing (3.12) - (3.16) we
have

|D| ≤ ε‖∇α+1θd‖2 + C(ε)
(
(Ed)2 + τ(Ed)3 + τ2(Ed)4

)
. (3.17)

The term N can be divided into two terms:

N =

∫
∇α
(

1

ρτeτθ
(Sτ1∇ud + Sd1∇u+ Sτ2 divud + Sd1divu)

)
∇αθdx

=

∫
∇α
(

1

ρτeτθ
(Sτ1∇ud + Sτ2 divud)

)
∇αθdx+

∫
∇α
(

1

ρτeτθ
(Sd1∇u+ Sd2divu)

)
∇αθdx

=: N1 +N2.

We estimate the term N1 as follows: for α = 0, we have

|N1| =
∣∣∣∣∫ 1

ρτeτθ

(
Sτ1∇ud + Sτ2 divud

)
θddx

∣∣∣∣
≤ ‖(ρτ , θτ , Sτ1 , Sτ2 )‖L∞‖∇ud‖‖θd‖ ≤ C((Ed)2 +

√
τ(Ed)3);
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for 1 ≤ α ≤ s, we have for τ ≤ 1 that

|N1| =
∣∣∣∣∫ ∇α−1

(
1

ρτeτθ
(Sτ1∇ud + Sτ2 divud)

)
∇α+1θddx

∣∣∣∣
≤
(
‖(ρτ , θτ , Sτ1 , Sτ2 )‖L∞‖∇αud‖+ ‖∇ud‖L∞‖(∇α−1(ρτ , θτ , Sτ1 , S

τ
2 )‖
)
‖∇α+1θd‖

≤ ε‖∇α+1θd‖2 + C(ε)
(
(Ed)2 +

√
τ(Ed)3 + τ(Ed)4

)
.

For the term N2, we can get

|N2| ≤
(
‖(Sd1 , Sd2 )‖L∞‖∇α(

1

ρτeτθ
∇u)‖+ ‖ 1

ρτeτθ
∇u‖L∞‖∇α(Sd1 , S

d
2 )‖
)
‖∇αθd‖

≤ ε‖(Sd1 , Sd2 )‖2s + C(ε)
(
(Ed)2 + τ(Ed)3 + τ2(Ed)4

)
.

Therefore, we obtain

|N | ≤ ε(‖∇α+1θd‖2 + ‖(Sd1 , Sd2 )‖2s) + C(ε)((Ed)2 + τ(Ed)4).

Now, we estimate Gi for each i.

|G1| =
∣∣∣∣∫ {(∇α(uτ∇ρd)− uτ∇α+1ρd)

pτρ
ρτ
∇αρd +

uτpτρ
ρτ
∇α+1ρd∇αρd

}
dx

∣∣∣∣
≤ C(‖∇ρd‖L∞‖∇αuτ‖+ ‖∇uτ‖L∞‖∇αρd‖)‖∇αρd‖+

∥∥∥∥∇(uτpτρρτ

)∥∥∥∥
L∞
‖∇αρd‖2

≤ C((Ed)2 + τ(Ed)3).

G3 and G7 can be estimated in the same way.

|G2 +G4|

=

∣∣∣∣∫ (∇α(ρτdivud)− ρτdiv∇αud)
pτρ
ρτ
∇αρddx

+

∫ {
∇α(

pτρ
ρτ
∇ρd)ρτ∇αud − pτρ∇α+1ρd∇αud

}
dx−

∫
∇pτρ∇αud∇αρddx

∣∣∣∣
≤ C‖(divud,∇ρd)‖L∞(‖∇αρτ‖+

∥∥∥∥∇(
pτρ
ρτ

)

∥∥∥∥)(‖∇αρd‖+ ‖∇αud‖)

+

∥∥∥∥(∇ρd,∇pτρ ,
pτρ
ρτ

)

∥∥∥∥
L∞
‖∇αud‖‖∇αρd‖ ≤ C((Ed)2 + τ(Ed)3).

G5 +G8 can also be estimated similarly, while

|G6 +G9 +G10|

=

∣∣∣∣∫ {∇α( 1

ρτ
(divSd1 +∇Sd2 )

)
− 1

ρτ
(
div∇αSd1 +∇α+1Sd2

)}
ρτ∇αuddx

∣∣∣∣
≤ ‖∇(Sd1 , S

d
2 )‖L∞‖∇αρτ‖‖∇αud‖+ ‖∇ρτ‖L∞‖∇α(Sd1 , S

d
2 )‖‖∇αud‖

≤ ε‖(Sd1 , Sd2 )‖2s + C(ε)((Ed)2 + τ(Ed)3 + τ2(Ed)4),

where we used the cancelation relations∫
(∇αdivSd1 )∇αuddx = −

∫
1

2
∇α(∇ud + (∇ud)T − 2

n
divudIn)∇αSd1dx

and ∫
∇α(∇Sd2 )∇αuddx = −

∫
∇α(divud)∇αSd2dx,
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which can be easily shown to hold by doing partial integration and using the fact that Sd1 is a
symmetric and traceless matrix. Such cancelation relations are essential in our estimates which
implies the necessity of dividing the stress tensor S into S1 and S2In and do relaxation for S1 and
S2, respectively. In fact, it is not difficult to see that if we only do a relaxation for S, then the
cancelation relation fails and the validity of the estimates will be destroyed.

For the terms Ti, i = 1, 2, 3, we have

|Ti| ≤ ‖(ρτt , θτt )‖L∞(Ed)2 ≤ C(1 + τ‖(ρdt , θdt )‖L∞)(Ed)2

≤ C(1 + τ(Ed + τ(Ed)2 + ‖(Sd1 , Sd2 )‖s))(Ed)2

≤ C(ε)((Ed)2 + τ(Ed)3 + τ2(Ed)4) + ε‖(Sd1 , Sd2 )‖2s.

By choosing ε sufficiently small, using assumption A.2 and summing α for 0 to s, we conclude for
τ ≤ 1 that

d

dt
(Ed)2 + ‖∇θd‖2s + ‖(Sd1 , Sd2 )‖2s

≤ C(1 + (Ed)2 +
√
τ(Ed)3 + τ(Ed)4) ≤ C(1 + (Ed)2 + τ(Ed)4).

Therefore, (3.10) holds and this completes the proof of Lemma 3.4. �

Using Lemma 3.4, we can finally show that Ed is uniformly bounded. Let g := (Ed)2, we have

d

dt
g ≤ C(1 + g + τg2), (3.18)

We assume a priori that

g ≤ e2CT − 1. (3.19)

We will show that g ≤ 1
2 (e2CT −1) holds if we choose τ sufficiently small. This justifies the a priori

estimate (3.19) and thus proves our result. In fact, if τ ≤ 1
e2CT−1

, we get g ≤ 1
τ and thus τg2 ≤ g.

Hence, the inequality (3.18) turns into

d

dt
g ≤ C(1 + 2g).

Solving the above inequality, we immediately get g ≤ 1
2 (e2CT − 1). This finishes the proof of the

main Theorem 3.1. �

4. Appendix

The following Moser-type inequalities have been used in Section 3 and can be found as a standard
tool for example in [15, 19].

Lemma 4.1. (i) Let r,m, n ∈ N, 1 < p ≤ ∞, h ∈ Cr(Rm), B := ‖h‖
Cr(B(0,1))

. Then there is

a constant c = c(r,m, n, p) > 0 such that for all w = (w1, . . . , wm) ∈ W r,p(Rn) ∩ L∞(Rn) with
‖w‖L∞ ≤ 1 the inequality

‖∇rh(w)‖Lp ≤ cB ‖∇rw‖Lp (4.1)

holds.

(ii) Let m ∈ N. Then there is a constant c = c(m,n) > 0 such that for all f, g ∈ Wm,2 ∩ L∞ and
α ∈ Nn0 , |α| ≤ m, the following inequalities hold:
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‖∇α(fg)‖2 ≤ c(‖f‖L∞‖∇mg‖2 + ‖∇mf‖2‖g‖L∞), (4.2)

‖∇α(fg)− f∇αg‖2 ≤ c(‖∇f‖L∞‖∇m−1g‖2 + ‖∇mf‖2‖g‖L∞). (4.3)
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