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Abstract

In this paper, we study a semilinear Timoshenko system having two damping
effects. The observation that two damping effects might lead to smaller decay rates
for solutions in comparison to one damping effect is rigorously proved here in pro-
viding optimality results. Moreover the global well-posedness for small data in a low
regularity class is presented for a larger class of nonlinearities than previously known
and proved by a simpler approach.
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1 Introduction.

We consider the following one-dimensional semilinear Timoshenko system in all
of R with two damping terms, ϕtt − (ϕx − ψ)x + αϕt = 0, (t, x) ∈ R+ × R,

ψtt − a2ψxx − (ϕx − ψ) + µψt = |ψ|r, (t, x) ∈ R+ × R,
(ϕ,ϕt, ψ, ψt)(0, x) = (ϕ0, ϕ1, ψ0, ψ1), x ∈ R,

(1.1)

where r > 8, with associated linearized case ϕtt − (ϕx − ψ)x + αϕt = 0, (t, x) ∈ R+ × R,
ψtt − a2ψxx − (ϕx − ψ) + µψt = 0, (t, x) ∈ R+ × R,
(ϕ,ϕt, ψ, ψt)(0, x) = (ϕ0, ϕ1, ψ0, ψ1), x ∈ R,

(1.2)

which is known to be the damped classical Timoshenko system. Here t denotes the
time variable and x denotes the space variable. The functions ϕ and ψ represent the
transversal displacement and the rotation angle of a beam, respectively, a, α and µ
are positive constants.
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The system describes a vibrating beam with damping terms both in the rotation
angle (µψt) and in the transversal displacement (αϕt). This system goes back to
Timoshenko [29]. He formulated it this way in a bounded region in space:{

ρϕtt = (K(ϕx − ψ))x, in (0,∞)× (0, L),
Iρψtt = (EIψx)x +K(ϕx − ψ), in (0,∞)× (0, L),

(1.3)

where the coefficients ρ, Iρ, E, I and K are the density, the polar moment of inertia
of a cross section, Young’s modulus of elasticity, the moment of inertia of a cross
section, and the shear modulus. The system is completed with initial conditions and
with the boundary conditions

EIψx|x=L
x=0 = 0, K(ϕx − ψ)|x=L

x=0 = 0.

It is conservative, the associated total energy of the beam remains constant in time.
The question which kind of damping effects stabilize the system in an exponential or
a polynomial manner has drawn a lot of attention in recent years. Stability has been
discussed for Timoshenko systems with different damping terms mainly in bounded
domains. Timoshenko system with frictional damping is discussed in [12, 15, 25].
The relation to the wave speeds is investigated in giving stability results related to
these speeds in [6, 7, 24, 28]. For the stability of memory type Timoshenko systems
we refer to [1, 4, 11, 16]. For the stability of Timoshenko systems with thermal
dissipation we mention [3, 12, 13, 17]. Thermal dissipation with heat conduction
models using the Cattaneo law instead of the Fourier law is considered in [3, 12].

For the Cauchy problem we have few results even for the linearized system see, for
example, [21, 22, 23, 27, 31]. Introducing U := (ϕx − ψ,ϕt, aψx, ψt), the linearized
system (1.2) turns into the following first-oder system,{

∂tU +A∂xU +BαU = 0,
U(0, x) = U0(x),

(1.4)

where A is a real symmetric matrix, the matrix Bα satisfies Re 〈BαU,U〉 ≥ 0, and
U0 = (ϕx(0) − ψ0, ϕ1, aψx(0), ψ1). Semigroup theory gives the solution as U(t, x) =
(etΦU0)(x), where

Φ = −A∂x −Bα.

If α = 0, this is just the case studied by Ide Haramoto and Kawashima[5], they
obtained the decay estimates, when a = 1,∥∥∂kxU(t)

∥∥
2
≤ C(1 + t)−1/4−k/2∥∥U0

∥∥
1

+ Ce−ct
∥∥∂kxU0

∥∥
2
,

and when a 6= 1,∥∥∂kxU(t)
∥∥

2
≤ C(1 + t)−1/4−k/2∥∥U0

∥∥
1

+ C(1 + t)−l/2
∥∥∂k+l

x U0

∥∥
2
,

where k and l are nonnegative integers, C and c are positive constants. In Racke
and Said-Houari [22], decay estimates could be improved under an extra condition
on the initial data. If w is an odd function, γ ∈ [0, 1], then, when a = 1,∥∥∂kxetΦw∥∥2

≤ C(1 + t)−1/4−k/2−γ/2∥∥w∥∥
1,γ

+ Ce−ct
∥∥∂kxw∥∥2

, (1.5)

and when a 6= 1,∥∥∂kxetΦw∥∥2
≤ C(1 + t)−1/4−k/2−γ/2∥∥w∥∥

1,γ
+ C(1 + t)−l/2

∥∥∂k+l
x w

∥∥
2
, (1.6)
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where
∥∥v∥∥

i
:=
∥∥v∥∥

Li(R)
, i = 1, 2,

∥∥u∥∥
1,γ

:=
∫
R(1+ |x|)γ |u(x)|dx, for u ∈ L1(R). These

results imply that the system is of so-called regularity-loss type when a 6= 1. While
Ueda, Duan and Kawashima [31] considered the Cauchy problem for a more general
first-order linear symmetric-hyperbolic systems, they formulated a new structural
condition extending the Kawashima-Shizuta condition, and got a similar decay result
for the Timoshenko system with one damping term. However, it seems that their
method cannot be carried over to our case immediately.

For the case of two damping terms (both α and µ being positive), Soufyane and
Said-Houari [27] investigated the decay rates of solutions to the linearized system
and found rates that are smaller than the ones known for the system with only one
damping. In [27, Remark 7, p. 737] the question is raised on the optimality of these
rates describing the interesting phenomenon that two damping terms might have a
weaker effect than only one damping term. We shall answer this question here and
prove the optimality. For this purpose we will use a detailed analysis of the low
frequency behavior of the solution in Fourier space, since the decay of the solution
is mainly determined by the low frequency part. This was also used, for example, in
[2, 8, 9, 32].

For the semilinear system (1.1) with α = 0, Racke and Said-Houari [22] proved a
global existence theorem for r > 12 using the more complicated method of weighted
multipliers going back to Todorova and Yordanov [30]. Here we can both improve
the admissible values of r to the condition r > 8 as well as present a simpler proof.
Additionally, decay rates for solutions also to the semilinear problem are provided.
To summarize our main new contributions, we have

• a proof of the optimality of the striking result that two damping effects have a
weaker effect than only one,

• a larger class of admissible nonlinearities for the semilinear problem and

• a simpler proof for the following global well-posedness result avoiding weight
functions.

Theorem 1.1. Assume r > 8. Then there is a constant δ0 > 0 such that if

E2
0 ≡ ‖(ϕt, ϕx, ψt, ψx, ψ)(0, ·)‖22 + ‖ψ(0, ·)‖21 < δ0, (1.7)

then there exists a unique global weak solution U := (ϕt, ϕx − ψ,ψt, aψx) of
(1.1). U satisfies for all t ≥ 0:

‖U(t, ·)‖2 ≤ C E0(1 + t)−
1
8 , (1.8)

where the positive constant C does not depend on t or on the initial data.

The paper is organized as follows. Section 2 provides decay estimates for the
linearized system. In Section 3 the optimality of the decay rates is proved. Section 4
presents the local existence result for the semilinear problem, and in Section 5 the
global well-posedness result (Theorem 1.1) is proved.

We use the following notation. Let f̂ denote the Fourier transform of f :

f̂(ξ) ≡ F(f)(ξ) =
1√
2π

∫
R
f(x)e−iξxdx,

and let F−1 denote the inverse Fourier transform. For 1 ≤ p ≤ ∞ let ‖ · ‖p denote
the norm in the Lebesgue space Lp(R). For γ ∈ [0,∞), the weighted function space
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L1,γ(R) with norm ‖u‖1,γ is defined as

L1,γ(R) :=

{
u ∈ L1(R) :

∥∥u∥∥
1,γ
≡
∫
R

(1 + |x|)γ |u(x)|dx <∞
}
.

The convolution of f and g is given as usual by

(f ∗ g)(x) :=

∫
R
f(x− y)g(y)dy.

The following two lemmas will be useful too. The first one can be found in [10, 20]
or in [26], the second one in [18].

Lemma 1.2. Let α > 0 and β > 0 be given. If max(α, β) > 1, then there is a
constant C > 0 such that for all t ≥ 0∫ t

0

(1 + t− τ)−α(1 + τ)−βdτ ≤ C(1 + t)−min(α,β).

Lemma 1.3. Let u and f be nonnegative continuous functions defined for t ≥ 0. If

u2(t) ≤ c2 + 2

∫ t

0

f(s)u(s)ds,

for t ≥ 0, where c ≥ 0 is a constant, then, for t ≥ 0,

u(t) ≤ c+

∫ t

0

f(s)ds.

2 Decay estimates for the linear system

Taking the Fourier transform of system (1.4), we have{
Ût + iξAÛ +BαÛ = 0,

Û(0, x) = Û0,
(2.1)

where

A = −


0 1 0 0
1 0 0 0
0 0 0 a
0 0 a 0

 , Bα =


0 0 0 1
0 α 0 0
0 0 0 0
−1 0 0 µ

 .

We use [27, Theorem 7.3].

Lemma 2.1. Let Φ̂α(iξ) = −(iξA + Bα). Then the corresponding matrix etΦ̂α(iξ)

satisfies the following estimate for any t ≥ 0 and ξ ∈ R:∣∣∣etΦ̂α(iξ)
∣∣∣ ≤ Ce−cρ(ξ)t, (2.2)

where ρ(ξ) = ξ4

(1+ξ2)2 , and C, c are positive constants.
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Based on Lemma 2.1, we get the first decay estimates as in [27], now for any
γ ∈ [0, 1].

Theorem 2.2. Let γ ∈ [0, 1], and let etΦα be the semigroup associated with the
system (1.2). Then, if w is an odd funtion, we have the following decay estimate:∥∥∂kxetΦαw∥∥2

≤ C(1 + t)−1/8−k/4−γ/4∥∥w∥∥
1,γ

+ Ce−ct
∥∥∂kxw∥∥2

, (2.3)

where k is nonnegative integer, and C, c are two positive constants.

Proof: Applying Plancherel’s theorem and Lemma 2.1, we get,∥∥∂kxetΦw∥∥2

2
=

1

2π

∫
R
|ξ|2k|etΦ̂(iξ)ŵ(ξ)|2dξ

≤C
∫
R
|ξ|2ke−cρ(ξ)t|ŵ(ξ)|2dξ.

With a partition in Fourier space, we have,∥∥∂kxetΦαw∥∥2

2
≤C

∫
|ξ|≤1

|ξ|2ke−cρ(ξ)t|ŵ(ξ)|2dξ + C

∫
|ξ|≥1

|ξ|2ke−cρ(ξ)t|ŵ(ξ)|2dξ

= : I1 + I2.

For the high frequency part I2 we easily have

I2 ≤Ce−ct
∥∥∂kxw∥∥2

2
. (2.4)

For the low frequency part I1 we can follow [22] to obtain

I1 ≤ C(1 + t)−1/2−(k+γ)
∥∥w∥∥2

1,γ
. (2.5)

Together this proves the Theorem.

Remark. Without the damping term (αφt) we know from (1.5) and (1.6) that the
solution will have a regularity loss for a 6= 1, but in our case this damping term allows
for considering any a without regularity loss. On the other hand, we encounter a
worse decay compared to the case α = 0.

In the following discussion R > 0 will be arbitrary but chosen appropriately
large in different places. In the sequel, a decompostion of functions u based on a
decomposition in Fourier space is useful:

u = uH + uL, (2.6)

where

ûH := χ1û, ûL := χ2û, (2.7)

with χ1 being smooth, 0 ≤ χ1 ≤ 1, and

χ1 = χ1(ξ) =

{
1, |ξ| ≥ 2R,
0, |ξ| ≤ R. (2.8)

Let χ2 := 1− χ1.
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Lemma 2.3. With χ1 and χ2 defined as above, we have the following estimate for
the semigroup, for any t ≥ 0 and a constant C > 0,

‖χ1e
tΦ̂α(iξ)‖∞ ≤ Ce−ct, (2.9)

‖χ2e
tΦ̂α(iξ)‖2 ≤ C(1 + t)−

1
8 . (2.10)

Proof: Lemma 2.1 gives ∣∣∣etΦ̂α(iξ)
∣∣∣ ≤ Ce−cρ(ξ)t, (2.11)

where ρ = ξ4

(1+ξ2)2 .

For sufficiently large R we have for |ξ| ≥ R

e−ct ≤ e−cρ(ξ)t ≤ e− c4 t. (2.12)

Hence, we have

‖χ1e
tΦ̂α(iξ)‖∞ ≤ Ce−ct. (2.13)

Moreover, Lemma 2.1 implies

‖χ2e
tΦ̂α(iξ)‖22 =

∫
R
|χ2|2|etΦ̂α(iξ)|2dξ ≤

∫
R
|χ2|2|e−cρ(ξ)t|2dξ. (2.14)

Since for |ξ| ≤ 2R, there exist constant c1, c2 ∈ (0,∞) such that c1ξ
4 ≤ ρ(ξ) ≤ c2ξ4,

we get ∫
R
|χ2|2|e−cρ(ξ)t|2dξ ≤

∫
R
|χ2|2|e−c̃ξ

4t|2dξ, (2.15)

for some c̃ > 0. For t ≥ 1 we conclude∫
R
|χ2|2|e−cξ

4t|2dξ ≤ Ct− 1
4 ≤ C(1 + t)−

1
4 . (2.16)

For t < 1 we have ∫
R
|χ2|2|e−cξ

4t|2dξ ≤ 4R ≤ C(1 + t)−
1
4 . (2.17)

Summarizing, we have proved the Lemma.

3 Low frequency analysis

We recall the result from [5], which corresponds to our system (1.1) with α = 0.
Observe

B0 =


0 0 0 1
0 0 0 0
0 0 0 0
−1 0 0 µ

 .
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Lemma 3.1. Let Φ̂0(iξ) := −(iξA + B0). Then the corresponding matrix etΦ̂0(iξ)

satisfies the following estimate for any t ≥ 0 and ξ ∈ R:
When a = 1, we have ∣∣∣etΦ̂0(iξ)

∣∣∣ ≤ Ce−cρ1(ξ)t. (3.1)

When a 6= 1, we have ∣∣∣etΦ̂0(iξ)
∣∣∣ ≤ Ce−cρ2(ξ)t, (3.2)

where ρ1(ξ) = ξ2

1+ξ2 , ρ2(ξ) = ξ2

(1+ξ2)2 , and C, c are positive constants.

We notice that for the low frequency part, etΦ̂0(iξ) in Lemma 3.1 provides the
same decay as for a heat kernel, while in Lemma 2.1 the low frequency part of

etΦ̂α(iξ) provides a decay like e−cξ
4t. This interesting phenomenon shows that that

an additional damping term αϕt in the system (1.1) does not make the system
decaying faster, instead, making it decaying more slowly. This phenomenon was also
observed in [27]. There, the decay estimate is based on inewquality (2.2), leaving
the question of optimality open. In this section, we prove the optimality by a careful
examination of the low frequency behavior, sinces the low frequency part near |ξ| = 0
determines the decay rates. Representing the solution in Fourier space, we have an
eigenfunction expansion of the solution, and we know that the decay rate of the low
frequency part of the solution is determined by the eigenvalue which provides the
slowest decay. This way, the question of optimality turns into an investigation of
eigenvalues. Define

χ3 = χ3(ξ) :=

{
1, |ξ| ≤ ε� 1,
0, |ξ| ≥ 2ε,

where ε is chosen small enough later on. We shall prove:
When α 6= 0,

|χ3e
tΦ̂α(iξ)| ∼ e−cξ

4t, (3.3)

and when α = 0,

|χ3e
tΦ̂0(iξ)| ∼ e−cξ

2t. (3.4)

For this purpose, we notice that the Fourier representation of a solution Φα(iξ) Û0 is
given by

etΦ̂α(iξ) Û0 =

4∑
j=1

Qj(ξ)e
λjt, (3.5)

where λj = λj(ξ) is an eigenvalue of Φ̂α(iξ), and Qj depends on the data Û0, j =
1, 2, 3, 4. Up to a set of measure zero, the eigenvalues are different, cp. the expansions
below. Since we can use the characteristic polynomial to show there are no multiple
eigenvalues. Computing the characteristic polynomial,

f(λ) =

∣∣∣∣∣∣∣∣
λ+ α −iξ 0 0
−iξ λ 1 0
0 −1 λ+ µ −iξa
0 0 −iξa λ

∣∣∣∣∣∣∣∣ = λ4 + (α+ µ)λ3 + (a2ξ2 + ξ2 + αµ+ 1)λ2

+(αa2ξ2 + µξ2 + α)λ+ a2ξ4,
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we notice that λj solves

λ4 + (α+ µ)λ3 + (a2ξ2 + ξ2 + αµ+ 1)λ2 + (αa2ξ2 + µξ2 + α)λ+ a2ξ4 = 0. (3.6)

Comparing the polynomials f and d
dλf , we notice that there are non-trivial common

divisors at most for values of ξ in a set of measure zero. Hence, outside this set we
have only simple roots of f .

Observing that (3.6) only has terms with even order of ξ, we assume for an
eigenvalue

λ(ξ) = a0 + a1ξ
2 + a2ξ

4 +O(ξ6), (3.7)

which corresponds to the Taylor expansion of λ(ξ) with respect to ξ2 at ξ2 = 0.
Substituting this expansion into (3.6), we have,

(a0 + a1ξ
2 + a2ξ4 +O(ξ6))4 + (α+ µ)(a0 + a1ξ

2 + a2ξ4 +O(ξ6))3

+ (a2ξ2 + ξ2 + αµ+ 1)(a0 + a1ξ
2 + a2ξ4 +O(ξ6))2

+ (αa2ξ2 + µξ2 + α)(a0 + a1ξ
2 + a2ξ4 +O(ξ6)) + a2ξ4 = 0.

By comparing coefficients, we get

(a4
0 + (α+ µ)a3

0+(αµ+ 1)a2
0 + αa0) = 0, (3.8)

(a0(αa2 + µ) + a1α+ a2
0(a2 + 1)+4a3

0a1 + 2a0a1(αµ+ 1)

+ 3a2
0a1(α+ µ)) = 0, (3.9)

(a1(αa2 + µ) + a2α+ (a2
1 + 2a0a2)(αµ+ 1)+4a3

0a2 + a2 + 6a2
0a

2
1

+2a0a1(a2 + 1) + 3a0a
2
1α+ 3a2

0a2α+ 3a0a
2
1µ+ 3a2

0a2µ) = 0. (3.10)

By a simple calculation, we obtain from (3.8)

a0(a0 + α)(a2
0 + µa0 + 1) = 0. (3.11)

Hence we know a0 has four solutions a01 = 0, a02 = −α, a03 = −µ2 + (µ2−4)1/2

2 ,

a04 = −µ2 −
(µ2−4)1/2

2 . Due to assumption (3.7), we have

λj(ξ) = a0j + a1jξ
2 + a2,jξ

4 +O(ξ6).

For |ξ| ≤ ε, λ2, λ3 and λ4 lead to exponential decay. λ1 provides the worst decay,
which is our main concern. Equality (3.9) gives

a1 =
−a0[αa2 + µ+ a0(a2 + 1)]

α+ 4a3
0 + 2a0αµ+ 2a0(αµ+ 1) + 3a2

0(α+ µ)
. (3.12)

Substituting a0 = 0 into (3.12), we obtain a1 = 0. Then we substitute a0 = 0 and
a1 = 0 into equality (3.10), and we have

a2α+ a2 = 0. (3.13)
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Therefore, a2 = −a
2

α . Now we can write down the eigenvalues λj as

λ1 = 0 + 0− a2

α
ξ4 +O(ξ6),

λ2 = −α+
α− µ

α2 − µα+ 1
ξ2 + a22ξ

4 +O(ξ6),

λ3 = −µ
2

+
(µ2 − 4)1/2

2
+ a13ξ

2 + a23ξ
4 +O(ξ6),

λ4 = −µ
2
− (µ2 − 4)1/2

2
+ a14ξ

2 + a24ξ
4 +O(ξ6),

This way we have proved the sharp asymptotic behavior of the solution given in the
following theorem:

Theorem 3.2.
|χ3e

tΦ̂α(iξ)| ∼ e−cξ
4t

for some constant c > 0

Similarly, we get for the case α = 0 the following Theorem.

Theorem 3.3.
|χ3e

tΦ̂(iξ)| ∼ e−cξ
2t,

for some constant c > 0.

Proof: We keep track of α and use the calculations above, and we write the eigen-
values of the low frequency part of the system (1.2) with α = 0 again in the form

λ̃ = ã0 + ã1ξ
2 + ã2ξ

4 +O(ξ6). (3.14)

Then (3.8), (3.9) and (3.10) yield

(ã4
0 + (α+ µ)ã3

0 + (αµ+ 1)ã2
0 + αã0) = 0

(ã0(αa2 + µ) + a1α+ ã2
0(a2 + 1) + 4ã3

0ã1 + 2ã0ã1(αµ+ 1) + 3ã2
0ã1(α+ µ)) = 0

(ã1(αa2 + µ) + ã2α+ (ã2
1 + 2ã0ã2)(αµ+ 1) + 4ã3

0ã2 + a2 + 6ã2
0ã

2
1

+2ã0ã1(a2 + 1) + 3ã0ã
2
1α+ 3ã2

0ã2α+ 3ã0ã
2
1µ+ 3ã2

0ã2µ) = 0

For α = 0, the coefficients of the eigenvalues are now calculated from the following
equations,

ã4
0 + µã3

0 + ã2
0 = 0, (3.15)

ã0µ+ ã2
0(a2 + 1) + 4ã3

0ã1 + 2ã0ã1 + 3ã2
0ã1µ = 0, (3.16)

ã1µ+ (ã2
1 + 2ã0a2) + 4ã3

0ã2 + a2 + 6ã2
0ã

2
1 + 2ã0a1(ã2 + 1) + 3ã0ã

2
1µ+ 3ã2

0ã2µ = 0.
(3.17)

We observe from (3.15) that ã0 = 0, ã0 = −µ2 + (µ2−4)1/2

2 , ã0 = −µ2 −
(µ2−4)1/2

2 are
solutions. From (3.16) we can obtain that when ã0 = 0, and any ã1 satisfies (3.16),
but from (3.17), we see

ã1µ+ ã2
1 + a2 = 0. (3.18)
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Hence, we have if ã0 = 0, then ã1 = −µ2 + (µ2−4a2)1/2

2 , or ã1 = −µ2 −
(µ2−4a2)1/2

2 .
Therefore we obtain

λ̃1 = 0− (
µ

2
+

(µ2 − 4a2)1/2

2
)ξ2 + ã21ξ

4 +O(ξ6), (3.19)

λ̃2 = 0− (
µ

2
− (µ2 − 4a2)1/2

2
)ξ2 + ã22ξ

4 +O(ξ6), (3.20)

λ̃3 = −µ
2

+
(µ2 − 4)1/2

2
+ ã13ξ

2 + ã23ξ
4 +O(ξ6), (3.21)

λ̃4 = −µ
2
− (µ2 − 4)1/2

2
+ ã14ξ

2 + ã24ξ
4 +O(ξ6). (3.22)

This proves the theorem.

Remark. Theorem 3.2 and Theorem 3.3 prove the optimality of the decay rates
obtained for the solution to the linear Timoshenko system under investigation, and
hence also prove the striking effect that two damping terms can lead to a weaker
decay than just one damping term.

4 Local existence for the semilinear system

In this section, we use a fixed point theorem to prove the local existence of
the solution of the semilinear Timoshenko system (1.1). We present an approach
improving [22] by not using weight functions.

Let us first recall the notion of a weak solution to this system according to [22].
Rewriting system (1.1) as 

Ut + (A∂x + L)U = F, (4.1a)

U(0, ·) = U0, (4.1b)

F = (0, 0, 0, f), (4.1c)

for U = (ϕx − ψ, φt, aψx, ψt), U0 = (ϕ0,x − ψ0, φ1, aψ0,x, ψ1), f = |ψ|r, the operator
Ā := A∂x + L with domain D(Ā) := (H1(R))4 ⊂ (L2(R))4 → (L2(R))4 is, as
mentioned in the linear part, the generator of a contraction semigroup (e−tĀ)t≥0,
and for U0 ∈ D(Ā) and f = f(t, x) ∈ C1([0,∞), L2(R)) we have a classical solution

U ∈ C1([0,∞), L2(R)) ∩ C0([0,∞), H1(R))

satisfying

U(t) = e−tĀU0 +

∫ t

0

e−(t−s)ĀF (s)ds. (4.2)

A weak solution is given by an approximation process. Letting (j1
n) and (j2

n) be fixed
two Dirac sequences of mollifiers with respect to x and t, respectively, we define
for U0 ∈ L2(R) and F ∈ C0([0,∞), L2(R)), approximations U0,n := j1

n ∗ U0 and
Fn := j2

n ∗ F satisfying

U0,n → U0 in L2(R), (4.3)

Fn → F in C0([0,∞), L2(R)). (4.4)
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This way we get a sequence of classical solutions Un from (4.2) with U0,n and Fn.
Due to (4.3) and (4.4), Un converges to some U in C0([0,∞), L2(R)), and U satisfy
(4.2). This U is called a (the) weak solution.

Theorem 4.1 (Local existence). Let (ϕ0, ϕ1, ψ0, ψ1) satisfy U0 ∈ H1, ψ0 ∈ L2(R),
and

J := ‖U0‖2 + ‖ψ0‖2 <∞. (4.5)

Then there exists a maximal existence time Tmax = Tmax(J) > 0, such that problem
(1.1) has a unique solution U ∈ C([0, Tmax), H1(R)) satisfying

sup
[0,T ]

{
‖U(t, ·)‖2 + ‖ψ(t, ·)‖2

}
<∞, (4.6)

where 0 ≤ T < Tmax.

Proof: We apply a similar method as the one used in [22], now without a weight
function. Define

BKT := {V̄ = (ϕ̄, ψ̄) : (ϕ̄x − ψ̄, ϕ̄t, ψ̄x, ψ̄t) ∈ (C([0, T ], L2(R)))4, and ‖V̄ ‖T ≤ K},
(4.7)

where

‖V̄ ‖T := ‖(ϕ̄, ψ̄)‖T := sup
[0,T ]

{‖ϕ̄t(t, ·)‖2 + ‖(ϕ̄x − ψ̄)(t, ·)‖2

+ ‖ψ̄t(t, ·)‖2 + ‖ψ̄(t, ·)‖2 + ‖ψ̄x(t, ·)‖2}. (4.8)

Let X := {(ϕ̄, ψ̄) : (ϕ̄x − ψ̄, ϕ̄t, ψ̄x, ψ̄t) ∈ (C([0, T ], L2(R)))4}, then X with norm
‖ · ‖T is a Banach space.

We fix the initial data U0 ∈ H1(R), ψ0 ∈ L2(R). For a fixed V̄ = (0, ψ̄)τ ∈ BKT ,
define Γ : BKT → X, Γ (V̄ ) := (ϕ,ψ)τ , where (ϕ,ψ)τ is the weak solution to ϕtt − (ϕx − ψ)x + αϕt = 0, (t, x) ∈ R+ × R,

ψtt − a2ψxx − (ϕx − ψ) + µψt = |ψ̄|r, (t, x) ∈ R+ × R,
(ϕ,ϕt, ψ, ψt)(0, x) = (ϕ0, ϕ1, ψ0, ψ1), x ∈ R.

(4.9)

Our aim is to show that, T chosen suitably, Γ is a contraction map, and Γ (BKT ) ⊂
BKT . We first prove the estimate in the class of classical solutions, then one can obtain
the same for the weak solution by approximation as in [22].

First we show Γ (BKT ) ⊂ BKT . We multiply the first equation of (4.9) by φt,
multiply the second equation of (4.9) by ψt, and sum up the results to get

1

2

d

dt
ϕ2
t −

d

dx
((ϕx − ψ)ϕt) + (ϕx − ψ)ϕtx + αφ2

t

+
d

dt
(
1

2
ψ2
t +

a2

2
ψ2
x)− a2 d

dx
(ψxψt)− (ϕx − ψ)ψt + µψ2

t = |ψ̄|rψt. (4.10)

Hence we have

d

dt
(
1

2
(ϕ2
t + ψ2

t + a2ψ2
x + (ϕx − ψ)2))

− d

dx
((ϕx − ψ)ϕt)− a2 d

dx
(ψxψt) + µψ2

t + αϕ2
t = |ψ̄|rψt. (4.11)
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Since the term +µψ2
t and +αϕ2

t is non-negative this gives

d

dt
(
1

2
(ϕ2
t + ψ2

t + a2ψ2
x + (ϕx − ψ)2))

− d

dx
((ϕx − ψ)ϕt)− a2 d

dx
(ψxψt) ≤ |ψ̄|rψt. (4.12)

Integrating over [0, t]× R, we obtain

Eϕ,ψ(t) ≤ Eϕ,ψ(0) +

∫ t

0

∫
R
|ψ̄(s, x)|rψs(s, x)dxds, (4.13)

where

Eϕ,ψ(t) :=
1

2
(‖ϕt‖22 + ‖ψt‖22 + a2‖ψx‖22 + ‖(ϕx − ψ)‖22).

So we get

Eϕ,ψ(t) ≤ Eϕ,ψ(0) +

∫ t

0

‖(ψ̄)r‖2‖ψs‖2ds

≤ Eϕ,ψ(0) +
√

2

∫ t

0

‖(ψ̄)r‖2(Eϕ,ψ(s))1/2ds. (4.14)

Applying Lemma 1.3 we conclude

(Eφϕ,ψ(t))1/2 ≤ (Eφϕ,ψ(0))1/2 +
1√
2

∫ t

0

‖(ψ̄)r‖2ds. (4.15)

Since

‖(ψ̄)r‖22 ≤ ‖ψ̄‖2r−2
∞

∫
R
|ψ̄|2dx ≤ CK2r (4.16)

we obtain

(Eϕ,ψ(t))1/2 ≤ (Eϕ,ψ(0))1/2 + CTKr, (4.17)

hence

‖ψ(t)‖2 ≤ ‖ψ(0)‖2 +
√

2(Eϕ,ψ(0))1/2T + CKrT 2. (4.18)

From (4.17) and (4.18), we conclude

‖(ϕ,ψ)‖T ≤(Eϕ,ψ(0))1/2 + CTKr + ‖ψ(0)‖2 +
√

2(Eϕ,ψ(0))1/2T + CKrT 2. (4.19)

Choosing K large enough such that (Eϕ,ψ(0))1/2 + ‖eφ(0)ψ(0)‖2 ≤ K/2, and then
choosing T small enough such that

CTKr +
√

2(Eϕ,ψ(0))1/2T + CKrT 2 ≤ K/2 (4.20)

we obtain

‖(ϕ,ψ)‖T ≤ K (4.21)
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proving (ϕ,ψ)τ ∈ BKT . Next, we show the contraction property. Let (ϕ,ψ) =

Γ (0, ψ̄) = Γ (V̄ ), and (ϕ̂, ψ̂) = Γ (0, ˆ̄ψ) = Γ (V̂ ). Set ϕ̃ = ϕ − ϕ̂, ψ̃ = ψ − ψ̂, then
(ϕ̃, ψ̃) satisfy

ϕ̃tt − (ϕ̃x − ψ̃)x + αϕ̃t = 0, (t, x) ∈ R+ × R
ψ̃tt − a2ψ̃xx − (ϕ̃x − ψ̃) + µψ̃t = |ψ̄|r − | ˆ̄ψ|r, (t, x) ∈ R+ × R
(ϕ̃, ϕ̃t, ψ̃, ψ̃t)(0, x) = (0, 0, 0, 0). x ∈ R

(4.22)

We analogously get

Eϕ̃,ψ̃(t) ≤
∫ t

0

∫
R

∣∣∣(|ψ̄(s, x)|r − | ˆ̄ψ(s, x)|r)ψ̃s(s, x)
∣∣∣ dxds. (4.23)

Since∣∣∣|ψ̄(s, x)|r − | ˆ̄ψ(s, x)|r
∣∣∣ ≤ r|ψ̄(s, x)− ˆ̄ψ(s, x)|(|ψ̄(s, x)|+ | ˆ̄ψ(s, x)|)r−1, (4.24)

we conclude from (4.23)

Eϕ̃,ψ̃(t) ≤ r
∫ t

0

∫
R
|ψ̄(s, x)− ˆ̄ψ(s, x)|(|ψ̄(s, x)|+ | ˆ̄ψ(s, x)|)r−1|ψ̃s(s, x)|dxds

≤ C
∫ t

0

(Eϕ̃,ψ̃(s))1/2‖(ψ̄(s, x)− ˆ̄ψ(s, x))‖2r‖(|ψ̄(s, x)|+ | ˆ̄ψ(s, x)|)‖r−1
2r ds,

(4.25)

implying by Lemma 1.3 that

(Eϕ̃,ψ̃(t))1/2 ≤ C
∫ t

0

‖(ψ̄(s, x)− ˆ̄ψ(s, x))‖2r(‖ψ̄(s, x)‖2r + ‖ ˆ̄ψ(s, x)‖2r)r−1ds.

(4.26)

We have

‖ψ̄(s, x)‖2r2r ≤ ‖ψ̄‖2r−2
∞

∫
R
|ψ̄|2dx ≤ CK2r. (4.27)

Similarly, we have ‖ ˆ̄ψ(s, x)‖2r ≤ CK, so we get, using the Gagliardo-Nirenberg
inequality (see e.g. [22]),

‖ψ̄(s, x)− ˆ̄ψ(s, x)‖2r ≤ C‖ψ̄(s, x)− ˆ̄ψ(s, x)‖1−( 1
2−

1
2r )

2 ‖∂x(ψ̄(s, x)− ˆ̄ψ(s, x))‖
1
2−

1
2r

2

≤ C‖V̄ − V̂ ‖T . (4.28)

Applying (4.27) (4.28) to (4.26), we conclude

(Eϕ̃,ψ̃(t))1/2 ≤ CTKr−1‖V̄ − V̂ ‖T . (4.29)

Observing now

‖ψ̃‖2 ≤
∫ t

0

‖ψ̃s(s, x)‖2ds ≤ CT 2Kr−1‖V̄ − V̂ ‖φT , (4.30)
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(4.29) and (4.30) imply

‖(ϕ− ϕ̂, ψ − ψ̂)‖T ≤ C(1 + T )TKr−1‖V̄ − V̂ ‖T . (4.31)

We can choose T small enough such that

C(1 + T )TKr−1 <
1

2
. (4.32)

proving that Γ is a contraction map having a unique fixed point (ϕ,ψ). Together with
the representation (4.2) we see for U0 ∈ H1(R), that we have a classical solution.

5 Global well-posedness of the semilinar system

5.1 Weighted a priori estimate.

As in Section 2 we use the functions χ1 and χ2 to decompose a funtion u into

u = uH + uL, (5.1)

where

ûH = χ1û, ûL = χ2û. (5.2)

Let U be the solution of the semilinear problem (4.1), then we have again the repre-
sentation

Û(t, x) = etΦ̂α(iξ)Û0 +

∫ t

0

e(t−s)Φ̂α(iξ)F̂ (U)(s)ds, (5.3)

where etΦ̂α(iξ) is defined as in Lemma 2.1.

Lemma 5.1. Let (ϕ,ψ) be the local solution according to Theorem 4.1, let

Λ(t) := sup
0≤s≤t

{(1 + s)
1
4 ‖(ϕt, ϕx, ψt, ψx, ψ)(s, ·)‖22},

and
E2

0 := ‖(ϕt, ϕx, ψt, ψx, ψ)(0, ·)‖22 + ‖ψ(0, ·)‖21.

Then, if E0 is sufficiently small, we have for all t ∈ [0, Tmax)

Λ(t) ≤ CE2
0 , (5.4)

where C > 0 is a positive constant not depending on t or on the data.

Proof: Observing
‖ψ‖2r ≤ C‖ψ‖H1

we have

‖ψ(t, ·)‖2r ≤ C(1 + t)−
1
8 Λ(t)1/2. (5.5)

For the high frequency part we obtain

‖χ1Û(t, ·)‖2 ≤ ‖χ1e
tΦ̂α(iξ)Û0‖2 +

∫ t

0

‖χ1e
(t−s)Φ̂α(iξ)F̂ (U)(s)‖2ds. (5.6)
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Therefore, using Lemma 2.3, (5.5) and Lemma 1.2, we obtain

‖χ1Û(t, ·)‖2 ≤ ‖χ1e
tΦ̂α(iξ)‖∞‖Û0‖2 +

∫ t

0

‖χ1e
(t−s)Φ̂α(iξ)F̂ (U)(s)‖2ds

≤ Ce−ctE0 + C

∫ t

0

e−c(t−s)‖ψ‖r2rds

≤ Ce−ctE0 + C

∫ t

0

e−c(t−s)(1 + s)−
r
8 Λ(s)r/2ds

≤ Ce−ctE0 + C(1 + t)−
r
8 Λ(t)r/2, (5.7)

where we used r > 8. Thus

‖χ1Û(t, ·)‖22 ≤ C(1 + t)−
r
4 (E0 + Λ(t)r). (5.8)

Simlilarly, we obtain for the low frequency part

‖χ2Û(t, ·)‖2 ≤ ‖χ2e
tΦ̂α(iξ)‖2‖Û0‖∞ +

∫ t

0

‖χ2e
(t−s)Φ̂α(iξ)‖2‖F̂ (U)(s)‖∞ds

≤ C(1 + t)−
1
8 ‖U0‖1 + C

∫ t

0

(1 + t− s)− 1
8 ‖ψr‖1ds

≤ C(1 + t)−
1
8E0 + C

∫ t

0

(1 + t− s)− 1
8 (1 + s)−

r
8 Λ

r
2 (t)ds

≤ C(1 + t)−
1
8 (E0 + Λ

r
2 (t)). (5.9)

Combining (5.8) and (5.9) we conclude

(1 + t)
1
4 ‖(ϕt, ϕx, ψt, ψx, ψ)‖22 ≤ CE2

0 + CΛr(t), (5.10)

implying
Λ(t) ≤ CE2

0 + CΛr(t). (5.11)

If E0 is sufficently small this implies

Λ(t) ≤ CE2
0 . (5.12)

(Actually, Λ(t) is bounded by the first zero of the function f where f(x) := CE2
0 +

Cxr − x with the constant C from (5.11).)

5.2 Global existence – proof of Theorem 1.1

Using Lemma 5.1, we can continue the local solution obtained in Theorem 4.1
globally in time, because

‖U(t, ·)‖22 + ‖ψ(t, ·)‖22 ≤ CΛ(t),

on the interval of local existence. Observing the dependence of the length of the
interval, T , on the initial data given in the local existence theorem, the latter can be
used again at time T , and so on. In particular, we have the claimed decay estimate
(1.8). This completes the proof of Theorem 1.1.
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[16] J.E. Muñoz Rivera and H.D. Fernández Sare. Stability of Timoshenko systems
with past history. J. Math. Anal. Appl., 339(1):482–502, 2008.
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