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Introduction

Algebraic geometry is the study of the (complex) solutions of systems of polynomial
equations

fi(x1, . . . , xn) = 0, i = 1, . . . ,m,

both from a geometric perspective and from an algebraic point of view. In real al-
gebraic geometry one is interested in such systems with real coefficients, and in
their real solutions. Their study is harder in general, because the field of real num-
bers is lacking the closedness property of the complex numbers. As a consequence,
real algebraic geometry requires new algebraic tools. And in addition to equations
f (x) = 0 and non-equations f (x) , 0, one is immediately led to consider inequalities
f (x) ≥ 0 or f (x) > 0 as well.

To the traditional technical machinery of commutative algebra, a distinct appara-
tus of real algebra has to be added: Ordered fields, preorderings and quadratic mod-
ules, concepts from convex geometry, to name just a few. The Tarski–Seidenberg
projection theorem, together with its model-theoretic formulation, plays a signifi-
cantly more important role in real algebraic geometry than the analogous Lefschetz
principle does in usual algebraic geometry. Important applications require specific
technical tools of their own. For example, linear matrix inequalities and spectrahe-
dra are concepts of a genuinely real algebraic nature, and are fundamental notions
in semidefinite programming.

The algebraic foundations of real algebraic geometry were established early, and
the exact timing can be pinpointed. In connection with the solution of Hilbert’s 17th
problem, Artin and Schreier introduced ordered fields and real closed fields in 1927.
In particular, they proved that every ordered field has a real closure that is unique in
a strong sense.

Fundamental contributions, that would later be attributed to the field of real al-
gebraic geometry, occurred even before Artin and Schreier. Consider, for example,
the foundational work on real root counting for polynomials, by Sturm, Sylvester,
Hermite and others. Another significant milestone was Hilbert’s investigation into
the representation of non-negative real polynomials as sums of squares. As is well
known, Hilbert resolved the question completely in 1888. The methods that he
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used extended far beyond his time and, in fact, continue to be influential more than
one hundred years later. In the context of rational functions however, Hilbert faced
greater difficulties. Unable to decide the question in general, he ultimately included
it as number seventeen in his famous 1900 list of unsolved mathematical problems.
Artin’s solution in 1927 would become one of the most important catalysts for the
development of real algebraic geometry.

Bearing in mind that Tarski found his decision method for semialgebraic sets
only a few years later, the table was set in the 1930s for a strong advancement of
real algebraic geometry. But apparently the time was not yet ripe, and these beau-
tiful tools were to lie dormant for almost half a century. Indeed, an interest in the
systematic development of real algebra and geometry began to awaken only in the
1970s and 1980s.

One of the indicators for the beginning rise of interest was the discovery of the
real spectrum by Coste and Roy around 1979. Brumfiel’s book [34] appeared at
around the same time. It explored notions of partially ordered rings and related
them to semialgebraic sets. The publication of Géométrie algébrique réelle [24]
by Bochnak, Coste and Roy in 1987 was a milestone event. This book was the
first comprehensive monograph ever in the area. Inspiring as it was, it had a last-
ing and unifying effect on the growing community. Strong impulses were added in
the early 1990s through Schmüdgen’s spectacular positivstellensatz, together with
consequences that were quickly starting to be built upon it. It was soon realized that
these results offered a great potential for applications in optimization. Around the
year 2000, Lasserre and Parrilo invented the moment relaxation method in poly-
nomial optimization. Under conditions of a very general nature, the method offers
a systematic approximate solution of polynomial optimization problems in poly-
nomial time. The essential theoretical backbone are the modern positivstellensätze
from the early 1990s. Meanwhile, this approach forms one of the most important
applications of real algebraic geometry, and continues to be in the focus of intense
active research.

Given this development, the current selection of available textbooks in real alge-
braic geometry is surprisingly small. For many years, the book by Bochnak, Coste
and Roy—after the original French edition from 1987, a considerably enlarged En-
glish edition [25] appeared in 1998—was the only available comprehensive source.
The 2001 monograph [159] by Prestel and Delzell addresses Archimedean posi-
tivstellensätze in great detail, and the same is true for Marshall’s book [136] from
2008. Theobald’s recent book [208] emphasizes the applications in optimization.

The book in your hands contains material roughly for a one year graduate course.
Starting with the very first concepts of real algebra, it takes the reader to areas of
active current research. The first half offers a relatively broad introduction to the
basics of real algebraic geometry. It also contains Hilbert’s pioneering work from
1888 and Artin’s solution to the 17th problem. In the second half, and starting with
Chapter 5, the style starts to become slightly more demanding on the reader, and
then increasingly so in the remaining chapters. The main focus in this second part
is on modern positivstellensätze, and on their use in polynomial optimization.
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We now give a more detailed overview. Chapter 1 introduces orderings of fields
and their real closures, and proves existence and uniqueness of a real closure for
every ordered field. Several methods and criteria for real root counting of univariate
polynomials are discussed, and are used to prove the Tarski–Seidenberg projection
theorem, one of the most important general tools in real algebraic geometry. In order
to gain a greater flexibility, we introduce a bit of model-theoretic language and for-
mulate the quantifier elimination version of this theorem as well. Having achieved
this, Tarski’s transfer principle is our main tool for the solution of Hilbert’s 17th
problem. We also use Tarski to prove the Artin–Lang theorem, which characterizes
real algebraic varieties whose function field can be ordered, by their locus of real
points.

In Chapter 2 we begin the study of sums of squares of polynomials. Important
techniques like Gram matrices and Newton polytopes are introduced, and the Fejér–
Riesz theorem is proved, featuring sums of squares on the circle. The main theme
are Hilbert’s 1888 theorems on sums of squares representations of non-negative
polynomials. Hilbert’s results are proved almost in completeness, the only exception
being the case of ternary quartics. Using a proof that is tricky but elementary, we
only show a slightly weaker version here (four squares instead of three). But see
Chapter 7 below.

Chapter 3 introduces the real spectrum as a technical tool of central importance.
By its conceptual simplicity, the real spectrum often allows to pin down the crucial
point of a problem in a very precise way. Orderings and preorderings are generalized
from fields to arbitrary rings, and a general abstract stellensatz is proved almost
with no effort. To deduce geometric (semialgebraic) versions (the Krivine–Stengle
theorem), we again use Tarski’s principle. The constructible topology on the real
spectrum is introduced as an important auxiliary tool, and specializations in the real
spectrum are related to valuation rings and to convex subrings of ordered fields.

Chapter 4 offers an introduction to the geometry of semialgebraic sets. From the
beginning we relate semialgebraic sets to the real spectrum. The proof of the finite-
ness theorem is just one among several examples, where we hope to convince the
reader of the usefulness of the real spectrum. Cylindrical algebraic decomposition
and Thom’s lemma are presented, however in basic versions only. Much more elabo-
rated formulations are possible, at the cost of a larger technical effort. Semialgebraic
paths are introduced as a useful and intuitive general device. The chapter ends with
a discussion of the dimension of semialgebraic sets.

Starting with Chapter 5 we begin entering more advanced areas. The central no-
tion in the chapter is the Archimedean property of semirings or modules, the sin-
gle most important result is the Archimedean positivstellensatz. We first follow the
traditional approach to this theorem, and then present a series of important con-
sequences. Most significant among them is Schmüdgen’s positivstellensatz, which
originally was proven in quite a different way using operator theory. At the end of
the chapter we offer an optional second path to the earlier positivstellensätze. It is
based on pure states for convex cones in R-algebras and uses concepts from locally
convex vector spaces. Moreover, this approach quickly leads to the Archimedean
local-global principle, which is a central tool for the next chapter.
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While the results of Chapter 5 apply to polynomials that are strictly positive
on the domain of interest, we allow the polynomials to have zeros in Chapter 6.
First a general negative result is proved regarding sum of squares representations,
that applies in all dimensions ≥ 3. Then we re-prove the Archimedean local-global
principle, this time avoiding pure states and using the real spectrum. According to
this theorem, and in an Archimedean situation, the only obstructions against the
existence of a sum of squares representation are of a local nature. Therefore we
pursue a closer study of positivity versus sums of squares in local rings (Sections
6.3 and 6.4). To some extent it is even possible here to replace the local rings by
their completions. A series of applications is then presented in Section 6.5. As one
of several main results, we mention the fact that non-negative polynomials are sums
of squares on every compact non-singular real surface. The chapter ends with a
discussion of the (non-) existence of degree bounds in weighted sums of squares
representations.

Chapter 7 picks up the discussion of Hilbert’s theorems from Chapter 2. General-
izing the viewpoint from projective space to arbitrary projective varieties X, we ask
when it is true that every non-negative form of degree 2d on X is a sum of squares of
forms of degree d. Restricting to quadratic forms (the case 2d = 2) is not a serious
limitation. Under this assumption, the main theorem asserts that the answer is posi-
tive if and only if X is a variety of minimal degree, in the sense of classical algebraic
geometry. Remarkably, this result contains Hilbert’s theorems as a particular case,
and this is even true for the quantitative refinement that we prove. In particular, the
full Hilbert theorem on positive ternary quartics is contained in this theorem.

The last chapter addresses the importance of sum of squares representations
for semidefinite programming, and in particular, for polynomial optimization. We
start with an overview of basic concepts in (finite-dimensional) convexity theory.
Then linear matrix inequalities and spectrahedra are introduced, the main players in
semidefinite programming. A quick introduction to conic programming in general
and semidefinite programming in particular follows, before we give a detailed ac-
count of the moment relaxation method in polynomial optimization. This approach
relies crucially on the positivstellensätze studied in Chapters 5 and 6. The rest of
the chapter investigates the expressive power of semidefinite programming. Taking
up Nemirovski’s question whether every convex semialgebraic set is a linear image
of a spectrahedron (a so-called spectrahedral shadow), we first present theorems by
Helton and Nie that give a positive answer under very general assumptions. Then
we prove that spectrahedral shadows are characterized by the existence of suitably
uniform sum of squares decompositions for non-negative linear forms. Using this
result we are able to give many (prominent) examples of convex sets that fail to be
spectrahedral shadows.

There are two appendices. With only few exceptions, they contain no proofs and
have only very few motivational comments. In Appendix A we provide a quick ac-
cess to notations, definitions and basic facts from commutative algebra and basic
algebraic geometry, as far as they are used in the main text. Usually, this appendix
will be needed for reference purposes only. Appendix B gives background for the
pure states approach in Sections 5.6–5.7. It contains the Hahn–Banach and Krein–
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Milman theorems in locally convex vector spaces, together with the Eidelheit–
Kakutani separation theorem for vector spaces of arbitrary dimension without topol-
ogy.

Throughout the text, a large number of exercises is provided. Each section has a
few of them. Some are just straightforward illustrations of concepts from the main
text. Others have more substance, and a small number may be considered somewhat
demanding. Most should however be doable without serious difficulties.

The text originates in a course for graduate students that I have been teaching at
Konstanz University for about five or six times, over the past twenty years. While
the first part of the course remained largely the same in each iteration, the contents
of the second half tried to reflect different recent developments in research each
time. Over the years, the majority of the exercises was “tested” on my students.

If a two-semester course is trying to follow this book, the first semester might
roughly cover Chapters 1 to 4. The second semester should continue with Chapter 5,
at least up to and including Section 5.5. Sections 5.6 and 5.7 offer an ad libitum alter-
native approach, and may be skipped if preferred. The remaining three chapters can
essentially be arranged in any order. Chapter 7 is largely independent of Chapters 3
to 6, and there are in fact some obvious arguments for inserting Chapter 7 right after
Chapter 2. The reason for us to postpone this material was the desire to advance
the basics more quickly, and also the fact that Chapter 7 requires considerably more
background in algebraic geometry than the rest of the course. Chapter 8 discusses
the role of positivstellensätze and sums of squares in polynomial optimization. It is
independent of Chapter 7, and also largely of Chapter 6.

Up to and including Chapter 5, the background required from the reader is very
modest. Apart from basic abstract algebra and elementary point set topology, only
basic language and concepts from commutative algebra and algebraic geometry are
needed. It is only in Chapters 6 and 7 that a somewhat more advanced background
is expected. In Chapter 6 this mainly concerns regular local rings and their comple-
tions. In Chapter 7, classical theorems in projective geometry (Bézout, Bertini and
others) are needed. We believe however that these results may be used as a black
box, without a serious loss for the main understanding.

Students attending the course had mostly heard a one semester introductory
course in algebraic geometry before.

Finally, we have to mention sins of omission, of which there are many. As the
author of this course, I am well aware that its selection of topics is based on personal
preferences. It is evident that this book cannot nearly reflect all important aspects
of present research in real algebraic geometry. Sums of squares can be seen as a
leitmotif for the entire course, together with the quest for understanding how far
they deviate from capturing all positivity. In this sense, Hilbert’s work from 1888
and his 17th problem are our core initial motivation.

Next to the 17th problem, there also is Hilbert’s 16th problem. Its first part asked
for the configuration of the real locus of real algebraic curves in the plane, or of
surfaces in three-space. These questions, together with far-reaching generalizations,
have been studied intensely since the 1980s (at least). Obviously, the study of the
geometry and topology of real projective varieties is an essential part of real alge-
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braic geometry, but it is not represented in this course. For an introduction to these
questions one may consult Mangolte’s book [132]. Other areas that belong to real
algebraic geometry, or have a strong interaction with the latter, but are missing here
are real analytic and semianalytic geometry, real tropical geometry and toric vari-
eties, non-commutative real algebraic geometry, or also (reduced) quadratic form
theory, to mention just a few. The material in Chapters 5 and 6 has substantial ap-
plications to the study of moment problems, but unfortunately it was not possible
to include them in this course, for time and space restrictions. Some of them can be
found in Schmüdgen’s volume [191]. Similarly, a more systematic study of com-
plexity questions would have been desirable in many parts of this text, but would
have gone beyond the scope of this course. Fortunately, the volume by Basu, Pollack
and Roy [12] addresses this matter in great detail.

Konstanz, April 2024



General conventions

The natural numbers are denoted N = {1, 2, 3, . . . }. By Z we denote the ring of
integers, and Z+ = N ∪ {0} = {0, 1, 2, . . . } is the set of non-negative integers. The
fields of rational, real and complex numbers are Q, R and C, respectively. For n ∈ N
we put [n] := {1, . . . , n}. Given a real number a, write bac for the largest integer m
with m ≤ a and dae for the smallest integer n with a ≤ n. The cardinality of a finite
set M is written |M|. The union of pairwise disjoint sets M1, . . . ,Mr may be written
M1 ∪· · · · ∪· Mr.

If k is a (commutative) ring, vectors in kn are considered as column vectors by
default. The set of matrices of size m×n over k is Mm×n(k), or briefly Mn(k) if m = n.
If V is a vector space over a field k and M ⊆ V is a subset, we write span(M) (or
span(v1, . . . , vr) if M = {v1, . . . , vr}) for the linear subspace of V that is spanned by
M. The i-th vector in the canonical basis of kn is denoted ei = (δi j)1≤ j≤n. The dual
linear space of V is written V∨ = Homk(V, k). (Note that many textbooks write V∗

instead.)
See Appendix A for general notation and background in algebra, algebraic geom-

etry and topology. We point out that all rings are tacitly assumed to be commutative
and to have a unit, unless explicitly stated otherwise. We refer in particular to Sec-
tion A.6, where our general conventions from algebraic geometry are summarized.

The most basic concepts from convexity, like convex set, convex cone, convex or
conic hull of a set, or polyhedra and polytopes, are used throughout the book without
explanation. Their meaning is also recalled at the beginning of Section 8.1. Dual
convex cones and convex cone duality (in finite-dimensional real vector spaces) are
slightly more advanced, but do not appear before Chapter 7, and are again explained
in Section 8.1.

xv





Chapter 1
Ordered Fields

We introduce the key players of real algebra, which are ordered fields and their real
closures. Real closed fields are characterized as those fields that have the same alge-
braic properties as the field R of real numbers. After discussing several approaches
for counting the real roots of real univariate polynomials, we state and prove the
Tarski–Seidenberg projection theorem. This is one of the most important general re-
sults in real algebraic geometry. To gain greater flexibility in applying the theorem,
we borrow from model theory and introduce the formal language of ordered fields.
We then use Tarski–Seidenberg to present Artin’s solution to Hilbert’s 17th prob-
lem. Finally we show for algebraic R-varieties how the existence of an ordering of
the function field is reflected in the real points of the variety (Artin–Lang theorem).

1.1 Orderings of fields

1.1.1 A partially ordered set is a pair (M,≤) consisting of a set M and a binary
relation ≤ on M that is reflexive, anti-symmetric and transitive (i.e. that satisfies
x ≤ x, x ≤ y ∧ y ≤ x⇒ x = y and x ≤ y ∧ y ≤ z⇒ x ≤ z for all x, y, z ∈ M). The
relation ≤ is also called a (partial) order relation on M. It is a total order relation,
and (M,≤) is a totally ordered set, if in addition x ≤ y ∨ y ≤ x holds for any
x, y ∈ M. Given a partially ordered set (M,≤), one extends the symbol ≤ in the
natural way by defining

• a < b if and only if a ≤ b and a , b,
• a ≥ b if and only if b ≤ a,
• a > b if and only if b < a

for a, b ∈ M. Intervals in M are denoted by

[a, b] =
{
x ∈ M : a ≤ x ≤ b

}
,

[a, b[ =
{
x ∈ M : a ≤ x < b

}
,

]a, b] =
{
x ∈ M : a < x ≤ b

}
,

]a, b[ =
{
x ∈ M : a < x < b

}
,

1
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or also by [a, b]≤ if the order relation ≤ is to be emphasized. We also allow a or b to
be ±∞, where ∞ = +∞ and −∞ are two extra symbols that satisfy −∞ < x < +∞

for all x ∈ M. So, for example, [a,∞[ = {x ∈ M : x ≥ a} etc.

The concept of orderings of a field was introduced by Artin and Schreier in 1927:

1.1.2 Definition. Let K be a field.

(a) An ordering of K is a total order relation ≤ on the set K that satisfies

(1) a ≤ b ⇒ a + c ≤ b + c,
(2) a ≤ b, c ≥ 0 ⇒ ac ≤ bc

for all a, b, c ∈ K.
(b) An ordered field is a pair (K,≤) where K is a field and ≤ is an ordering of K.
(c) The field K is said to be real if it admits at least one ordering.

An ordering of the field K is therefore a total ordering of the set K that is com-
patible with addition and multiplication, in the same way as we are used to for real
numbers.

1.1.3 Lemma. Let (K,≤) be an ordered field and let a ∈ K. Then a ≥ 0 is equivalent
to −a ≤ 0, and also to 1

a ≥ 0 if a , 0. We always have a2 ≥ 0.

Proof. a ≥ 0 implies 0 ≥ −a by adding −a on both sides, and similarly vice versa.
Since one of a ≥ 0 or −a ≥ 0 holds we have a2 = (−a)2 ≥ 0. If a , 0 then a = a2 · 1

a
and 1

a = ( 1
a )2 · a, from which one sees a > 0⇔ 1

a > 0. �

Alternatively, an ordering of a field may be described by its non-negative ele-
ments:

1.1.4 Proposition. Let K be a field and let ≤ be an ordering of K. Then the set
P = P≤ := {a ∈ K : a ≥ 0} of non-negative elements satisfies

(a) P + P ⊆ P, PP ⊆ P,
(b) P ∪ (−P) = K,
(c) P ∩ (−P) = {0},
(c’) −1 < P.

Conversely, if a subset P ⊆ K satisfies (a) and (b) together with (c) or (c’), then
a ≤P b :⇔ b − a ∈ P (for a, b ∈ K) defines an ordering ≤P of K. Any subset P of K
that satisfies (a), (b) and (c) (or (c’)) is called a positive cone of K.

Proof. Here, of course, P + P := {a + b : a, b ∈ P} and PP := {ab : a, b ∈ P}. First
let ≤ be an ordering of K. Then P = {a ∈ K : a ≥ 0} clearly satisfies (a) and (c), and
(b) follows from 1.1.3. Moreover 1 = 12 > 0, again by 1.1.3, and so −1 < 0.

Conversely let P ⊆ K satisfy (a)–(c), and let ≤P be defined as above. Then ≤P

is a total ordering on K, and compatibility with addition (property (1)) is clear. If
a ≤P b and c ≥P 0 then b−a ∈ P and c ∈ P, so (b−a)c ∈ P, and therefore ac ≤P bc.
So ≤P is an ordering of K. On the other hand, (c) is also a consequence of (a), (b)
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and (c’): If there was an element 0 , a ∈ P∩ (−P), we would have −a2 = a(−a) ∈ P
by (a), but also 1

a2 =
(
± 1

a
)2
∈ P since ± 1

a ∈ P for one choice of sign ±. Together this
would give −1 = (−a2) · 1

a2 ∈ P, contradicting (c’). �

1.1.5 Remark. By Proposition 1.1.4 there is a natural bijective correspondence be-
tween the orderings ≤ of K and the positive cones P of K. We will occasionally
be sloppy and use the term “ordering” invariantly for both ≤ and P, while tacitly
translating between both concepts depending on the situation. In particular, we also
refer to the pair (K, P) as an ordered field.

1.1.6 Definition and Lemma. Let (K,≤) be an ordered field.

(a) The sign of a ∈ K with respect to ≤, denoted sign≤(a) or sign(a), is 1, 0 or −1,
depending on whether a > 0, a = 0 or a < 0, respectively. Note that sign(ab) =

sign(a) · sign(b) for a, b ∈ K.
(b) The absolute value of a ∈ K with respect to ≤ is

|a|≤ = |a| := sign(a) · a.

The absolute value satisfies |a| = |−a| ≥ 0, |ab| = |a| · |b| and |a + b| ≤ |a| + |b|
(triangle inequality) for a, b ∈ K.

If P ⊆ K is the positive cone corresponding to ≤, we also use the alternative notation
signP(a) and |a|P, respectively.

Proof. The triangle inequality is an equality if ab ≥ 0. Otherwise we have |a + b| <
max{|a|, |b|} < |a| + |b|. �

1.1.7 Notation. For any ring A (commutative and unital) we denote by

ΣA2 :=
{
a2

1 + · · · + a2
n : n ≥ 1, ai ∈ A

}
the set of all sums of squares (often abbreviated sos) in A. It has become very com-
mon to use the acronym “sos” as an adjective as well, for being a sum of squares.
So we’ll frequently say that a ring element a ∈ A is sos (in A) if a ∈ ΣA2.

1.1.8 Corollary. Let K be a field. Any positive cone P of K satisfies ΣK2 ⊆ P. In
particular, if K is real then −1 < ΣK2, and so char(K) = 0.

Proof. Both assertions follow directly from 1.1.3 and 1.1.4. ut

1.1.9 Remarks.

1. Let R be the field of real numbers, let ≤ be the usual order relation on R. Then
(R,≤) is an ordered field. In particular, the field of real numbers is real.

2. An algebraically closed field, like the field C of complex numbers, is never
real, since −1 is a square. For p a prime number, the field Qp of p-adic numbers is
not real since −1 is a sum of (four) squares in Qp. (Ignore this remark if you are not
familiar with Qp.)
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3. If K0 is a subfield of the field K and P is a positive cone of K, then P0 := K0∩P
is a positive cone of K0. We say that the ordering ≤P of K extends the ordering ≤P0

of K0, or that (K0, P0) ⊆ (K, P) is an extension of ordered fields. This means that the
order relation ≤P0 on K0 is the restriction of the order relation ≤P on K. In particular,
any subfield of a real field is itself real, for example Q, Q(

√
2), Q(π) etc, which are

subfields of R.
4. If two positive cones P, Q of K satisfy P ⊆ Q, then P = Q (prove this).

Therefore, if ΣK2 happens to be an ordering of K, it is the only ordering of K. For
example, this is true for K = R or K = Q.

5. In general, a real field will have more than one ordering. For example, con-
sider the field K = Q(

√
2) = Q(α) where α2 = 2. Then K admits two embeddings

ϕ1, ϕ2 : K → R, characterized by ϕ1(α) =
√

2 > 0 and ϕ2(α) = −
√

2 < 0. Pulling
back the ordering of R via these embeddings one gets two different orderings ≤1, ≤2
of K, satisfying α >1 0 and α <2 0.

1.1.10 For a more interesting example, let us study the orderings of the rational
function field R(t) in one variable t. Given an ordering ≤ of R(t), we locate the
element t with respect to the real line R. So we consider the subsets

I := I≤ := {a ∈ R : a < t}, J := J≤ := {a ∈ R : a > t}

of R. Clearly I ∩ J = ∅, I ∪ J = R and I < J hold (the latter meaning that a < b for
any a ∈ I, b ∈ J). Hence the pair (I, J) is a Dedekind cut of R, according to the next
definition:

1.1.11 Definition. Let (M,≤) be a totally ordered set. A Dedekind cut of (M,≤) is a
pair (I, J) of subsets of M such that I ∪ J = M and I < J (i.e. a < b for any a ∈ I,
b ∈ J).

Loosely speaking, a Dedekind cut of (M,≤) is a disjoint decomposition of M into
a lower and an upper set.

1.1.12 Let (M,≤) be a totally ordered set. For any ξ ∈ M, both

ξ− :=
( ]
−∞, ξ

[
,
[
ξ,∞

[ )
and ξ+ :=

( ]
−∞, ξ

]
,
]
ξ,∞

[ )
are Dedekind cuts of (M,≤), one “located directly below” ξ, the other “directly
above” ξ. Together with

−∞ := (∅,M), +∞ := (M,∅),

the ξ± (ξ ∈ M) comprise the trivial Dedekind cuts of (M,≤). Any Dedekind cut of
(M,≤) that is not trivial is said to be free. In other words, a Dedekind cut (I, J) is
free if and only if I, J are both non-empty, I does not have a largest element and J
does not have a smallest element.

From first year calculus it is known that the field R of real numbers is (Cauchy)
complete. This means precisely that (R,≤) doesn’t have any free Dedekind cut. Any
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ordered field other than R does have a free Dedekind cut (Exercise 1.1.3). For ex-
ample, if α is any irrational real number, the pair(

]−∞, α[ ∩ Q, ]α,∞[ ∩ Q
)

is a free Dedekind cut of Q.

1.1.13 Given any Dedekind cut ξ = (I, J) of R (necessarily non-free), we are going
to construct an ordering ≤ = ≤ξ of R(t) that induces the cut ξ in the sense of 1.1.10,
i.e. that satisfies I < t < J.

Let us first carry this out for ξ = 0+. So we want to construct an ordering ≤ of R(t)
such that 0 < t < ε holds for every real number ε > 0 (∗). Proceeding heuristically,
assume that such an ordering has been found. Then 0 < tn < ε holds for any n ≥ 1
and any real number ε > 0. Let f ∈ R[t] be a non-zero polynomial, say f = tkg
where k ≥ 0 and g ∈ R[t], g(0) , 0. Then sign≤( f ) = sign≤(g) since t > 0. To
determine the sign of g, write

g =

r∑
i=0

aiti = a0 + th

with ai ∈ R and a0 , 0, and with h = a1 + a2t + · · · + artr−1. Let | · | denote the
absolute value with respect to the ordering ≤, see 1.1.6. Since |t| < 1 we have

|h| < 1 +

r∑
i=1

|ai| =: c,

which implies |th| < tc < |a0| since t < |a0 |

c . Summing up, it follows that sign≤( f ) =

sign≤(g) = sign(a0).
This argument shows that in finding an ordering ≤ with (∗), we have no choice

about the signs of polynomials. Therefore, if ≤ exists, it will be unique: Given an
arbitrary rational function f =

p
q ∈ R(t) where p, q ∈ R[t] and q , 0, we see from

f = 1
q2 · pq that necessarily sign≤( f ) = sign≤(pq).

Conversely, the preceding construction does indeed define an ordering ≤ of R(t).
The associated positive cone P = P0,+ is

P0,+ = {0} ∪
{
tn ·

p
q

: n ∈ Z, p, q ∈ R[t] and p(0)q(0) > 0
}
,

and P + P ⊆ P follows from p1
q1

+ tn p2
q2

=
p1q2+tn p2q1

q1q2
. The other axioms for a positive

cone are even more immediate.
In a similar way we may construct a positive cone P0,− whose associated ordering

satisfies −ε < t < 0 for all real ε > 0. More generally, for arbitrary a ∈ R we
construct positive cones Pa,± of R(t) that realize the Dedekind cuts ξ = a±. We also
find positive cones P±∞ of R(t) that satisfy t−a ∈ P+∞ and a− t ∈ P−∞ for all a ∈ R.
We remark that all these positive cones can be obtained from P0,+ via the standard
action of the group PGL2(R) of Möbius transformations on R(t) (see Exercise 1.1.5).
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Altogether we have shown that any Dedekind cut of R is realized by exactly one
ordering of R(t):

1.1.14 Proposition. The orderings of the field R(t) are in natural bijection with the
Dedekind cuts of R, which are the a± (a ∈ R) together with ±∞. ut

1.1.15 Remark. Let (K, P) be an arbitrary ordered field. In a completely similar
fashion, we may construct orderings Pa,± (a ∈ K) and P±∞ of the rational function
field K(t), that extend the ordering P of K (compare Exercise 1.1.7). However, there
will in general be orderings of K(t) that cannot be obtained in this way (Exercise
1.1.8).

1.1.16 Definition. The ordered field (K, ≤), or the ordering ≤ of K, is called Archi-
medean if the axiom of Archimedes holds:

∀ a, b ∈ K
(
b > 0 ⇒ ∃ n ∈ N nb > a

)
.

1.1.17 Examples.

1. The ordering ≤ of K is Archimedean if, and only if, for any a ∈ K there is
a positive integer n with a < n. Clearly, the unique ordering of R is Archimedean.
Therefore any subfield of R is Archimedean as well, if equipped with the ordering
induced from R.

2. The field R(t) has only non-Archimedean orderings. For example, with respect
to Pa,+ we have 1

t−a > n for every n ∈ N.
3. The field Q(t) has both Archimedean and non-Archimedean orderings (Exer-

cise 1.1.8).

The next result says that, up to order-preserving isomorphism, the Archimedean
ordered fields are just the subfields of R (with the ordering induced from R):

1.1.18 Theorem. (Hölder) Given an Archimedean ordered field (K,≤), there exists
an order-compatible homomorphism ϕ : K → R. In addition, ϕ is uniquely deter-
mined.

Here we are using the following terminology:

1.1.19 Definition. If (K, P) and (L,Q) are ordered fields, a homomorphism ϕ : K →
L is order-compatible with respect to P and Q, if ϕ(P) ⊆ Q (and hence P = ϕ−1(Q))
holds. We may also say that ϕ : (K, P)→ (L,Q) is an order embedding.

Proof of 1.1.18. Note thatQ is a subfield of K. Given a ∈ K, we consider the subsets1

Ia := ]−∞, a]K ∩ Q, Ja := [a,∞[K ∩ Q

of Q. It is obvious that Ia ≤ Ja and Ia ∪ Ja = Q. So we are forced to define ϕ by

1 intervals are formed with respect to the fixed ordering ≤ of K
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ϕ(a) := sup Ia = inf Ja ∈ R.

Since ≤ is an Archimedean ordering, both Ia, Ja are non-empty, and so ϕ(a) is a well-
defined real number. It is immediate to see that Ia + Ib ⊆ Ia+b and Ja + Jb ⊆ Ja+b hold
for a, b ∈ K. Applying sup to both sides of the first inclusion gives ϕ(a) + ϕ(b) ≤
ϕ(a + b), and applying inf to the second inclusion gives the opposite inequality.
Therefore ϕ is an additive map. On the other hand, for positive elements a, b ∈ K
we have I+

a · I+
b ⊆ I+

ab and J+
a · J+

b ⊆ J+
ab, where we put I+

c := Ic ∩ [0,∞[ and
J+

c := Jc ∩ [0,∞[. Similar to before, this implies ϕ(ab) = ϕ(a)ϕ(b). ut

1.1.20 Corollary. The Archimedean orderings of a field K are in natural bijection
with the set Hom(K,R) of field embeddings K → R. ut

1.1.21 Corollary. The only ring endomorphism of the field R is the identity map. ut

1.1.22 Corollary. If K is a proper field extension of R, then K does not have any
Archimedean ordering.

Proof. Otherwise there would be an embedding ϕ : K → R, by Hölder’s theorem.
Since ϕ|R = id by 1.1.21, the map ϕ cannot be injective, contradiction. �

We now introduce an important generalization of orderings.

1.1.23 Definition. A preordering of a field K is a subset T ⊆ K that satisfies T +T ⊆
T , TT ⊆ T and a2 ∈ T for any a ∈ K. The preordering T is said to be proper if
−1 < T .

1.1.24 Remarks.

1. Any positive cone is a proper preordering.
2. The preordering T is proper if and only if T ∩ (−T ) = {0}. If char(K) , 2 then

the only improper preordering of K is T = K, since −1 ∈ T implies T = K by the
identity

x =
( x + 1

2

)2
−

( x − 1
2

)2
.

3. If T = (Ti)i∈I is any family of preorderings of K, the intersection
⋂

i∈I Ti is
again a preordering. The unique smallest preordering in K is ΣK2, the set of all
sums of squares in K. If T is upward filtering (meaning that for any i1, i2 ∈ I there
exists i ∈ I with Ti1 ∪ Ti2 ⊆ Ti), then also the union

⋃
i∈I Ti is a preordering (and is

proper if all the Ti are proper).
4. Given any subset S of K we may consider the preordering T = PO(S ) gener-

ated by S . By definition, this is the intersection of all preorderings T ′ with S ⊆ T ′.
Explicitly, T consists of all elements in K of the form∑

e∈{0,1}r
se · t

e1
1 · · · t

er
r

with r ∈ N, t1, . . . , tr ∈ S ∪ {1} and se ∈ ΣK2 for all e. This is immediate to check.



8 Ordered Fields

Conversely we’ll now prove that every (proper) preordering is an intersection of
orderings. Always let K be a field.

1.1.25 Lemma. Let T be a proper preordering of K, and let a ∈ K with a < T. Then
T − aT = {s − at : s, t ∈ T } is again a proper preordering of K.

Proof. Obviously T − aT is a preordering. Assuming −1 ∈ T − aT would give
−1 = s − at with s, t ∈ T . Here t , 0 since −1 < T , and so a = 1+s

t = 1
t2 (1 + s)t ∈ T .

This contradicts the assumption. �

1.1.26 Proposition. Any proper preordering of K is contained in a positive cone
of K.

Proof. Let T be a proper preordering of K, and let T be the set of all proper preorder-
ings T ′ that contain T . Zorn’s lemma can be applied to T (Remark 1.1.24.3), and
so T contains a maximal element P. Let us show that any such P is a positive cone
of K. We need to show P ∪ (−P) = K, so let a ∈ K. If a < P then P − aP is a proper
preordering (Lemma 1.1.25) that contains P, hence P− aP = P by maximality of P.
Therefore −a ∈ P. �

1.1.27 Corollary. Any maximal proper preordering of K is a positive cone of K. ut

1.1.28 Proposition. Any proper preordering of K is an intersection of positive cones
of K.

Proof. Let T be a proper preordering, and let a ∈ K with a < T . Then T − aT is
a proper preordering (1.1.25), and hence is contained in a positive cone P (1.1.26).
Therefore a < P. �

If K is any real field then −1 < ΣK2, as we saw directly from the definition of
orderings (1.1.8). Now we can prove a converse:

1.1.29 Corollary. For any field K, the following are equivalent:

(i) K is real, i.e. K has an ordering;
(ii) K has a proper preordering;

(iii) −1 < ΣK2;
(iv) a2

1 + · · · + a2
n = 0 with a1, . . . , an ∈ K implies a1 = · · · = an = 0.

Proof. The implications (i)⇒ (ii)⇒ (iii) and (iii)⇔ (iv) are clear. If (iii) holds then
ΣK2 is a proper preordering of K. So K has an ordering by Proposition 1.1.26. �

1.1.30 Theorem. (Artin) Let K be a field, char(K) , 2. An element a ∈ K is non-
negative with respect to every ordering of K if, and only if, a is a sum of squares
in K.

The “only if” part fails when K is a non-perfect field of characteristic two. This
is why the case char(K) = 2 has been excluded in the theorem.
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Proof. If K is real then ΣK2 is a proper preordering, and so it is the intersection of
all positive cones by Proposition 1.1.28. If K is not real then −1 ∈ ΣK2 (Corollary
1.1.29), and so ΣK2 = K by Remark 1.1.24.2. �

1.1.31 Remark. This is a remarkable theorem, even though its proof was not very
difficult. Artin and Schreier introduced the concept of orderings of fields in order to
approach the following question:

Hilbert’s 17th Problem (1900): Let f (x1, . . . , xn) be a polynomial with real
coefficients that takes non-negative values on all of Rn. Then, can f be written
as a sum of squares of rational functions in (x1, . . . , xn)?

So Hilbert had asked if there exists an identity f h2 = f 2
1 + · · · + f 2

r with real poly-
nomials f1, . . . , fr and h, where h , 0.

The case n = 1 being elementary, Hilbert settled the n = 2 case in [92]. But
for larger values of n the question remained completely open. The introduction of
the “abstract” concept of field orderings, combined with Artin’s theorem 1.1.30,
offers a radically new perspective for approaching the problem. Using the notion
of orderings, and in particular using Theorem 1.1.30, Artin (1927) proved that the
answer is always positive. We can see a possible strategy for such a proof: From
the assumption f (ξ) ≥ 0 for all ξ ∈ Rn, try to conclude that f is non-negative with
respect to every ordering of the rational function field R(x1, . . . , xn). If this can be
shown, we are done using Theorem 1.1.30. Indeed, this approach works, and we
will later see the full details in Theorem 1.5.21.

Note that the proof of Theorem 1.1.30 was entirely non-constructive. In general,
from just knowing that an element a ∈ K lies in every positive cone of K, we get no
information at all about how to find a sum of squares representation of a. We’ll get
back to this question, in the situation of Hilbert’s 17th Problem.

Exercises

1.1.1 Let P, Q be positive cones of a field K that satisfy P ⊆ Q. Show that P = Q.

1.1.2 A totally ordered set (M,≤) is Dedekind complete if, whenever I, J are non-empty subsets
of M with I < J, there exists ξ ∈ M with I ≤ ξ ≤ J. Prove that M is Dedekind complete if
and only if M does not have a free Dedekind cut.

1.1.3 Let (K,≤) be an ordered field that is Dedekind complete. Show that K = R.

1.1.4 Let (M,≤) be a totally ordered set. A pair (I, J) of subsets of M is called a generalized
Dedekind cut of M if I ∪ J = M and I ≤ J (i.e. a ≤ b for all a ∈ I, b ∈ J).

(a) A generalized Dedekind cut of M is either a Dedekind cut of M, or it has the form

φ(x) :=
(
]−∞, x] , [x,∞[

)
for some x ∈ M.

(b) The set M̂ of all generalized Dedekind cuts of M gets totally ordered by setting (I, J) ≤
(I′, J′) if and only if I ⊆ I′ and J ⊇ J′.
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(c) The map φ : M → M̂ is order-compatible and injective.
(d) The totally ordered set (M̂,≤) is Dedekind complete. It is called the Dedekind comple-

tion of (M,≤).

1.1.5 Given an invertible matrix A =
(

a b
c d

)
∈ GL2(R), let σA be the field automorphism of R(t)

over R defined by

σA(t) =
at + b
ct + d

(and σA( f (t)) = f (σA(t)) for every f ∈ R(t)). This defines an action of the group PGL2(R) =

GL2(R)/R∗ onR(t) by field automorphisms. Show that there is an induced action of PGL2(R)
on the set of positive cones of R(t), and that this action is transitive. The latter means that,
for every positive cone P of R(t), there exists A ∈ GL2(R) with P = σA(P0,+).

1.1.6 Let R(t) be the rational function field in one variable t over R. For every f ∈ R(t), the value
f (a) of f at a ∈ R is defined for all but finitely many a ∈ R.

(a) Show that Pa,+ =
{
f ∈ R(t) : ∃ ε > 0 s.t. f ≥ 0 on ]a, a + ε[

}
(and similarly for the

positive cones Pa,−, P±∞, see 1.1.13).
(b) Let C be a (non-rational) irreducible algebraic curve over R, and assume |C(R)| = ∞.

Mimicking (a), try to find positive cones of the function field C(R). Can you prove your
guess?

1.1.7 Let (K, P) be an ordered field, let t be a variable, and let Q ⊆ K(t) be the set of all fractions
f
g of polynomials with g , 0, such that either f = 0, or the leading (highest) coefficients of
f and g have the same sign with respect to P.

(a) Q is a positive cone of K(t) that extends P.
(b) For any a ∈ K one has a ≤Q t. In particular, the ordered field (K(t),Q) is non-

Archimedean.

1.1.8 For each n ≥ 1, show that the rational function field Q(x1, . . . , xn) over Q has both Archime-
dean and non-Archimedean orderings. (Use Exercise 1.1.7 and the fact that R is uncount-
able.)

1.1.9 Let L/K be an algebraic field extension, let Q be a positive cone of L and P = K ∩ Q its
restriction to K. Show that the identity is the only K-automorphism of L that preserves Q.

1.1.10 Let k be a field and x = (x1, . . . , xn) a tuple of indeterminates. If f , p ∈ k[x] are polynomials
and p is irreducible, let vp( f ) be the largest integer m ≥ 0 such that pm divides f , with
vp( f ) = ∞ if f = 0.

(a) Assume that the quotient field of k[x]/〈p〉 is real. Given any non-zero polynomials
f1, . . . , fr ∈ k[x], show that

vp( f 2
1 + · · · + f 2

r ) = 2 min{vp( fi) : i = 1, . . . , r}.

(b) If k is real, show that deg( f 2
1 + · · · + f 2

r ) = 2 max{deg( fi) : i = 1, . . . , r} for f1, . . . , fr ∈
k[x].

(c) Assuming you have familiarized yourself with valuations of fields (see Appendix A.5),
state and prove a generalization of (a) for valuations with real residue field. In what
sense is (b) a particular case of this generalization?

For a version that is still more general than (c), see Exercise 3.5.1 later in the book.
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1.2 Extension of orderings and real closed fields

1.2.1 Always let K be a field. Let L/K be a field extension, and let P be a positive
cone of K. The smallest preordering of L that contains P is

TL(P) :=
{ n∑

i=1

aiy2
i : n ∈ N, ai ∈ P, yi ∈ L

}
.

According to 1.1.28, TL(P) is the intersection of all positive cones Q of L that ex-
tend P, i.e. that satisfy Q ∩ K = P. We conclude:

1.2.2 Lemma. A positive cone P of K extends to a positive cone of L if and only if
−1 < TL(P). ut

Let us consider a few particular cases.

1.2.3 Proposition. Let L = K(
√

a) where a ∈ K. A positive cone P of K extends to
L if and only if a ∈ P.

Proof. If Q is an extension of P to L, then a = (
√

a)2 ∈ Q ∩ K = P. Conversely
suppose that a ∈ P and L , K, so

√
a < K. Assuming −1 ∈ TL(P) we get an identity

−1 =

n∑
i=1

ai (xi + yi
√

a)2 =

n∑
i=1

ai (x2
i + ay2

i + 2xiyi
√

a)

with ai ∈ P and xi, yi ∈ K. This implies −1 =
∑n

i=1 ai(x2
i +ay2

i ) ∈ P, a contradiction.�

1.2.4 Proposition. Let L/K be a finite extension of odd degree. Then every ordering
of K extends to L.

Proof. Assuming this is false, we fix a counter-example L/K of smallest possible
odd degree n. Let P be a positive cone of K that doesn’t extend to L. Since char(K) =

0 there exists α ∈ L with L = K(α). Let f ∈ K[t] be the minimal polynomial of α,
then deg( f ) = n and L is K-isomorphic to K[t]/〈 f 〉. By Lemma 1.2.2 we have
−1 ∈ TL(P), so there is an identity 1 +

∑r
i=1 aiy2

i = 0 in L with 0 , ai ∈ P and
0 , yi ∈ L for i = 1, . . . , r. Choose polynomials gi ∈ K[t] with yi = gi(α) and
deg(gi) < n (i = 1, . . . , r). Then

1 +

r∑
i=1

aigi(t)2 = f (t)h(t) (1.1)

holds in K[t] for some polynomial h ∈ K[t].
Let d := maxi deg(gi). Then d < n, and the left hand side of (1.1) has degree at

most 2d. The coefficient of t2d is of the form
∑r

i=1 aib2
i with bi ∈ K and bi , 0 for at

least one index i, so it is > 0 with respect to P. Hence the degree of the polynomial
(1.1) is equal to 2d, and so deg(h) is odd. Moreover deg(h) < n since d < n. There is
at least one irreducible factor h1 of h of odd degree, and so the field L1 := K[t]/〈h1〉
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over K has odd degree < n over K. Moreover −1 ∈ TL1 (P) by (1.1). So the ordering
P does not extend to L1 (1.2.2) which contradicts the minimal choice of L. �

1.2.5 Proposition. Any ordering of K can be extended to the rational function field
K(x1, . . . , xn), for every n ∈ N.

Proof. By an inductive argument it suffices to extend a given positive cone P of K to
K(x) (one variable). See Exercise 1.1.7 where an explicit extension is constructed.
Here is another (non-constructive) argument:

Assuming that P doesn’t extend to K(x), we would have −1 ∈ TK(x)(P), once
more by 1.2.2. This would mean an identity f 2

0 +
∑r

i=1 ai f 2
i = 0 in K[x] with r ≥ 1 and

0 , ai ∈ P (i = 1, . . . , r), 0 , fi ∈ K[x] (i = 0, . . . , r). By an argument similar to the
previous proof, the left hand side has degree 2d where d = max{deg( fi) : 0 ≤ i ≤ r}.
In particular, it is non-zero, which is a contradiction. �

1.2.6 Definition. A field K is real closed if K is real, but every proper algebraic
extension of K is non-real.

For example, the field R of real numbers is real closed, since C is the only proper
algebraic extension of R.

1.2.7 Proposition. For a field K, the following properties are equivalent:

(i) K is real closed;
(ii) K has an ordering that doesn’t extend to any proper algebraic extension of K;

(iii) K is real, doesn’t have any proper odd degree extension, and K∗ = K∗2∪(−K∗2).

Here we write K∗2 = {a2 : a ∈ K∗}.

Proof. (i)⇒ (ii) is obvious from the definitions. (ii)⇒ (iii): Let P be a positive cone
of K that doesn’t extend to any proper finite extension of K. By Proposition 1.2.4, K
doesn’t have any proper odd degree extension. Any element a ∈ P is a square in K,
since otherwise K(

√
a) would be a properly larger field to which P can be extended

(1.2.3). So we have P = {a2 : a ∈ K}, and (iii) follows from P ∪ (−P) = K.
Now assume that (iii) holds, so in particular char(K) = 0. We use a Galois-

theoretic argument to prove (i). By (iii), the only non-squares in K are the elements
−a2 with a , 0. Therefore K(

√
−1) is the unique quadratic extension of K. Let us

show that every proper algebraic extension of K contains a quadratic subfield, which
will imply property (i). Let L/K be a proper finite extension, let E be the Galois hull
of L over K and G the Galois group of E over K. Moreover let S be a Sylow 2-
subgroup of G. If F denotes the subfield of elements of L that are fixed by S , the
degree [F : K] = [G : S ] is odd. Therefore F = K by hypothesis (iii), and so G is
a 2-group. Hence any proper subgroup of G is contained in a subgroup of index 2,
which implies that L contains a quadratic extension of K, as was claimed. �

From (i)⇒ (iii) we see in particular:

1.2.8 Corollary. If K is a real closed field then P := {a2 : a ∈ K} is the unique
positive cone of K. ut
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It is customary to denote a general real closed field by the letter R, the symbol R
being reserved for the field of (classical) real numbers. If R is a real closed field, we
will write ≤ for the unique ordering of R, and often denote the unique positive cone
of R by R+ = {a2 : a ∈ R}.

1.2.9 Proposition. (Fundamental Theorem of Algebra) If R is any real closed field,
the field R(

√
−1) is algebraically closed.

Proof. Let us write i =
√
−1 as usual. Every finite extension of R(i) has 2-power

degree, as we saw in the proof of 1.2.7, (iii) ⇒ (i). Therefore it suffices to prove
that R(i) doesn’t have a quadratic extension. This is elementary: If w = u + iv with

u, v ∈ R and v , 0, then w = z2 for z := x + iv
2x and x :=

√
1
2 (u +

√
u2 + v2) ∈ R,

where one has to take the positive value for the inner square root. ut

1.2.10 Remark. Proposition 1.2.9 admits a strong converse: If K is any field with
algebraic closure K, and if 1 < [K : K] < ∞, then K is real closed (and therefore
K = K(

√
−1)). See [109] Theorem 1.6.1 for the proof.

1.2.11 Corollary. Let R be a real closed field. The monic irreducible polynomials in
R[t] are precisely the following:

(1) t − a, for a ∈ R;
(2) t2 + at + b, for a, b ∈ R with a2 < 4b.

Hence any monic polynomial in R[t] is a product of finitely many factors of type
(1) or (2).

Proof. Let f ∈ R[t] be monic and irreducible. Then deg( f ) ≤ 2 by 1.2.9. This im-
plies the assertion since t2+at+b is irreducible over R if, and only if, the discriminant
a2 − 4b is not a square (i.e., is negative). �

1.2.12 Remarks.

1. If f (t) ∈ R[t] is a monic irreducible polynomial of degree 2, then f (t) > 0 for
every t ∈ R.

2. Let (K,≤) be an ordered field, let L = K(i) with i =
√
−1, and let z 7→ z denote

the non-trivial automorphism of L/K. Writing |z|2 := zz for z ∈ L, the Cauchy-
Schwarz inequality ∣∣∣∣∣ n∑

j=1

x jy j

∣∣∣∣∣2 ≤ ( n∑
j=1

|x j|
2
)
·

( n∑
j=1

|y j|
2
)

holds for any x, y ∈ Ln. Moreover, equality holds if and only if x and y are linearly
independent over L. The proof is the same as over R or C, respectively.

3. If the field R is real closed, if C = R(
√
−1) and z ∈ Cn, let

|z| :=
√
|z1|

2 + · · · + |zn|
2
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(non-negative square root). The familiar triangle inequality |z + z′| ≤ |z| + |z′| holds
for all z, z′ ∈ Cn, as a consequence of Cauchy-Schwarz.

4. Every positive cone P of a field K defines a topology TP on K, by declaring
the open intervals ]a, b[P (for a, b ∈ K) to be a basis of open sets in K. This is
the order topology of (K, P). All field operations (addition, multiplication, division)
are continuous with respect to TP, which means that (K,TP) is a topological field
(Exercise 1.2.2). For any n ∈ N the order topology TP gives the product topology on
Kn, which has the open balls

Br(x) = {y ∈ Kn : |y − x|2 <P r2}

(x ∈ Kn, r ∈ K) as a basis of open sets. We will use the order topology without any
further comment, mostly in the case where K is real closed.

Exercises

1.2.1 Complete the proof of the fundamental theorem of algebra (Proposition 1.2.9).

1.2.2 Let (K, P) be an ordered field, and let TP be the order topology as defined in Remark 1.2.12.4.
Clearly TP is a Hausdorff topology.

(a) Show that (K,TP) is a topological field, i.e. that addition and multiplication (as maps
K × K → K) and inversion (as a map K∗ → K∗) are continuous.

(b) If K , R, show that the topological space (K,TP) is totally disconnected.
(c) If K , R, show that the topological space (K,TP) is not locally compact.
(d) For the field K = R(t), discuss how the topology TP depends on the ordering P.

1.2.3 Let P = { f ∈ R(x, y) : ∃ ε > 0 with f (t, et) ≥ 0 for 0 < t < ε}. Prove that P is a posi-
tive cone in the field R(x, y). (You will have to use the fact that the exponential function is
transcendental, i.e. does not satisfy a polynomial identity.)

1.2.4 Let (K, P) ⊆ (L,Q) be a finite extension of ordered fields.

(a) The extension is relatively Archimedean, meaning that for every b ∈ L there exists
a ∈ K with b ≤Q a.

(b) In general, K need not be dense in L in the order topology of Q. Show this using
L = R(t), K = R(t2) and the positive cone Q of L with 0 <Q nt <Q 1 for all n ∈ N.

1.2.5 Let k be a field with char(k) = 0, let k[[t]] be the ring of formal power series over k in one
variable t, let m be its maximal ideal and k((t)) = qf

(
k[[t]]

)
its quotient field.

(a) For every f ∈ m and any n ∈ N, there exists g ∈ m with (1 + g)n = 1 + f . (Hint:
Binomial series.)

(b) Every f ∈ k((t))∗ can be written f = c · tn · (1 + g)2 with uniquely determined c ∈ k∗,
n ∈ Z and g ∈ m.

(c) Prove that every ordering of k can be extended to k((t)) in precisely two different ways.
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1.3 Real zeros of univariate polynomials

Given a polynomial f with real coefficients, we would like to count, or at least
estimate, the number of real zeros of f , without actually having to calculate them.
We will see several methods to achieve this goal and more refined ones. They mostly
date back to the 19th century or are even older, and they can be regarded to be among
the earliest manifestations of what we now call “real algebra”.

For the sequel it will be important that the results presented here hold over arbi-
trary real closed fields R, and not just over R. Some of the basic results below are
well-known from first year calculus in the case R = R, but we treat them again, us-
ing only strictly algebraic arguments. We stress that the traditional tools of calculus
are unavailable over a general real closed field R, because R is lacking the required
completeness properties.

Throughout, R denotes a real closed field. We start with an easy a priori bound
for the size of the roots, in terms of the coefficients:

1.3.1 Lemma. Let f = tn + a1tn−1 + · · · + an−1t + an be a monic polynomial with
coefficients in R(

√
−1). Then

|α| ≤ max
{
1, |a1| + · · · + |an|

}
holds for every root α of f in R(

√
−1).

Proof. See 1.2.12.3 for the definition of absolute values of elements in R(
√
−1). Let

α ∈ R(
√
−1) with f (α) = 0, we may assume |α| ≥ 1. Then

α = −
(
a1 +

a2

α
+ · · · +

an

αn−1

)
,

so the claim follows from the triangle inequality. �

Next we prove some results for rational functions. When R = R, these are well-
known from elementary calculus, and hold more generally for suitably differentiable
functions.

1.3.2 Let us recall some basic notions. Let k be a field and let f = f (t) ∈ k(t) be
a non-zero rational function. Given a ∈ k, we can (uniquely) write f = (t − a)n ·

g
h

with n ∈ Z and g, h ∈ k[t] such that g(a)h(a) , 0. The vanishing order of f at a ∈ k
is orda( f ) = n. If n ≥ 1 then a is called a zero of f , and n is its order or multiplicity.
If n < 0 then a is a pole of f , of pole order |n|. A given rational function f , 0 has
only finitely many zeros or poles. If a ∈ k is not a pole of f , the value f (a) ∈ k at
t = a is well-defined.

Now let the field k = R be real closed. Any non-zero rational function f ∈ R(t)
has a product decomposition

f (t) = ± g(t) ·
r∏

i=1

(t − ai)ei (1.2)
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with r ≥ 0, ai ∈ R and ei ∈ Z (i = 1, . . . , r), where g(t) ∈ R(t) is such that g has no
poles in R and g(ξ) > 0 holds for every ξ ∈ R. This is clear from 1.2.11, see also
1.2.12.1. Thus we get:

1.3.3 Proposition. (Intermediate value theorem) Let f ∈ R(t), and let a < b in R be
such that f has no pole in [a, b] and f (a) f (b) < 0. Then the number of zeros of f
in [a, b], counted with multiplicities, is odd. In particular, f has at least one zero in
[a, b].

Proof. In (1.2) we can ignore g(t), as well as any factor t − ai with ai < [a, b]. �

1.3.4 Let 0 , f ∈ R(t) and a ∈ R. There is ε > 0 in R such that |b − a| ≥ ε holds
for any zero or pole b , a of f . By 1.3.3, f has constant signs s− on ]a − ε, a[ and
s+ on ]a, a + ε[, where s−, s+ ∈ {±1}. We’ll say that f changes sign at a (from s− to
s+, if we want to specify) if s− , s+. If s− = s+ then f doesn’t change sign at a.

1.3.5 Lemma. A non-zero rational function f ∈ R(t) changes sign at a ∈ R if and
only if orda( f ) is odd.

Proof. Immediate from f = (t − a)n · g where n = orda( f ) and g(a) , 0. �

1.3.6 Derivatives of rational functions are defined in a purely formal way. If f =∑
i≥0 aiti is a polynomial with ai ∈ R, then f ′ =

∑
i≥1 iaiti−1. More generally, if f =

p
q

is a rational function with polynomials p, q ∈ R[t] and q , 0, then f ′ =
p′q−pq′

q2 ,
which is again a rational function. Instead of f ′ we also use the symbolic notation
d f
dt . As usual, the higher derivatives f ′′, f ′′′, . . . are defined by iteration of the first

derivative: f (k) =
dk f
dtk := d

dt ( f (k−1)) for k ≥ 1.

1.3.7 Lemma. Let 0 , f ∈ R(t). If a ∈ R is a root (resp. a pole) of f , the “loga-
rithmic derivative” f ′/ f of f changes sign from minus to plus (resp. from plus to
minus).

Proof. Let a ∈ R with n = orda( f ) , 0. Writing f = (t − a)n · g with g(a) , 0, we
get

f ′(t)
f (t)

=
n

t − a
+

g′(t)
g(t)

from which one reads off the assertion. �

1.3.8 Proposition. Let f ∈ R(t), and let a < b in R with f (a) = f (b) = 0. If f has
neither zeros nor poles in the open interval ]a, b[, the number of zeros of f ′ in ]a, b[
is odd, counted with multiplicities.

Proof. Choose a < a1 < b1 < b in R such that f ′ doesn’t vanish anywhere in
]a, a1] ∪ [b1, b[. From Lemma 1.3.7 we see that f ′

f is positive at a + ε and negative

at b − ε, for sufficiently small ε > 0. Hence f ′

f is positive at a1 and negative at b1.

Therefore, by the intermediate value theorem 1.3.3, the number of zeros of f ′

f in
[a1, b1] is odd, counted with multiplicities. This is also the number of zeros of f ′ in
]a, b[. ut
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1.3.9 Corollary. (Rolle’s theorem) Let f ∈ R(t). If a < b in R are such that f (a) =

f (b), and if f has no poles in ]a, b[, there exists a < ξ < b with f ′(ξ) = 0.

Proof. Replacing f by f − f (a) we can assume f (a) = f (b) = 0. We may also
assume f , 0, and may replace b with the smallest zero c of f that is larger than a.
Now we are in the situation of Proposition 1.3.8. �

We get the following consequences, well-known from calculus:

1.3.10 Corollary. Let f ∈ R(t), and let a < b in R be such that f has no pole in
[a, b].

(a) (Mean value theorem) There exists a < ξ < b with f ′(ξ) =
f (b)− f (a)

b−a .
(b) If f ′(x) ≥ 0 for all x ∈ ]a, b[ then f is increasing on [a, b].

Proof. To prove (a), apply Rolle’s theorem to

g(t) = f (t) −
t − a
b − a

(
f (b) − f (a)

)
.

Indeed we have g(a) = g(b) = f (a), and any a < ξ < b with g′(ξ) = 0 satisfies the
claim. Statement (b) is a consequence of (a). ut

We are now going to discuss the main topic of this section, which is counting
the number of real roots of a polynomial, either globally or in a given interval. To
be clear, if R is a real closed field and f ∈ R[t], by a real root of f we mean an
element α ∈ R with f (α) = 0 (as opposed to the non-real roots of f , which are the
α ∈ R(

√
−1) r R with f (α) = 0). The non-zero polynomial f ∈ R[t] is real-rooted if

all its roots are real. We start by giving an upper bound to the number of real roots.

1.3.11 Definition. Given a finite sequence c = (c1, . . . , cn) in R (with n ≥ 1), let

Var(c) = Var(c1, . . . , cn)

denote the number of sign changes in c after deleting all zeros. So this is the number
of pairs (i, j) with 1 ≤ i < j ≤ n for which cic j < 0 and ck = 0 for all i < k < j.

1.3.12 Theorem. (Descartes’ rule of sign) Let f =
∑n

i=0 aiti be a non-zero polyno-
mial in R[t]. The number of strictly positive real roots of f , counted with multiplicity,
is at most Var(a0, . . . , an).

Proof. For n ≤ 1 this is clear. So let n = deg( f ) > 1, and assume that the theorem
has been proved for all smaller degrees. Clearly we can assume a0 = f (0) , 0. All
root countings are done with multiplicities. Write N+( f ) for the number of strictly
positive roots of f , and let r ≥ 1 be minimal with ar , 0. Since ordξ( f ′) = ordξ( f )−1
for any root ξ of f , Rolle’s theorem gives N+( f ′) ≥ N+( f ) − 1. Since N+( f ′) ≤
Var(ar, . . . , an) ≤ Var(a0, . . . , an) holds by the inductive hypothesis, we are done if
N+( f ) ≤ N+( f ′).

This means that we can assume that N+( f ) = 1+ N+( f ′). If ξ denotes the smallest
positive zero of f , this assumption implies that f ′(η) , 0 for 0 < η < ξ. For small
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enough η > 0, the sign of f ′(η) is the sign of ar, so we conclude sign f ′(η) = sign(ar)
for all 0 < η < ξ. Hence f is monotone on [0, ξ] by 1.3.10(b). If ar > 0 then f is
increasing on [0, ξ], and so a0 = f (0) < f (ξ) = 0. If ar < 0 then f is decreasing on
[0, ξ], and so a0 = f (0) > f (ξ) = 0. In either case, therefore, a0ar < 0, which means
Var(a0, . . . , an) = 1 + Var(ar, . . . , an). So Var(a0, . . . , an) ≥ 1 + N+( f ′) = N+( f ),
which completes the inductive step. �

1.3.13 Remarks.

1. The argument in the previous proof can be refined to show that the dif-
ference Var(a0, . . . , an) − N+( f ) is always even. In particular, this implies that if
Var(a0, . . . , an) is odd then f has at least one positive root. See [109] Corollary
1.10.3 for the details.

2. In general, the upper bound in 1.3.12 cannot be improved, as shown by any
polynomial with only real and positive roots. On the other hand, the actual number
of positive roots may well be smaller than the number of sign changes. For example,
f = t2 − t + 1 doesn’t have a real root.

1.3.14 Corollary. Let f ∈ R[t] be a non-zero polynomial with exactly m monomials.
Then f has at most 2m − 2 non-zero roots in R, counted with multiplicity.

Again this bound is reached by f (t2), if f is a polynomial with only real and
positive roots.

Proof. Both f (t) and f (−t) have at most m−1 positive roots, by Descartes’ theorem.
So f has at most 2m − 2 non-zero roots. �

For real-rooted polynomials f , we can even read off the exact numbers of positive
and of negative roots, directly from the sequence of coefficients:

1.3.15 Corollary. Let f =
∑n

i=0 aiti ∈ R[t] be a non-zero real-rooted polynomial.
Then the number of strictly positive (resp. strictly negative) roots of f is equal to
Var(a0, a1, . . . , an) (resp. Var(a0,−a1, . . . , (−1)nan)), again counting with multiplici-
ties.

Proof. We may assume deg( f ) = n ≥ 1 and f (0) , 0. Let p (resp. p′) be the number
of strictly positive (resp. strictly negative) roots of f , and put

W(x) := Var
(
a0 + x, a1 + x, . . . , an + x

)
,

W ′(x) := Var
(
a0 + x, −(a1 + x), . . . , (−1)n(an + x)

)
for x ∈ R. According to Descartes we have p ≤ W(0), and similarly p′ ≤ W ′(0)
(replace x by −x). Choose x > 0 in R so small that x < |ai| for every index i with
ai , 0. Then W(x) + W ′(x) = n since ai + x , 0 for each index i, and since at
each position exactly one of the two sequences changes sign. On the other hand,
Var(a, 0, . . . , 0, b) ≤ Var(a + c, c, . . . , c, b + c) whenever a, b, c ∈ R satisfy 0 < c <
min{|a|, |b|}, which shows that W(x) ≥ W(0) and W ′(x) ≥ W ′(0). Since p + p′ = n
holds by hypothesis, the identity W(x) + W ′(x) = n and the inequalities
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p ≤ W(0) ≤ W(x), p′ ≤ W ′(0) ≤ W ′(x)

combine to give p = W(0) and p′ = W ′(0). �

1.3.16 Remarks.

1. Theorem 1.3.12 and its corollaries can be seen as particular cases of a theorem
by Budan–Fourier. For f ∈ R[t] of degree n and a < b in R, this theorem asserts
that the number of real roots of f in ]a, b] is at most V(a) − V(b) where V(x) =

Var
(
f (x), f ′(x), . . . , f (n)(x)

)
(x ∈ R). Again, roots are counted with multiplicities

here. A proof can be found in [109] Section 1.10 or in [12] Theorem 2.35.
2. Descartes’ theorem is just the tip of an iceberg. The theory of fewnomials,

initiated by Khovanskii in the 1980s, pursues the idea that a “simple” equation, or
system of equations, with real coefficients should have a “simple” set of real solu-
tions. Slightly more concretely, the “complexity” of the real solution set of a system
fi(x1, . . . , xn) = 0 (i = 1, . . . ,m) of real polynomial equations can be bound from
above, for given m and n, in terms of the total number of monomials occurring in
these equations. Complexity could mean, for example, the sum of the Betti numbers.
In classical algebraic geometry, where complex solutions are considered, there ex-
ists no analogue of this phenomenon. See Khovanskii’s original monograph [106],
or [200], for much more information.

We are now going to see two methods that allow us to find the exact number of
real roots of an arbitrary polynomial f ∈ R[t], without having to calculate any of
them. In contrast to the preceding discussion, we now disregard all multiplicities.

1.3.17 Definition. Let f ∈ R[t] be a non-constant polynomial. The Sturm sequence
for f is the sequence ( f0, f1, . . . , fr) of polynomials in R[t], recursively defined as
follows: f0 = f , f1 = f ′ and

f0 = q1 f1 − f2 ,
f1 = q2 f2 − f3 ,
· · ·

fr−2 = qr−1 fr−1 − fr ,
fr−1 = qr fr

(1.3)

where q1, . . . , qr ∈ R[t] are such that f1, . . . , fr are non-zero and satisfy deg( fi) <
deg( fi−1) (i = 1, . . . , r). Note that this determines r ∈ N uniquely, as well as the fi
and qi. For x ∈ R we put

v f (x) := Var
(
f0(x), f1(x), . . . , fr(x)

)
.

If we change the minus signs on the right of (1.3) in plus signs, we get the usual
form of the Euclidean algorithm for the pair ( f , f ′). Recall that the Euclidean al-
gorithm calculates the greatest common divisor of the two polynomials. The minus
signs are crucial for Sturm’s algorithm to give correct results (see below), but they
are inessential for Euclidean division. In particular, we see that fr = gcd( f , f ′) (up
to a non-zero scalar factor).
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1.3.18 Theorem. (Sturm algorithm) Given a < b in R with f (a) f (b) , 0, the num-
ber of distinct roots of f in the interval [a, b] is equal to v f (a) − v f (b).

Proof. Consider v f (x) as a function of x ∈ R. On the intervals between the finitely
many real roots of f0 f1 · · · fr, this function is constant. How does v f (x) change when
we pass through a root of f0 f1 · · · fr?

First assume that f and f ′ are relatively prime, so f has simple roots. Then the
sequence ( f0, f1, . . . , fr) satisfies

(1) gcd( f0, f1) = 1,
(2) at any real root of f0, the product f0 f1 changes sign from minus to plus,
(3) for 1 ≤ i < r and every c ∈ R with fi(c) = 0, we have fi−1(c) fi+1(c) < 0.

Indeed, (2) is Lemma 1.3.7, and (3) follows from fi−1 = qi fi− fi+1 and gcd( fi−1, fi) =

1.
Let c ∈ R. By x = c± we denote values of x for which sign(x− c) = ±1 and |x− c|

is sufficiently small. Let 0 ≤ i < r with fi(c) = 0. Then fi+1(c) , 0 by (3), and we
put ε := sign fi+1(c). We are only going to use (1)–(3):

• If i = 0 then (2) implies the following scheme of signs:

x = c− x = c x = c+

f0(x) −ε 0 ε

f1(x) ε ε ε

contribution to v f (x) 1 0 0

• If 1 ≤ i < r then (3) implies:2

x = c− x = c x = c+

fi−1(x) −ε −ε −ε

fi(x) ? 0 ?
fi+1(x) ε ε ε

contribution to v f (x) 1 1 1

We see, for every real zero c of f , that the function v f (x) drops by 1 at c, going from
x = c− to x = c+. Outside the real zeros of f the function v f (x) is locally constant
everywhere. Therefore, if a < b in R satisfy f (a) f (b) , 0 then v f (a) − v f (b) is the
number of distinct roots of f in the interval [a, b].

Now let f be arbitrary, possibly with multiple roots, and put gi := fi/ fr for
i = 0, . . . , r. The sequence (g0, g1, . . . , gr) of polynomials satisfies the analogues
of properties (1)–(3) above, although it need not be the Sturm sequence of g0.
Moreover, if x ∈ R satisfies fr(x) , 0, then the sequences (g0(x), . . . , gr(x)) and
( f0(x), . . . , fr(x)) have the same number of sign changes, since the second sequence
is fr(x) times the first. Moreover, f0 = f and g0 have the same roots. So the previous
argument implies the assertion of the theorem in general. �

2 We cannot decide the value of ? in this table, but it won’t matter in what follows
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Given the Sturm sequence ( f0, f1, . . . , fr) of f , let di := deg( fi), and let ci be the
leading (highest) coefficient of fi, for i = 0, . . . , r. Then for x � 0 we have

v f (x) = Var
(
(−1)d0 c0, (−1)d1 c1, . . . , (−1)dr cr

)
=: v f (−∞),

while
v f (x) = Var

(
c0, c1, . . . , cr

)
=: v f (+∞)

for x � 0. Hence we get:

1.3.19 Corollary. The total number of distinct real roots of non-constant f ∈ R[t] is
v f (−∞) − v f (+∞). ut

1.3.20 Sturm’s method may be refined further. Let polynomials f , g ∈ R[t] be given
where f is non-constant and g , 0. We would like to count the distinct real zeros ξ
of f that satisfy g(ξ) > 0. To this end we define the generalized Sturm sequence for
the pair ( f , g), as follows: Let f0 = f , f1 = f ′g, and let f2, . . . , fr be defined as in
(1.3) by fi−1 = qi fi − fi+1 and deg( fi+1) < deg( fi) (i = 1, . . . , r − 1), together with
fi , 0 and fr−1 = qr fr. For x ∈ R put

v f ,g(x) := Var
(
f0(x), f1(x), . . . , fr(x)

)
.

1.3.21 Theorem. (Generalized Sturm algorithm) If a < b in R satisfy f (a) f (b) , 0,
then

v f ,g(a) − v f ,g(b) =
∑
a<c<b
f (c)=0

sign g(c).

So this is the number of (different) roots c of f with g(c) > 0, minus the number
of roots c of f with g(c) < 0, both in the interval [a, b]. The previously stated version
Theorem 1.3.18 corresponds to the case g = 1.

Proof. First we assume gcd( f , f ′g) = 1. The sequence ( f0, . . . , fr) satisfies (1), (3)
and

(2′) for any c ∈ R with f0(c) = 0, the product f0 f1 changes sign from − sign g(c)
to sign g(c). (Note that g(c) , 0.)

Again, this follows from Lemma 1.3.7. As before we study how v f ,g(x) changes
when we pass through a real root c of fi. If i ≥ 1, the former argument remains
valid, showing that v f ,g(x) does not change. Write ε := sign f1(c) and note that
ε , 0. If i = 0 we get the following modified sign scheme, using (2′):

x = c− x = c x = c+

f0(x) −ε sign g(c) 0 ε sign g(c)
f1(x) ε ε ε

contribution to v f ,g(x) :
if g(c) < 0 0 0 1
if g(c) > 0 1 0 0
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Therefore v f ,g(c−) − v f ,g(c+) = sign g(c). In the general case, replace the sequence
( f0, . . . , fr) by ( f0/ fr, . . . , fr/ fr) and observe that (1), (2′) and (3) remain valid for
the new sequence. Both sequences have the same number of sign changes at x = a
and at x = b, and so we get the claim in the same way as before. �

1.3.22 Example. Let us calculate the Sturm sequence for a cubic polynomial f =

t3 + at + b with a, b ∈ R. Assuming a , 0 we find f0 = f , f1 = f ′ = 3t2 + a
and f2 = −( 2a

3 t + b), f3 = − 1
4a2 (4a3 + 27b2) = D

4a2 where D = −(4a3 + 27b2)
is the discriminant of f . When a = 0, the sequence gets shorter, namely it ends
with f2 = −b if b , 0, and even with f1 = f ′ if a = b = 0. Although this is
a baby example, it exhibits a characteristic feature of the Sturm algorithm: The
iteration branches into a tree of subcases, depending on the concrete coefficients of
the polynomial.

1.3.23 We now discuss a second approach to exact real root counting. It is due to
Hermite and Sylvester and avoids the branching feature of the Sturm algorithm. First
let K be an arbitrary field and let f = tn + a1tn−1 + · · · + an be a monic non-constant
polynomial over K. Let α1, . . . , αn be the roots of f in an algebraic closure K of K,
so f =

∏n
j=1(t − α j). For k = 0, 1, 2, . . . let

pk = pk( f ) := αk
1 + · · · + αk

n,

the k-th Newton sum of f . Note that pk ∈ K since pk is symmetric in the αi. Explic-
itly we have p0 = n, p1 = −a1, p2 = a2

1 − 2a2, p3 = −a3
1 + 3a1a2 − 3a3 etc. The

Newton sums can be calculated recursively from the identity

pk + pk−1 a1 + pk−2 a2 + · · · + p1 ak−1 + k ak = 0

for k ≥ 0, where a j := 0 for j > n (Exercise 1.3.7). For an alternative approach to
calculating the Newton sums see Exercise 1.3.8.

1.3.24 Definition. The symmetric n × n matrix

H( f ) :=
(
p j+k( f )

)
0≤ j,k≤n−1 =


p0 p1 · · · pn−1
p1 p2 · · · pn
...

...
...

pn−1 pn · · · p2n−2


(with coefficients in K) will be called the Hermite matrix of f .

The ( j, k)-coefficient of H( f ) depends only on j + k. Matrices with this property
are called Hankel matrices.

1.3.25 Remarks.

1. For n ∈ N and any ring A, the set (or A-module) of all symmetric n×n matrices
over A is denoted Symn(A). Sylvester’s inertia theorem for symmetric matrices over
R is well known from linear algebra. The standard proof (induction on n) generalizes
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directly to give the following result: If K is an ordered field with positive cone P and
M ∈ Symn(K) is any symmetric matrix, there exists an invertible matrix S ∈ GLn(K)
such that S >MS = diag(a1, . . . , an) is a diagonal matrix. The integer

signP(M) :=
n∑

i=1

signP(ai)

depends on M and P but not on S , and is called the (Sylvester) signature of M with
respect to P. The matrix M is positive definite with respect to P, denoted M �P 0, if
signP(M) = n, i.e. if ai >P 0 for i = 1, . . . , n. If only the weak inequalities ai ≥P 0
hold for i = 1, . . . , n, one says that M is positive semidefinite, or briefly psd, with
respect to P, written M �P 0.

2. If R is a real closed field and M ∈ Symn(R), every eigenvalue of M is real,
i.e. contained in R. Indeed, the usual proof over R works over R as well. Corollary
1.3.15 therefore implies that the signature of M can be read off directly from the
characteristic polynomial pM(t) = tn + a1tn−1 + · · · + an of M, namely

sign(M) = Var
(
1, a1, a2, . . . , an

)
− Var

(
1,−a1, a2, . . . , (−1)nan

)
.

In particular, the matrix M is positive definite iff (−1)iai > 0, and positive semidef-
inite iff (−1)iai ≥ 0 for i = 1, . . . , n (see also Exercise 1.3.5). In fact, these obser-
vations regarding the signature are true over any field with respect to any ordering.
This will be clear once we have proved that every ordered field has a real closure
(Proposition 1.4.2 below).

1.3.26 Theorem. Let K be a field with char(K) = 0, and let f ∈ K[t] be a monic
non-constant polynomial.

(a) The rank of H( f ) is the number of distinct roots of f in an algebraic closure K
of K.

(b) If K = R is real closed, the signature of H( f ) is the number of distinct roots of
f in R.

In particular, for K = R real closed, the Sylvester signature of H( f ) is always
non-negative.

1.3.27 Corollary. Let K = R be real closed. A polynomial f ∈ R[t] is real-rooted if
and only if its Hermite matrix H( f ) is positive semidefinite.

Proof. A symmetric matrix over R is positive semidefinite if and only if its signature
is equal to its rank. �

Proof of Theorem 1.3.26. (a) Let α1, . . . , αn ∈ K with f =
∏n

j=1(t−α j). The Hermite
matrix can be factored H( f ) = V> · V where

V :=


1 α1 · · · αn−1

1
1 α2 · · · αn−1

2
...

...
...

1 αn · · · αn−1
n
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is the Vandermonde matrix. This gives a diagonalization (over K) of the quadratic
form represented by H( f ): Writing x = (x0, . . . , xn−1)> for a column vector of vari-
ables, we get

x>H( f ) x = (V x)> (V x) =

n∑
j=1

Lα j (x)2

where Lα denotes the linear form Lα(x) =
∑n−1

k=0 α
k xk (α ∈ K). If we label the α j in

such a way that α1, . . . , αr are the distinct roots of f , the linear forms Lα1 , . . . , Lαr

are linearly independent since the r-th principal minor of V is non-zero. This already
proves rk H( f ) = r.

(b) Now let K = R be real closed. Let i =
√
−1, and let z 7→ z denote the

non-trivial automorphism of R(i) over R (“complex conjugation”). As usual, write
Re(z) = 1

2 (z + z), Im(z) = 1
2i (z− z) for z ∈ R(i). For α ∈ R(i) let Re(Lα) := 1

2 (Lα + Lα)
and Im(Lα) := 1

2i (Lα − Lα). These are linear forms with coefficients in R. With this
notation we have Lα = Re(Lα) + i Im(Lα), Lα = Re(Lα) − i Im(Lα), and so

L2
α + L2

α = 2Re(Lα)2 − 2Im(Lα)2.

This shows that every pair α j , α j of non-real complex conjugate roots contributes
a difference of two squares of real linear forms. From this observation, assertion (b)
is clear. ut

1.3.28 Corollary. The determinant of the Hermite matrix is det H( f ) = D( f ), the
discriminant of f .

Proof. H( f ) = V>V , as we saw in the previous proof. So the assertion follows from
the formula for the Vandermonde determinant since D( f ) =

∏
i< j(α j − αi)2. �

1.3.29 Example. For an illustration we again consider a real closed field R and a
cubic polynomial f = t3 + at + b with a, b ∈ R (compare Example 1.3.22). From
abstract algebra it is well-known that the splitting pattern of f over R depends only
on the sign of the discriminant D = D( f ) = −(4a3 +27b2). Let us see how to recover
this fact via the Hermite matrix. We have

H( f ) =

 3 0 −2a
0 −2a −3b
−2a −3b 2a2


with characteristic polynomial pH( f ) = t3 +c1t2 +c2t+c3 where c1 = −(2a2−2a+3),
c2 = −4a3 + 2a2 − 6a − 9b2 and c3 = −D. To calculate the signature of H( f ) we use
Remark 1.3.25.2. Observe that c1 = − 1

2 ((2a− 1)2 + 5) < 0 and c2 = D + 2a(a− 3) +

18b2. When D > 0, we have a < 0 and hence c2 > 0, so in this case the signature of
H( f ) is (with slightly sloppy notation)

Var
(
1, c1 < 0, c2 > 0, −D < 0

)
− Var

(
1, −c1 > 0, c2 > 0, D > 0

)
= 3

(casus irreducibilis of classical algebra, corresponding to three distinct real roots).
For D = 0 and (a, b) , (0, 0) it remains true that c2 > 0, and we obtain sign H( f ) = 2
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(one double real root plus one simple real root). If D < 0 we get

sign H( f ) = Var
(
1, c1 < 0, c2, −D > 0

)
− Var

(
1, −c1 > 0, c2, D < 0

)
= 1

independent of the sign of c2 (one real root and a pair of non-real complex conjugate
roots).

The discussion becomes easier if we calculate the signature of H( f ) from the
principal minors of H( f ), as outlined in Remark 1.3.38 below. The sequence of
principal minors is 3, −6a, D, and the criterion in 1.3.38 applies unless a = b = 0,
giving the same result somewhat more smoothly.

1.3.30 Remark. The quadratic form represented by the Hermite matrix H( f ) is an
instance of a trace form. Recall that if k is a ring and A is a k-algebra that is finitely
generated and free3 as a k-module, the A/k-trace of an element a ∈ A, denoted
trA/k(a), is defined to be the trace of the k-linear map µa : A → A, µa(x) = ax.
The trace (bilinear) form of A over k is the symmetric k-bilinear form A × A → k,
(a, b) 7→ trA/k(ab).

Let K be a field and let f =
∏n

j=1(t − α j) be a monic polynomial in K[t], with
α1, . . . , αn in some algebraic closure K of K. Consider the residue ring A := K[t]/〈 f 〉
as a K-algebra, and write g := g + 〈 f 〉 ∈ A, for g ∈ K[t]. Then

trA/K(g) =

n∑
j=1

g(α j),

see Exercise 1.3.13. Therefore, with respect to the natural K-basis 1, t, . . . , tn−1 of A,
the matrix of the trace bilinear form is just the Hermite matrix H( f ), since

pk =

n∑
j=1

αk
j = trA/R

(
tk)

for all k ≥ 0.

1.3.31 Similar as for Sturm’s method, there exists a generalization of Hermite’s
approach that allows counting real zeros under side conditions. As before let f ∈
K[t] be monic of degree n ≥ 1 and with roots α1, . . . , αn in K. For arbitrary g ∈ K[t],
define relative Newton sums by

pk( f , g) :=
n∑

j=1

αk
j g(α j) (k ≥ 0).

The n × n matrix

3 free could be replaced by projective
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H( f , g) :=
(
p j+k( f , g)

)
0≤ j,k≤n−1 =


p̃0 p̃1 · · · p̃n−1
p̃1 p̃2 · · · p̃n
...

...
...

p̃n−1 p̃n · · · p̃2n−2


(where p̃ν := pν( f , g)) will be called the generalized Hermite matrix of f and g. If
g =

∑
l bltl then

pk( f , g) =
∑

j

αk
j

∑
l

blα
l
j =

∑
j, l

blα
k+l
j =

∑
l

bl pk+l( f ) (1.4)

for all k. So relative Newton sums are linear combinations of ordinary Newton sums.
In particular pk( f , g) ∈ K. For later use we record:

1.3.32 Lemma. If f , g ∈ K[t] and f is monic, the coefficients pk( f , g) of H( f , g) are
integer polynomials in the coefficients of f and g.

We can make the statement more precise: If m ≥ 0, n ≥ 1 are fixed, then for
every k ≥ 0 there exists a universal Z-polynomial

Pk(a, b) = Pk
(
a1, . . . , an, b0, . . . , bm

)
in the variables a = (a1, . . . , an) and b = (b0, . . . , bm), such that for all polynomials
f = tn +

∑n
i=1 aitn−i and g =

∑m
j=0 b jt j one has

pk( f , g) = Pk(a, b).

Proof. This follows inductively from the recursive formula for the Newton sums,
see Exercise 1.3.7. By (1.4), Pk(a, b) is linear in the b j and has degree k + m in the
ai. �

1.3.33 Theorem. Let K be field, char(K) = 0, and let f ∈ K[t] be a monic polyno-
mial of degree n ≥ 1. For any polynomial g ∈ K[t] we have

rk H( f , g) =
∣∣∣ {α ∈ K : f (α) = 0 and g(α) , 0

} ∣∣∣ .
If K = R is real closed then

sign H( f , g) =
∑
α∈R

f (α)=0

sign g(α) .

Note that this generalizes Theorem 1.3.26, which corresponds to the case g = 1.

Proof. Write x = (x0, . . . , xn−1)> (column vector) as before, then

x> · H( f , g) · x =

n−1∑
j,k=0

n∑
l=1

g(αl)α
j+k
l x jxk =

n∑
l=1

g(αl) Lαl (x)2,
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using notation from the proof of 1.3.26. The assertions of 1.3.33 are verified in a
similar way as there. Indeed, using

Re
(
(a + ib)(u + iv)2) = au2 − 2buv − av2

(a, b, u, v ∈ R) we see for α, β ∈ R(i) with α , α and β , 0 that the quadratic form

βLα(x)2 + βLα(x)2

is equal to λ1(x)2 − λ2(x)2 with linearly independent linear forms λ1, λ2 over R. ut

1.3.34 Remarks. Let K be a field, let f , g ∈ K[t] with f monic and non-constant.

1. If f = t3 +at+b and g = t+c with a, b, c ∈ K, the generalized Hermite matrix
is

H( f , g) = c

 3 0 −2a
0 −2a −3b
−2a −3b 2a2

 +

 0 −2a −3b
−2a −3b 2a2

−3b 2a2 5ab


(cf. Example 1.3.29).

2. Generalizing Remark 1.3.30, the generalized Hermite matrix H( f , g) corre-
sponds to the scaled trace form

A × A→ K, (p, q) 7→ trA/K(pqg).

(with scaling factor g ∈ A = K[t]/〈 f 〉).

1.3.35 We can even count real zeros under an arbitrary finite number of side con-
ditions, using either Sturm’s or Hermite’s method. To explain this, let polynomials
f , g1, . . . , gr ∈ R[t] be given with f , 0. For any tuple e = (e1, . . . , er) of non-
negative integers write ge := ge1

1 · · · g
er
r , and let

Ne :=
∑

c∈R: f (c)=0

sign ge(c).

As we have seen, the numbers Ne can be found effectively from the coefficients of f
and the gi, following Sturm or Hermite. The next lemma and the following remark
show how to recover, from these numbers Ne, the number of real zeros c of f with
prescribed signs of g1(c), . . . , gr(c):

1.3.36 Proposition. Let f , g1, . . . , gr ∈ R[t] with f , 0 and r ≥ 0. Then

2−r
∑

e∈{1,2}r
Ne =

∣∣∣ {c ∈ R : f (c) = 0, g1(c) > 0, . . . , gr(c) > 0
} ∣∣∣ .

Proof. This is a beautiful trick: We have
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e∈{1,2}r

Ne =
∑
c∈R:

f (c)=0

∑
e∈{1,2}r

sign
(
g1(c)e1 · · · gr(c)er

)
=

∑
c∈R:

f (c)=0

r∏
i=1

(
sign gi(c) + sign gi(c)2)

where the first equality is the definition of Ne and the second comes from distribu-
tively expanding the products in the last sum. Since for ε1, . . . , εr ∈ {0,±1} one
has

r∏
i=1

(εi + ε2
i ) =

2r if ε1 = · · · = εr = 1,
0 else,

we are done. �

1.3.37 Remark. Proposition 1.3.36 allows us to determine the number∣∣∣ {c ∈ R : f (c) = 0, sign g j(c) = ε j for j = 1, . . . , r
} ∣∣∣

for any prescribed tuple of signs ε = (ε1, . . . , εr) ∈ {0, 1,−1}r. Indeed, if ε j , 0 for
all j, this is achieved by the lemma if we replace g j by ε jg j for j = 1, . . . , r. If (e.g.)
ε1 = 0, replace f by gcd( f , g1) and delete g1, etc.

1.3.38 Remark. As mentioned in Remark 1.3.25.2, the signature of a symmetric
matrix M over R can be read off from the characteristic polynomial of M. Under
suitable conditions it can also be determined from the signs of the principal minors
of M. If M = (ai j)1≤i, j≤n has rank r = rk(M), and if dk = det(ai j)1≤i, j≤k denotes the
k-th principal minor of M (k = 1, . . . , n), then

sign(A) = n − 2 Var(1, d1, . . . , dr),

provided that dr , 0 and the sequence d1, . . . , dr doesn’t contain two successive
zeros. This is an easy exercise in linear algebra. There is also a generalization if
two successive zeros occur [69]. When M is a Hankel matrix, like the (generalized)
Hermite matrices, the above rule can be modified to work in general. This is due to
Frobenius, see [69] (ch. X §10) or [12] (Section 6.2.2) for details.

Exercises

Let R always be a real closed field.

1.3.1 Let (k, P) be an ordered field, let A be a symmetric n× n matrix over k. For any subset I , ∅
of [n] = {1, . . . , n}, let dI(A) be the I × I-minor of A (i.e., the determinant of the matrix
obtained from A by deleting all rows and columns whose index is outside I). For i ∈ I let
di(A) = d{1,...,i}(A) be the i-th principal minor of A.

(a) A �P 0⇔ di(A) > 0 for i = 1, . . . , n.
(b) A �P 0⇔ dI(A) ≥ 0 for every non-empty subset I of [n].
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(c) There are easy examples where di(A) ≥ 0 for i = 1, . . . , n but A is not positive semidef-
inite. Does there exist such an example where dn(A) = det(A) > 0?

Remark: (a), (b) are classical for k = R, and the usual proofs work over any real closed field.
The proof of “⇐” in (b) is slightly more tricky than the rest.

1.3.2 Let 0 , f ∈ R[t], and assume that f is real-rooted. Show that the same is true for the
derivative f ′ = d f /dt. Moreover show that every root of f ′ of multiplicity m ≥ 2 is a root of
f (of multiplicity m + 1).

1.3.3 Fill in the details for the proof of Theorem 1.3.33.

1.3.4 Let f (t) , 0 be a real-rooted polynomial in R[t], and let g(t) = f (t) + s · f ′(t) where s , 0 is
a real number. Show that g(t) is real-rooted as well. If k ≥ 1 is the largest multiplicity of a
root of f (t), prove that the largest multiplicity of a root of g(t) is k − 1.

1.3.5 Let (K,≤) be an ordered field and let

f = tn +

n∑
i=1

aitn−i =

n∏
j=1

(t − ξ j)

be a monic polynomial in K[t] that splits over K (with ai, ξ j ∈ K). Prove that

ξ1, . . . , ξn ≥ 0 ⇔ (−1)iai ≥ 0 for i = 1, . . . , n,

and similarly with strict instead of non-strict inequalities. (The statement is a direct conse-
quence of Corollary 1.3.15. Try to give a direct proof here.)

1.3.6 Let f =
∑n

i=0 aiti ∈ R[t] be of degree n with f (0) , 0. If there exists 1 < i < n with
ai−1 = ai = 0, show that f has a non-real root. (Hint: Repeat the argument in the proof of
Corollary 1.3.15, omitting positions i − 1 and i in the sequences.)

1.3.7 Let K be a field with algebraic closure K. Let f = tn + a1tn−1 + · · ·+ an ∈ K[t] have the roots
α1, . . . , αn in K, and let pr = pr( f ) =

∑n
i=1 α

r
i be the r-th Newton sum (r ≥ 0) of f .

(a) Prove Newton’s identity

pr + pr−1 a1 + pr−2 a2 + · · · + p1 ar−1 + r ar = 0

for r ≥ 0. Here we put ar = 0 for r > n.
(b) Show for r ≥ 0 that pr( f ) = pr(a1, . . . , an) is a polynomial in a1, . . . , an with integer

coefficients. If we declare deg(ai) = i then pr is weighted homogeneous of degree r.
(c) Prove the identity

f ′

f
=

p0

t
+

p1

t2 +
p2

t3 + · · · =

∞∑
r=0

pr

tr+1

of formal power series in 1
t . In other words, the Newton sums pr( f ) are the coefficients

of the Taylor expansion of f ′(t)
f (t) around t = ∞.

1.3.8 Let again f = tn +
∑n

i=1 aitn−i ∈ K[t] where K is a field. For an alternative approach to the
Newton sums of f , consider the n × n matrix

A =



0 −an
1 0 −an−1

. . .
. . .

...
1 0 −a2

1 −a1
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(the companion matrix of f ). Show that pr( f ) = tr(Ar) for all r ≥ 0. (Hint: Calculate the
characteristic polynomial of A.)

1.3.9 Let f = t3 + at + b ∈ R[t] with a, b ∈ R. Find polynomial conditions on the pair (a, b) that
are necessary and sufficient for f to have three real zeros that are larger than −1.

1.3.10 Calculate the Hermite matrix of f = t4 + at2 + bt + c and its sequence of principal minors.
Find a condition on a, b, c ∈ R that is equivalent to the existence of a zero of f in R. (Use a
computer algebra system.)

1.3.11 Let α ∈ C with α5 − 4α3 − 2α + 6 = 0. How many orderings does the field Q(α) have that
make α positive?

1.3.12 For a, b ∈ R consider the polynomial f = t5 + at2 + b, and assume that the discriminant D
of f is non-zero. Determine the number of real roots of f

(a) using the Sturm sequence,
(b) using Hermite’s method.

The answer depends only on D. (The discriminant is D = b (3125 b3 + 108 a5), this need not
be proved.)

1.3.13 Let K be a field, let f ∈ K[t] be a monic polynomial of degree n, and write A = K[t]/〈 f 〉 for
the residue ring. If α1, . . . , αn are the roots of f in an algebraic closure K of K, show that
trA/K(g) =

∑n
j=1 g(α j) for any g ∈ K[t], where g = g + 〈 f 〉 ∈ A.

1.3.14 Let 0 , f ∈ R[t], and let r be the number of non-real roots of f , counting with multiplicities.
The Hawaii conjecture (which is due to Gauss) states that

d
dt

( f ′

f

)
=

f f ′′ − f ′2

f 2

has at most r real zeros (again counting with multiplicities). Prove the Hawaii conjecture in
the case when all roots of f are real. (The full conjecture has been proved by Tyaglov [209].)

1.4 Real closure of an ordered field

1.4.1 Definition. Let K be a field with a positive cone P ⊆ K. A real closure of the
ordered field (K, P) is a real closed algebraic field extension R of K whose order
extends P, i.e. such that P = R+ ∩ K.

1.4.2 Proposition. Any ordered field has a real closure.

Proof. Let (K, P) be an ordered field and fix an algebraic closure K of K. The set X
of ordered fields (L,Q) such that K ⊆ L ⊆ K and Q∩ K = P, is partially ordered by

(L1,Q1) ≤ (L2,Q2) ⇔ L1 ⊆ L2 and Q1 = L1 ∩ Q2.

Zorn’s lemma can be applied, and so X contains a maximal element (L,Q). This
field L is a real closure of (K, P) by 1.2.7(ii). �

1.4.3 Definition. Let K be a field (with no ordering specified). A field extension R
of K is a real closure of K if the extension K ⊆ R is algebraic and the field R is real
closed.
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In other words, a real closure of K is simply a real closure of (K, P) for some
positive cone P of K.

We are going to show that a real closure of (K, P) is unique in a strong sense.

1.4.4 Lemma. Let K be a field, and let R1, R2 be two real closed field extensions of
K that both induce the same ordering on K. Then every polynomial f ∈ K[t] has the
same number of distinct roots in R1 and in R2.

Proof. Using Sturm’s method, we argue as follows. The function v f (x) (Definition
1.3.17) counts the number of different real roots of f in a real closed extension of
K. By construction, it depends only on expressions that lie in the subfield generated
by the coefficients of f , and on the induced ordering of that subfield. Since R1, R2
induce the same ordering on K, we get the same count in R1 and in R2. A similar
argument works if we use Hermite’s method. �

1.4.5 Lemma. Let (K, P) be an ordered field, let R be a real closure of (K, P) and
let K ⊆ L ⊆ R be an intermediate field with [L : K] < ∞. Moreover let S be another
real closed field, and let ϕ : (K, P)→ (S , S+) be an order embedding (1.1.19). Then
ϕ has an order-compatible extension ψ : (L,R+ ∩ L)→ (S , S+):

L

S

K

ψ

ϕ

Proof. By the primitive element theorem, L = K(α) is a simple extension of K.
The minimal polynomial f of α over K has a root in R, namely α. So f has a root
in S as well, by Lemma 1.4.4. Hence there exists an extension L → S of ϕ. Let
ψ1, . . . , ψr be all such extensions, and assume that none of them is order-compatible
with respect to R+∩L. This means that there are elements b1, . . . , br in L with bi > 0
(in R) but ψi(bi) < 0 (in S ). Now consider the extension L′ := L(

√
b1, . . . ,

√
br) ⊆ R

of L. None of the ψi can be extended to L′, and so ϕ does not extend to L′. This
contradicts the first part of the proof. �

1.4.6 Theorem. Let (K, P) be an ordered field, let R be a real closure of (K, P), and
let ϕ : (K, P) → (S , S+) be an order embedding into another real closed field S .
Then ϕ has a unique extension ψ : R→ S .

Proof. The set

X :=
{
(L, ψ) : K ⊆ L ⊆ R, ψ ∈ Hom(L, S ) with ψ|K = ϕ and ψ(L ∩ R+) ⊆ S+

}
consists of all extensions of ϕ to intermediate fields L of R/K that are compatible
with the positive cone L ∩ R+ of L. The set X is partially ordered by the extension
relation, and it has a maximal element (L, ψ) by Zorn’s lemma. Lemma 1.4.5 implies
that L = R. Hence an extension ψ : R→ S of ϕ exists, and ψ is automatically order-
compatible since R is real closed. To prove that ψ is unique let α ∈ R, let f be the
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minimal polynomial of α over K, and let α1 < · · · < αr (resp. β1 < · · · < βr) be the
roots of f in R (resp. in S ). The number of roots in R and S is the same by Lemma
1.4.4. Then we clearly have

{ψ(α1), . . . , ψ(αr)} = {β1, . . . , βr}.

Since ψ is order-compatible, we must have ψ(αi) = βi for i = 1, . . . , r, which shows
that ψ is uniquely determined. �

1.4.7 Corollary. Let (K, P) be an ordered field, and let R1, R2 be two real closures
of (K, P). Then there is a unique K-homomorphism ϕ : R1 → R2, and ϕ is an iso-
morphism.

Proof. Clear from Theorem 1.4.6. �

1.4.8 Remark. The construction of a real closure of an ordered field shows many
similarities to the construction of an algebraic closure. More interesting than the
similarities, however, are the differences. For a general field K, the automorphism
group Aut(K/K) of K over K is infinite (and comes with a natural profinite topol-
ogy). Therefore K is unique only up to non-canonical isomorphism over K. On
the other hand we have seen that any real closure R of K is rigid over K, namely
Aut(R/K) = {id}. This means that the real closure of an ordered field is unique up
to unique isomorphism over K. Other than for the algebraic closure, it is therefore
perfectly justified to speak of the real closure of an ordered field (K, P).

The difference between algebraic and real closure is also manifest in the con-
struction of such a closure. Although we used Zorn’s lemma in our existence proof
1.4.2, this can be avoided ([175], [129]). On the other hand, it can be shown that
at least some weakened version of Zorn’s lemma is needed to prove existence of
an algebraic closure. (There exists a model of ZF set theory in which certain fields
don’t have an algebraic closure [152].)

1.4.9 Remark. If K is a subfield of a real closed field R and P = K ∩ R+ is the
induced ordering on K, then the relative algebraic closure of K in R (consisting
of all elements of R that are algebraic over K) is a real closure of (K, P) (Exercise
1.4.1). For example, the subfield R0 ⊆ R of real algebraic numbers is the real closure
of the fieldQ (with respect to the unique ordering ofQ). Therefore R0 is the smallest
real closed field and embeds uniquely into any other real closed field.

1.4.10 Example. For a more elaborate example consider R(t), the field of rational
functions in one variable over the real closed field R, together with the positive cone
P = P0,+, see 1.1.13. We describe the real closure of (R(t), P). Recall that a (formal)
Laurent series over R is a formal series

f =

∞∑
k=m

aktk

with m ∈ Z and ak ∈ R for all k. These series form the field R((t)), which is the field
of fractions of the ring R[[t]] of formal power series. A (formal) Puiseux series over
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R is a formal Laurent series in t1/d, for some integer d ≥ 1. If d, e ≥ 1 are integers
and e is a multiple of d, one has the natural inclusion R((t1/d)) ⊆ R((t1/e)) of fields.
Therefore the union

R((t1/∞)) :=
⋃
d≥1

R((t1/d))

is a field extension of R, called the field of Puiseux series over R. If we adjoin
√
−1

to this field we get the field of Puiseux series over R(
√
−1). By Puiseux’ theorem,

this field is algebraically closed (see A.4.10). Therefore, since R((t1/∞)) is a real
field, it is real closed. The positive cone of R(t) that is induced from the inclusion
R(t) ⊆ R((t1/∞)) is P0,+. Indeed, t = (t1/2)2 is positive in R((t1/∞)), and from

1 − t =

( ∞∑
k=0

(−1)k
(
1/2
k

)
tk
)2

we see that c − t > 0 in R((t1/∞)) for every c > 0 in R. From the argument in 1.4.9 it
follows that

R((t1/∞))alg :=
{
f ∈ R((t1/∞)) : f is algebraic over R(t)

}
is the real closure of (R(t), P0,+).

The problem of extending an ordering to a finite field extension is equivalent to
a field embedding problem:

1.4.11 Corollary. Let (K, P) be an ordered field, let ϕ : (K, P) → S be an order-
compatible homomorphism into a real closed field S . For every algebraic extension
L/K there exists a natural bijective map{

extensions ψ : L→ S of ϕ
}
−→

{
extensions Q of P to L

}
,

given by ψ 7→ ψ−1(S+).

Proof. If ψ : L → S extends ϕ, the positive cone ψ−1(S+) of L extends the positive
cone P of K since ψ−1(S+) ∩ K = ϕ−1(S+) = P. Conversely let Q be an extension
of P to L. The real closure R of (L,Q) is also the real closure of (K, P). So ϕ has
an extension ϕ̃ : R → S , by 1.4.6. The restriction ψ := ϕ̃|L of ϕ̃ satisfies ψ−1(S+) =

L ∩ R+ = Q.
This shows that the map in the statement is well-defined and surjective. To prove

that it is also injective, let ψ1, ψ2 : L → S be two homomorphisms that satisfy
ψi|K = ϕ and ψ−1

i (S+) = Q (i = 1, 2). Let χi : R→ S be the (unique) extension of ψi

to the real closure R of (L,Q) (Theorem 1.4.6), for i = 1, 2. Then χ1|K = χ2|K = ϕ,
and therefore χ1 = χ2 by the uniqueness part of 1.4.6. Hence ψ1 = ψ2, as desired. �

1.4.12 Corollary. Let (K, P) be an ordered field with real closure R, and let L/K
be a finite extension. If α is a primitive element of L/K and f denotes the minimal
polynomial of α over K, there is a natural bijective map{

roots of f in R
}
−→

{
extensions of P to L

}
.
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Proof. Immediate from Corollary 1.4.11, since the roots of f in R correspond to the
K-embeddings L→ R. �

1.4.13 Remark. The bijection from 1.4.12 is as follows: If β is a root of f in R
and ϕ : L → R denotes the K-embedding with ϕ(α) = β, then β corresponds to the
positive cone Q := ϕ−1(R+) of L. More explicitly,

signQ g(α) = signR g(β)

holds for any polynomial g ∈ K[t].

1.4.14 Remark. If (K, P) is an ordered field with real closure R, one may uniquely
encode each element of R by data in K, as follows. An element α ∈ R is determined
by its minimal polynomial f and by the position of α in the ordered list of roots of f
in R. So the elements of R are in natural bijection with all pairs ( f , i), where f ∈ K[t]
is monic irreducible and i is an integer satisfying 1 ≤ i ≤ m( f ), where m( f ) denotes
the total number of roots of f in R. The number m( f ) can be determined from K and
P alone, by Sturm’s or Hermite’s method. Note that a similar encoding is impossible
for the algebraic closure of K. Both facts are directly related to the rigidity property
of real closures and its failure for the algebraic closure (Remark 1.4.8). Later we
will see an even better encoding of the elements of R (using Thom’s lemma, see
Remark 4.3.21).

Exercises

1.4.1 Let R be a real closed field, let K be a subfield of R and let R′ be the relative algebraic closure
of K in R. Then R′ is a real closure of (K, K ∩ R+).

1.4.2 Let R be a real closed field, let ξ = (I, J) be a Dedekind cut of R, and let

Pξ :=
{
f ∈ R(t) : ∃ a ∈ I ∪ {−∞} ∃ b ∈ J ∪ {∞} ∀ x ∈ ]a, b[ f (x) ≥ 0

}
.

(Here f (x) ≥ 0 means in particular that f doesn’t have a pole at x.)

(a) Pξ is a positive cone of R(t).
(b) Every positive cone of R(t) has the form Pξ for precisely one Dedekind cut ξ of R.
(c) The extension (R,R+) ⊆

(
R(t), Pξ

)
is relatively Archimedean (see Exercise 1.2.4) if,

and only if, the Dedekind cut ξ is free.

1.4.3 Let k be a field. Prove the following amalgamation property of ordered fields (statement (b)):

(a) Let k ⊆ L be a field extension, let P be a positive cone of L and Q a positive cone of k(t)
such that k ∩ P = k ∩ Q. Then there is a positive cone Q′ of L(t) for which L ∩ Q′ = P
and k(t) ∩ Q′ = Q.

(b) Let R1, R2 be two real closed overfields of k with k ∩ (R1)+ = k ∩ (R2)+. Then there
exists a real closed field S together with k-embeddings Ri → S for i = 1, 2.

Hints: For (a), start by considering the case where L is the real closure of (k, k ∩ Q). In (b),
work with a transcendence basis of R1 over k and use transfinite induction.
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1.5 The Tarski–Seidenberg projection theorem, and Artin’s
solution of Hilbert’s 17th problem

The Tarski–Seidenberg projection theorem is a result of utmost importance in real
algebraic geometry. Its impact reaches far beyond the pure statement of the theorem,
and many important consequences are not immediately obvious. Our proof below
rests on methods for real root counting, as developed in Section 1.3, and on the
uniqueness properties of real closures, see Section 1.4. Having proved the projec-
tion theorem, we will combine it with Artin’s characterization of sums of squares
(Section 1.1) to give a positive answer to Hilbert’s 17th problem. In the next sec-
tion we’ll gain greater flexibility in using Tarski–Seidenberg, after introducing some
model-theoretic language.

We start by defining semialgebraic sets. Throughout let R denote a real closed
field, and let A be a ring together with a fixed ring homomorphism ϕ : A → R. For
example, ϕ may be the inclusion of a subring of R. Let n be a natural number and
write x = (x1, . . . , xn) for a tuple of indeterminates. We will constantly use the order
topology on Rn, or equivalently, the R-valued norm

|ξ| =

√
ξ2

1 + · · · + ξ2
n (ξ ∈ Rn)

(Remark 1.2.12.3). Recall that the open balls

Br(ξ) = {η ∈ Rn : |η − ξ|2 < r2} (ξ ∈ Rn, r ∈ R)

are a basis of open sets for this topology.

1.5.1 Notation. Given polynomials f1, . . . , fm ∈ R[x] = R[x1, . . . , xn], we write

U( f1, . . . , fm) = {ξ ∈ Rn : f1(ξ) > 0, . . . , fm(ξ) > 0},
S( f1, . . . , fm) = {ξ ∈ Rn : f1(ξ) ≥ 0, . . . , fm(ξ) ≥ 0}

and
Z( f1, . . . , fm) = {ξ ∈ Rn : f1(ξ) = · · · = fm(ξ) = 0}.

Note that the sets U are open in Rn, the sets S and Z are closed.

1.5.2 Definition.

(a) A subset of Rn is A-semialgebraic if it is a finite Boolean combination (unions,
intersections, complements) of sets of the form U( f ) with f ∈ A[x]. Instead of
R-semialgebraic we simply say semialgebraic.

(b) The subsets of Rn of the form Z( f1, . . . , fm) with f1, . . . , fm ∈ A[x] are called
A-algebraic. If A = R we simply say algebraic.

1.5.3 Lemma. Let M ⊆ Rn be a subset.

(a) If M is A-algebraic there exists f ∈ A[x] with M = Z( f ).
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(b) M is A-semialgebraic if, and only if, M has the form

M =

m⋃
i=1

(
Z( fi) ∩ U(gi1, . . . , giri )

)
(1.5)

with m ∈ N, ri ≥ 0 and fi, gi j ∈ A[x] (1 ≤ j ≤ ri, 1 ≤ i ≤ m).

Proof. (a) holds since Z( f1, . . . , fm) = Z( f 2
1 + · · · + f 2

m): Finitely many equations
over R can be combined into a single one (as long as only solutions over R are
considered!). As for (b), the set (1.5) is A-semialgebraic because Z( f ) = RnrU( f 2).
Conversely, the system of all sets (1.5) is stable under the Boolean operations, so it
coincides with the A-semialgebraic sets. �

1.5.4 Examples.

1. Given polynomials f1, . . . , fr ∈ A[x] and any subset E of {−1, 0, 1}r, the set

M = {ξ ∈ Rn :
(
sign f1(ξ), . . . , sign fr(ξ)

)
∈ E}

is A-semialgebraic. Conversely, every A-semialgebraic set has this form for suitable
r ∈ N, f1, . . . , fr ∈ A[x] and E ⊆ {−1, 0, 1}r.

2. The set Z of integers is not semialgebraic in R, as one checks directly from
1.5.3(b). Hence countable unions or intersections of semialgebraic sets are usually
not semialgebraic. Neither is the graph {(t, sin t) : t ∈ R} ⊆ R2 of the sine function
semialgebraic in R2, as one sees from intersecting with the first coordinate axis.
The graph of the exponential function isn’t semialgebraic in R2 either, but here a
different type of argument is needed (Exercise 1.5.1).

1.5.5 Proposition. The semialgebraic subsets of R are precisely the finite unions of
intervals in R.

Here all types of intervals (open, half-open or closed, bounded or unbounded)
are allowed, in particular singletons. Note however that the intervals have to be
delimited by elements in R ∪ {±∞}. For example, if R = R0 is the (real closed) field
of real algebraic numbers, the set {x ∈ R0 : 0 < x < π} is not an interval in R0, and is
not semialgebraic in R0.

Proof. If f ∈ R[t], the set U( f ) = {a ∈ R : f (a) > 0} is a union of finitely many
(open) intervals in R, by the mean value theorem 1.3.3. On the other hand, the system
of all finite unions of intervals is stable under Boolean operations. �

1.5.6 Proposition. Let f1, . . . , fm ∈ A[x] = A[x1, . . . , xn] and consider the polyno-
mial map

f : Rn → Rm, f (x) =
(
f1(ξ), . . . , fm(ξ)

)
.

For any A-semialgebraic set M ⊆ Rm, the preimage f −1(M) is A-semialgebraic as
well. The same is true when A-semialgebraic is replaced by A-algebraic.
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Proof. If M = U(g) with g ∈ A[y1, . . . , ym], then f −1(M) = U(h) for h :=
g( f1, . . . , fm) ∈ A[x1, . . . , xn]. This implies the general case since taking preimages
commutes with Boolean operations. �

1.5.7 Remark. If k = k is an algebraically closed field and f : kn → km is a polyno-
mial map, the image set f (X) ⊆ km of any algebraic subset X ⊆ kn is constructible,
i.e. a finite Boolean combination of algebraic sets in km (Chevalley’s theorem, e.g.
[84] Exercise II.3.19). Over the field R, or over any real closed field R, such a state-
ment would fail completely, as one can see from simplest examples (think of the
square map R→ R, x 7→ x2). The failure of Chevalley’s theorem over R is one rea-
son why, in real algebraic geometry, one cannot avoid working with semialgebraic
sets, instead of only algebraic sets.

The Tarski–Seidenberg projection theorem states that images of semialgebraic
sets under polynomial maps are again semialgebraic:

1.5.8 Theorem. (Projection Theorem) Let R be a real closed field, let A ⊆ R be a
subring, and let

π : Rm × Rn → Rn, π(ξ, η) = η

be the projection map. Then for any A-semialgebraic subset S of Rm+n = Rm × Rn,
the image set π(S ) ⊆ Rn is A-semialgebraic as well.

1.5.9 Corollary. Let f1, . . . , fm ∈ A[x1, . . . , xn], let f = ( f1, . . . , fm) : Rn → Rm be
the associated polynomial map, and let M ⊆ Rn be an A-semialgebraic set. Then
the image set f (M) ⊆ Rm is again A-semialgebraic.

Proof. The graph G = {(ξ, η) ∈ Rn × Rm : η = f (ξ)} of f is an A-algebraic set.
Let π1 : Rm × Rn → Rm and π2 : Rm × Rn → Rn be the two projection maps. Then
f (M) = π2(G ∩ π−1

1 (M)), which is an A-semialgebraic set by Theorem 1.5.8. �

To prove the projection theorem we shall employ Hermite’s method for counting
real roots. First note that the Sylvester signature of a symmetric matrix depends
semialgebraically on the coefficients. More precisely:

1.5.10 Lemma. Let n ∈ N and k ∈ Z. There exist finitely many Z-polynomials
fµ, gµν ∈ Z[xi j : 1 ≤ i ≤ j ≤ n] (indexed by 1 ≤ ν ≤ sµ and 1 ≤ µ ≤ r, say)
such that, for every real closed field R and every symmetric matrix M ∈ Symn(R)
with coefficients xi j = x ji (i ≤ j), the following is true:

sign(M) = k ⇐⇒

r∨
µ=1

 fµ(x) = 0 ∧
sµ∧
ν=1

gµν(x) > 0

 .
In particular, the set {M ∈ Symn(R) : sign(M) = k} is Z-semialgebraic in Mn(R) =

Rn2
for every real closed field R.

Proof. Let x = (xi j : 1 ≤ i ≤ j ≤ n), a tuple of
(

n+1
2

)
variables, and put x ji := xi j

for i > j. Let S be the symmetric n × n matrix whose (i, j)-coefficient is xi j, and let
p = det(tIn − S ) be its characteristic polynomial. Write
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p = tn + a1(x)tn−1 + · · · + an(x)

with polynomials a1(x), . . . , an(x) ∈ Z[x]. Then for any symmetric n × n matrix
M = (ξi j) over a real closed field R, the signature of M satisfies

sign(M) = Var
(
1, a1(ξ), a2(ξ), . . . , an(ξ)

)
− Var

(
1,−a1(ξ), a2(ξ), . . . , (−1)nan(ξ)

)
,

see Remark 1.3.25.2. From this the assertion of the lemma is clear (each fµ or gµν
can be taken to be ±ai for some i). �

1.5.11 Example. For n = 2 and M =
(

a c
c b

)
we get

sign(M) =



2 if a > 0 ∧ ab − c2 > 0,
1 if ab − c2 = 0 ∧

(
a > 0 ∨ b > 0

)
,

0 if ab − c2 < 0 ∨ a = b = c = 0,
−1 if ab − c2 = 0 ∧

(
a < 0 ∨ b < 0

)
,

−2 if a < 0 ∧ ab − c2 < 0.

1.5.12 We start the proof of Theorem 1.5.8. Clearly it suffices to prove the case
m = 1. So let S ⊆ Rn+1 = R × Rn be an A-semialgebraic set, and let

π : Rn+1 = R × Rn → Rn, π(t, x1, . . . , xn) = (x1, . . . , xn)

be the projection. We’ll show that π(S ) is an A-semialgebraic subset of Rn. By
Lemma 1.5.3 we can assume that S has the form

S = Z( f ) ∩ U(g1, . . . , gr) =
{
(t, x) ∈ Rn+1 : f (t, x) = 0, g j(t, x) > 0 (1 ≤ j ≤ r)

}
where x = (x1, . . . , xn) and f , g1, . . . , gr ∈ A[t, x]. We think of f (t, x) and g j(t, x)
as polynomials in the single variable t, parametrized by x. Using the methods from
Section 1.3 we can decide, for any ξ ∈ Rn, whether there exists t ∈ R with (t, ξ) ∈ S ,
i.e. whether ξ ∈ π(S ). We then have to show that the conditions on ξ that we obtain
are A-semialgebraic.

Write f =
∑m

i=0 ai(x)ti and g j =
∑m j

k=0 b jk(x)tk where ai, b jk ∈ A[x]. For any
polynomial h ∈ A[t, x] and any ξ ∈ Rn put hξ(t) := h(t, ξ), a univariate polynomial
in R[t]. For −1 ≤ d ≤ m let

Σd :=
{
ξ ∈ Rn : deg( fξ) = d

}
where we put deg(0) := −1. Obviously, the sets Σd are A-semialgebraic in Rn, and⋃m

d=−1 Σd = Rn. So the proof of Theorem 1.5.8 will be finished once we have shown:

1.5.13 Lemma. For −1 ≤ d ≤ m, the set π(S ) ∩ Σd is A-semialgebraic.

Proof. For d = 0 we have π(S ) ∩ Σ0 = ∅ since a polynomial of degree 0 (i.e., a
non-zero constant) has no roots. Let therefore d ≥ 1. For ξ ∈ Σd we have
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fξ(t) = ad(ξ) td + · · · + a1(ξ) t + a0(ξ)

where ad(ξ) , 0. By Proposition 1.3.36 we have

π(S ) ∩ Σd =

{
ξ ∈ Σd :

∑
e∈{1,2}r

sign H
( 1
ad(ξ)

fξ, ge
ξ

)
> 0

}
,

where we have put ge
ξ := (ge1

1 · · · g
er
r )ξ for e ∈ {1, 2}r. The generalized Hermite

matrices
Hd,e(ξ) := H

( 1
ad(ξ)

fξ, ge
ξ

)
(for e ∈ {1, 2}r) have signatures in {0, ±1, . . . , ±d}. Their coefficients are Z-
polynomials in the

ai(ξ)
ad(ξ)

(i = 0, . . . , d − 1)

(of total degree at most δ := 2d − 2 +
∑

j deg(g j)) and in the

b jk(ξ) (k = 1, . . . ,m j, j = 1, . . . , r),

see 1.3.32. To calculate the signature, we may replace Hd,e(ξ) by the matrix

H̃d,e(ξ) := ad(ξ)2m · Hd,e(ξ)

where 2m is some even integer with 2m ≥ δ. The advantage of the latter matrix is
that its coefficients are Z-polynomials in the ai(ξ) and the b jk(ξ). Therefore, if we
fix a tuple e ∈ {1, 2}r and an integer s ∈ Z, the set{

ξ ∈ Rn : sign H̃d,e(ξ) = s
}

is A-semialgebraic by Lemma 1.5.10. According to Theorem 1.3.33 and Proposition
1.3.36, the set π(S ) ∩ Σd is the union of the finitely many A-semialgebraic sets

T (s) :=
⋂

e∈{1,2}r

{
ξ ∈ Σd : sign H̃d,e(ξ) = se

}
,

where the union is over all 2r-tuples s =
(
se
)
e∈{1,2}r in {−d, . . . , d}{1,2}

r
for which

Σ(s) :=
∑

e∈{1,2}r
se > 0.

Clearly, this implies that the set π(S ) ∩ Σd is A-semialgebraic.
It remains to consider the case d = −1, which means fξ ≡ 0 for ξ ∈ Σd. How

can one read off from the coefficients of polynomials g1, . . . , gr ∈ R[t] whether there
exists ξ ∈ R with g1(ξ) > 0, . . . , gr(ξ) > 0? We use the following trick:
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1.5.14 Lemma. Let g1, . . . , gr ∈ R[t], put g := g1 · · · gr and h := g′ · (1−g2). If there
is ξ ∈ R with g1(ξ) > 0, . . . , gr(ξ) > 0, then there also exists such ξ for which in
addition h(ξ) = 0. �

Proof. We can assume that g is not constant. Let c1 < · · · < cN be the real zeros of
g, with N ≥ 0. If N = 0 then deg(g) is even and each gi is strictly positive on R.
Since g′, being of odd degree, has a zero in R, we are finished in this case. Now
assume N ≥ 1. Then g′ (and hence h) has a zero in any of the intervals ]ci, ci+1[ (i =

1, . . . ,N−1), by Rolle’s theorem 1.3.9. For |t| sufficiently large we have 1−g(t)2 < 0
since g is not constant. Therefore, by the intermediate value theorem (1.3.3), 1 − g2

(and hence h) has a root both in ]−∞, c1[ and in ]cN ,+∞[. By assumption, there is
at least one among these N + 1 intervals on which all gi are strictly positive. So the
lemma is proved. �

1.5.15 In the proof of Theorem 1.5.8, the last missing step was to show that π(S )∩
Σ−1 is an A-semialgebraic set. By Lemma 1.5.14, this set is π(S ′) ∩ Σ−1 where

S ′ :=
{
(t, ξ) ∈ R × Rn : h(t, ξ) = 0, g j(t, ξ) > 0 ( j = 1, . . . , r)

}
and g := g1 · · · gr, h := (1− g2)g′. The cases d ≥ 0 of 1.5.13 are already established,
we can apply them to S ′. Then we are left again with the case d = −1, now however
for S ′. But due to the particular shape of h, this case can now be fixed directly: The
point is to show that{

ξ ∈ Rn : hξ ≡ 0, ∃ t ∈ R with g j(t, ξ) > 0 ( j = 1, . . . , r)
}

is an A-semialgebraic set. Since hξ ≡ 0 implies that gξ is a constant, the set in
question is equal to

r⋂
j=1

{ξ ∈ Rn : (g j)ξ is a positive constant},

which clearly is A-semialgebraic. With this, the proof of Theorem 1.5.8 is finally
complete. �

1.5.16 Remark. We used Hermite matrices to characterize the existence of a real
root c of f with g(c) > 0. Alternatively, we could have used the generalized version
of Sturm’s theorem (1.3.21). However, in a parameter-dependent situation like the
one at hand, Sturm’s method has the disadvantage of immediately ramifying into
a tree of subcases, making it a challenge to organize the discussion in a coherent
manner. In contrast, Hermite’s method allows a uniform treatment regardless of the
parameters.

Here is an alternative version of the projection theorem:

1.5.17 Theorem. (Quantifier elimination, 1st version) Let x = (x1, . . . , xn), y =

(y1, . . . , yp) be tuples of variables, and let polynomials f , g1, . . . , gr ∈ Z[x, y] be
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given. There exist finitely many polynomials Fi, Gi j in Z[x] (1 ≤ j ≤ mi, 1 ≤ i ≤ N)
such that the following are equivalent, for any real closed field R and any ξ ∈ Rn:

(i) ∃ η ∈ Rp
(

f (ξ, η) = 0 ∧
r∧
ν=1

gν(ξ, η) > 0
)
;

(ii)
N∨

i=1

(
Fi(ξ) = 0 ∧

mi∧
j=1

Gi j(ξ) > 0
)
.

Proof. We actually proved this already. Indeed, let p = 1, which suffices by in-
duction, and write y = y1. Using notation from the proof of 1.5.8, property (i) is
equivalent to

m∨
d=−1

ϕd(ξ),

where f =
∑m

k=0 ak(x) yk with m = degy( f ), and where ϕd(ξ), for d ≥ 0, denotes the
condition

ad(ξ) , 0 ∧
m∧

k=d+1

ak(ξ) = 0 ∧
∨

s∈{−d,...,d}{1,2}r

Σ(s)>0

∧
e∈{1,2}r

(
sign H̃d,e(ξ) = se

)
.

The condition on the signature of H̃d,e(ξ) is equivalent, for fixed d, e and se, to a
condition of type (ii), see Lemma 1.5.10. If d = −1, we take the following condition
for ϕd(ξ), according to Lemma 1.5.14:[ m∧

k=0

ak(ξ) = 0
]
∧

[
∃ y

(
h(ξ, y) = 0 ∧

r∧
ν=1

gν(ξ, y) > 0
)]

with g := g1 · · · gr and h := (1 − g2) · ∂g
∂y . This last condition on ξ is equivalent to a

quantifier-free condition (ii) on ξ, as before. �

1.5.18 Remark. Theorem 1.5.17 eliminates the existential quantifier ∃ y from con-
dition (i). Note that this elimination (i.e., the proof of the theorem) was entirely con-
structive, regardless of its complexity: The polynomials Fi, Gi j were constructed in
finitely many explicit steps. The complexity of this algorithm, however, is gigantic.
For practical purposes this means that the algorithm is almost useless.

1.5.19 Corollary. (Transfer principle of Tarski–Seidenberg) Let K be a field, let
R1, R2 be two real closed field extensions of K that induce the same ordering on
K. Given finitely many polynomials f1, . . . , fr ∈ K[x] = K[x1, . . . , xn] together with
signs ε1, . . . , εr ∈ {−1, 0, 1}, we have: There exists ξ ∈ Rn

1 satisfying sign fν(ξ) = εν
for ν = 1, . . . , r if, and only if, there exists ξ ∈ Rn

2 satisfying the same conditions.

Proof. Replacing a condition f1 = · · · = fm = 0 by f 2
1 + · · ·+ f 2

m = 0 and a condition
fi < 0 by − fi > 0, we may assume ε1 = 0 and ε2 = · · · = εr = +1. We reduce
the proof to Theorem 1.5.17 by first treating the coefficients of the fi as indeter-
minates, before we specialize: There exist polynomials F1, . . . , Fr ∈ Z[x, y] (with
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y = (y1, . . . , yN) and N sufficiently large), together with a tuple b = (b1, . . . , bN)
in KN , such that fν(x) = Fν(x, b) for ν = 1, . . . , r. Using 1.5.17, we see for any
real closed overfield R of K, that the existence of ξ ∈ Rn with sign fν(ξ) = εν
(ν = 1, . . . , r) is equivalent to a condition on b of type∨

i

(
gi(b) = 0 ∧

∧
j

hi j(b) > 0
)
,

where the gi, hi j are Z-polynomials in y. This condition depends only on the positive
cone P = K ∩ R+ of K, since gi(b), hi j(b) lie in K. �

We now turn to Hilbert’s 17th problem and its solution by Artin. See 1.1.31 for
the statement of the problem and a first discussion. The following terminology is
standard and will be used throughout the remainder of this course:

1.5.20 Definition. Let R be a real closed field. A polynomial f ∈ R[x1, . . . , xn] is
positive semidefinite (or non-negative, or just psd for short), if f (ξ) ≥ 0 for all
ξ ∈ Rn. If f (ξ) > 0 for all ξ ∈ Rn we say that f is (strictly) positive definite.

1.5.21 Theorem. (Artin 1927) Let R be a real closed field and suppose that f ∈
R[x1, . . . , xn] is positive semidefinite. Then there exist finitely many rational func-
tions f1, . . . , fr ∈ R(x1, . . . , xn) such that

f = f 2
1 + · · · + f 2

r .

In fact we’ll prove the following more precise version:

1.5.22 Theorem. In the situation of 1.5.21, let K ⊆ R be a subfield that contains the
coefficients of f . Then there exist f1, . . . , fr ∈ K(x1, . . . , xn) and a1, . . . , ar ∈ K with
ai > 0 in R, such that

f = a1 f 2
1 + · · · + ar f 2

r .

Proof. It suffices to prove 1.5.22. Let P := K ∩ R+ be the ordering on K induced
from R, and let

T = TK(x)(P) =

{ r∑
i=1

ai f 2
i : r ∈ N, ai ∈ P, fi ∈ K(x1, . . . , xn)

}
,

the preordering generated by P in K(x), see 1.2.1. Theorem 1.5.22 claims that f ∈ T .
We assume f < T and will arrive at a contradiction. From Proposition 1.1.28 we get
an ordering Q of K(x) with T ⊆ Q (and in particular, K∩Q = P) and f <Q 0. Let R1
be the real closure of (K(x),Q). Then R and R1 are real closed field extensions of K
that both induce the same ordering P on K. There exists a point ξ ∈ K(x)n ⊆ Rn

1 with
f (ξ) <Q 0, namely ξ = (x1, . . . , xn). By the Tarski–Seidenberg transfer principle
(Corollary 1.5.19) there also exists a point a ∈ Rn with f (a) < 0. But this contradicts
the hypothesis that f was positive semidefinite. So the assumption was false, and
hence f satisfies an identity as asserted. �
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1.5.23 Remarks.

1. In a long and difficult paper [92], Hilbert (1893) himself had proved Theorem
1.5.21 in the case n = 2 (and R = R), but couldn’t decide the question for three
or more variables. In his famous list of 23 unsolved mathematical problems, deliv-
ered at the 1900 International Congress of Mathematicians in Paris, he included the
problem as number 17.

2. The refined version 1.5.22 responds to a question that Hilbert had raised him-
self. If f ∈ R[x] is psd and has coefficients in a subfield K ⊆ R, Hilbert had asked
whether f is always a sum of squares in the field K(x). When asked in this form,
the answer is negative since there may be an embedding ϕ : K → R for which the
polynomial f ϕ in R[x] fails to be psd (e.g. take K = Q(

√
2) and f the constant

polynomial
√

2).

1.5.24 Examples.

1. The arithmetic-geometric inequality (AGI) states that the arithmetic mean of
finitely many non-negative real numbers is at least their geometric mean:

1
n

(t1 + · · · + tn) ≥ (t1 · · · tn)1/n, (1.6)

or equivalently (t1 + · · · + tn)n ≥ nnt1 · · · tn, for all t1, . . . , tn ≥ 0. The usual proof
from calculus uses concavity of the logarithm, an argument that is not available
over general real closed fields. Nonetheless, the inequality holds in this generality,
for example as a consequence of Tarski’s transfer principle. There is a more elegant
way of reasoning, though. Writing each ti as a 2n-th power, (AGI) can be expressed
by saying that the symmetric form

fn := x2n
1 + · · · + x2n

n − nx2
1 · · · x

2
n

is positive semidefinite. Now fn can in fact be written as a sum of squares of forms,
a fact that was discovered by Hurwitz. The proof is not obvious, see Exercise 1.5.6.
Clearly, this gives an algebraic proof of AGI, valid over any real closed field R.
Moreover, the argument implies for t1, . . . , tn ≥ 0 that equality holds in (1.6) only if
t1 = · · · = tn (a fact that is also well-known from calculus).

2. In 1888, Hilbert proved for every n ≥ 2 that there exists a psd polynomial f
in n variables that is not a sum of squares of polynomials. His results were in fact
much more precise, we will discuss them in detail in Section 2.4. Remarkably, it was
only in 1967 when the first explicit example of such a polynomial was published:
Motzkin [141] showed that f (x, y) = x4y2 + x2y4 − 3x2y2 + 1 is a psd polynomial
that is not a sum of squares. See Exercise 1.5.5 for the proof, and for an identity that
expresses f as a sum of four squares of rational functions in R(x, y).

1.5.25 Remark. Artin’s theorem 1.5.21 gives rise to a series of natural follow-up
questions. For example, how many squares are needed? Let pn denote the infimum
of all integers m ≥ 1 with the property that every psd polynomial f ∈ R[x1, . . . , xn]
is a sum of m squares of rational functions. For n = 1 we have pn = 2 (elementary,
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see 1.2.11), but for n ≥ 2 it is not even clear a priori whether pn is finite. However
Pfister [149] proved in a 1967 landmark paper that pn ≤ 2n for all n ≥ 1. For
n = 2 it is known that p2 = 4. In fact, Cassels, Ellison and Pfister [38] proved that
Motzkin’s polynomial (see above) cannot be written as a sum of three squares of
rational functions. For n ≥ 3, the exact value of pn is a wide open question, and it is
only known that n + 2 ≤ pn ≤ 2n. The number pn is called the Pythagoras number
of the field R(x1, . . . , xn).

Another question concerns degrees. Let f ∈ R[x] = R[x1, . . . , xn] be a psd poly-
nomial of degree d. By 1.5.21 there is a polynomial p , 0 in R[x] such that both p
and p f are sums of squares of polynomials. Is there a uniform bound N = N(n, d)
such that one can always find p with deg(p) ≤ N? The existence of some bound
N(n, d) like this is quite easy to prove (Exercise 3.3.4 later), but finding an explicit
value for N is a very hard problem. For n = 2, the results of Hilbert’s 1893 paper
[92] imply such a bound, namely

deg(p) ≤
⌊ (d − 2)2

8

⌋
.

The best known general bound for all n ≥ 3 is quite discouraging: Lombardi, Per-
rucci and Roy [128] proved that

deg(p) ≤ 222d4n

suffices!

Exercises

1.5.1 Show that the graph {(t, et) : t ∈ R} of the exponential function is not a semialgebraic subset
of R2. (Use that the exponential function is transcendental, cf. Exercise 1.2.3.)

1.5.2 Let (k,≤) be an ordered field with real closure R, and let f ∈ k[x] = k[x1, . . . , xn] be a
polynomial with f (ξ) ≥ 0 for every ξ ∈ kn. If deg( f ) ≤ 2, show that f (ξ) ≥ 0 for every
ξ ∈ Rn.

1.5.3 Exercise 1.5.2 does not extend to polynomials of higher degree. Consider the field K = R(x)
with the ordering ≤ that satisfies 0 < nx < 1 for all n ≥ 1. Let R be the real closure of (K,≤).
For the polynomial f = t4 − 4xt2 + 3x2 ∈ K[t], show that

(a) f (a) ≥ 0 for every a ∈ K,
(b) there exists b ∈ R with f (b) < 0.

In Artin’s theorem 1.5.22, it is therefore not enough to assume f (ξ) ≥ 0 for every ξ ∈ Kn.
1.5.4 Let (K, P) be an ordered field with real closure R, let f ∈ K[x1, . . . , xn]. The following are

equivalent:

(i) f (ξ) ≥ 0 for every ξ ∈ Rn;
(ii) f ≥Q 0 for every extension Q of the ordering P to K(x1, . . . , xn).

1.5.5 Consider the (inhomogeneous) Motzkin polynomial f = x4y2 + x2y4 − 3x2y2 + 1 in R[x, y]
and prove:
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(a) f (a, b) ≥ 0 for all (a, b) ∈ R2.
(b) f is not a sum of squares of polynomials in R[x, y].
(c) Find a representation of f as a sum of four squares of rational functions in R(x, y).

(Hints: For (a) use the arithmetic-geometric inequality. For (c) multiply f with 1 + x2.)
1.5.6 Following Hurwitz we give an algebraic proof for the arithmetic-geometric inequality,

see Example 1.5.24.1. Let k be a field of characteristic 0, let x = (x1, . . . , xn), and let
hn = xn

1 + · · · + xn
n − nx1 · · · xn. For any polynomial f = f (x) ∈ k[x] let S f :=

1
n!

∑
σ∈Sn

f (xσ(1), . . . , xσ(n)), the symmetrization of f . Let n ≥ 2 and consider the form

pn = (x1 − x2)
n−1∑
i=1

(xn−i
1 − xn−i

2 ) x3 · · · xi+1

in k[x]. Prove that Spn = 2
n hn, and deduce that fn(x1, . . . , xn) := hn(x2

1, . . . , x
2
n) is a sum of

squares of forms. (Hint: pn(x2
1, . . . , x

2
n) is a sum of squares of forms.)

1.5.7 Find a psd polynomial f ∈ R[x1, . . . , xn] that is not a sum of squares of polynomials, but
such that f + c is a sum of squares for some real number c. (Hint: Take f = (g + 1)2 − 1
where g is a psd form that is not sos.)

1.6 Model-theoretic formulation of quantifier elimination and
transfer principle

To make use of the full strength of the Tarski–Seidenberg theorem, it is conve-
nient to borrow from the language of logic and model theory. In model theory one
studies systems of axioms (called theories) that are stated in formal languages. A
fundamental result is completeness of first order logic: A theory is consistent (no
contradiction can be deduced from its axioms) if and only if it has a model.

We will employ the model-theoretic language and formalism only for the theory
of real closed fields. A rigorous introduction of the general model-theoretic frame-
work would certainly be worthwhile. However we won’t attempt to do this, both for
space and time limitations. Instead we are going to introduce the necessary termi-
nology in an ad hoc way, tailored towards our needs, namely the basic concepts of
model theory for the first order language of ordered fields.

For a quick introduction to general model theory we recommend [160]. For a
much more comprehensive account see [133], for example.

Let A be a ring (commutative and unital, as always), and let Var be a countably
infinite set whose elements we call variables. For the first definitions we take Var =

{x1, x2, . . . }. Later on we’ll allow ourselves to be more flexible and to use arbitrary
names for variables. By A[Var] we denote the ring of polynomials in the variables
Var with coefficients in A.

1.6.1 Definition. Let A be a ring.

(a) An A-prime formula is an expression of the form4 ‘ f = g’ or ‘ f < g’, with f , g ∈
A[Var] = A[x1, x2, . . . ] =

⋃
n∈N A[x1, . . . , xn].

4 the quotes are not part of the formula
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(b) The set FmlA of all A-formulas is the smallest set that satisfies the following
conditions (1)–(3):

(1) Every A-prime formula is an A-formula;
(2) if ϕ, ψ are A-formulas then so are ‘ϕ ∧ ψ’ and ‘¬ϕ’;
(3) if ϕ is an A-formula and x ∈ Var, then ‘∀ x ϕ’ is again an A-formula.

1.6.2 Remark. What has been called A-formulas here are, more precisely, the for-
mulas in the language L(+,−, ·, <, 0, 1)A of ordered fields with constants in A. The
only significance of the base ring A is to serve as a source for the constants used
in formulas. To improve readability of formulas we agree on the following standard
conventions:

• ‘ f , g’ stands for ‘¬( f = g)’;
• ‘ f ≤ g’ stands for ‘ f < g ∨ f = g’;
• ‘ f > g’ (resp. ‘ f ≥ g’) stands for ‘g < f ’ (resp. ‘g ≤ f ’);
• ‘ϕ ∨ ψ’ stands for ‘¬

(
¬ϕ ∧ ¬ψ

)
’;

• ‘ϕ→ ψ’ stands for ‘¬
(
ϕ ∧ ¬ψ

)
’;

• ‘ϕ↔ ψ’ stands for ‘ϕ→ ψ ∧ ψ→ ϕ’;
• ‘∃ x ϕ’ stands for ‘¬

(
∀ x ¬ϕ

)
’.

Moreover we will usually omit quotes around formulas from now on.

1.6.3 Definition. Let ϕ be an A-formula. A variable x ∈ Var may occur in ϕ in two
possible ways, bound or free. An occurrence of x is said to be bound if it lies in the
range of a quantifier ∃ x or ∀ x. Any other occurrence is called free. The set of free
variables of ϕ is

Fr(ϕ) := {x ∈ Var : x has a free occurrence in ϕ}.

1.6.4 Example. To illustrate this definition, consider the following formulas:

ϕ1: ∃ x1 x2
1 + 1 = 0;

ϕ2: ∀ x2 ∃ x3 x1x2x3 < 1 + x1;
ϕ3:

(
∃ x1 x1 = x1 + 1

)
∧ x2

1 < x2.

The occurrence of the variable x1 in ϕ1 is bound, in ϕ2 it is free, and in ϕ3 there are
both a bound and a free occurrence. The set of free variables for these formulas is
Fr(ϕ1) = ∅, Fr(ϕ2) = {x1} and Fr(ϕ3) = {x1, x2}.

The following rules for the set of free variables Fr(ϕ) are verified immediately.
Alternatively, they give an inductive definition of Fr(ϕ):

1.6.5 Lemma. Let ϕ, ψ be A-formulas.

(a) If f , g ∈ A[Var] then Fr( f = g) = Fr( f < g) = {x ∈ Var : x occurs in f or in g}.
(b) Fr(¬ϕ) = Fr(ϕ);
(c) Fr(ϕ ∨ ψ) = Fr(ϕ ∧ ψ) = Fr(ϕ→ ψ) = Fr(ϕ) ∪ Fr(ψ);
(d) Fr(∃ x ϕ) = Fr(∀ x ϕ) = Fr(ϕ) r {x}.
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Next we explain how to replace variables in formulas by values. This only makes
sense for free occurrences:

1.6.6 Definition. Let ϕ be an A-formula.

(a) The notation ϕ = ϕ(x1, . . . , xn) with x1, . . . , xn ∈ Var indicates that Fr(ϕ) ⊆
{x1, . . . , xn}.

(b) Let ϕ = ϕ(x1, . . . , xn), let B be an A-algebra. Given b1, . . . , bn ∈ B, the B-
formula ϕ(b1, . . . , bn) arises from ϕ by replacing every free occurrence of xi in
ϕ by bi, for i = 1, . . . , n.

Note that the B-formula ϕ(b1, . . . , bn) has no free variables left.

1.6.7 Definition. An (A-) formula ϕ with Fr(ϕ) = ∅ is called an (A-) sentence.

So far we only explained formal manipulations on formulas. Now we assign a
meaning to formulas.

1.6.8 Let R be a real closed field. Any R-sentence may be read as a statement on
elements in R, by interpreting ∧ and ¬ as ‘and’ and ‘not’, respectively (and hence ∨
as ‘or’,→ as ‘implies’ etc.), and interpreting ‘∀ xψ(x)’ as ‘for all x in R, ψ(x) holds’
(and hence ‘∃ x ψ(x)’ as ‘there exists x in R with ψ(x)’). Therefore, any R-sentence
is either true or false in R. If ϕ is such an R-sentence, the notation

R |= ϕ

(read “R is a model of ϕ”, or “ϕ holds in R”) means that the statement ϕ is true in R.
More generally, we need to allow formulas with coefficients in arbitrary base

rings A. To interpret them (and assign them a true/false value), we have to fix a ring
homomorphism from A into a real closed field:

1.6.9 Definition. Let ϕ be an A-formula with Fr(ϕ) ⊆ {x1, . . . , xn}, and let α : A→ R
be a homomorphism into a real closed field R. Let ϕα = ϕα(x1, . . . , xn) denote the
R-formula that arises from ϕ by applying α to all constants. The subset

SR,α(ϕ) :=
{
ξ = (ξ1, . . . , ξn) ∈ Rn : R |= ϕα(ξ1, . . . , ξn)

}
of Rn is called the relation defined by ϕ (in Rn, with respect to α).

Strictly speaking we haven’t defined SR,α(ϕ) uniquely, since we did not insist
that Fr(ϕ) = {x1, . . . , xn}. This bit of imprecision is however insignificant and con-
venient. For the sake of lighter notation we’ll often suppress α and just write SR(ϕ).
Frequently αwill just be the inclusion A ⊆ R of a subring, or even A = R and α = id.

1.6.10 Example. Consider the following Z-formula ϕ = ϕ(x1, x2, x3):

∃ y1

(
y3

1 + x1y2
1 + x2y1 + x3 = 0 ∧ ∀ y2

(
y3

2 + x1y2
2 + x2y2 + x3 = 0 → y2 = y1

))
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The relation SR(ϕ) ⊆ R3 defined by ϕ (and formed with respect to the unique ho-
momorphism Z → R) is the set of ξ ∈ R3 for which the univariate polynomial
t3 + ξ1t2 + ξ2t + ξ3 has precisely one real root (possibly of higher multiplicity).

The sets SR(ϕ) can be described inductively as follows (again this gives an alter-
native recursive definition):

1.6.11 Lemma.

(a) If f , g ∈ R[x1, . . . , xn] then SR( f = g) = {ξ ∈ Rn : f (ξ) = g(ξ)} and SR( f < g) =

{ξ ∈ Rn : f (ξ) < g(ξ)}.
(b) If ϕ = ϕ(x1, . . . , xn) and ψ = ψ(x1, . . . , xn) are R-formulas then

SR(ϕ ∨ ψ) = SR(ϕ) ∪ SR(ψ),

SR(ϕ ∧ ψ) = SR(ϕ) ∩ SR(ψ),

SR(¬ϕ) = Rn r SR(ϕ),

SR(ϕ→ ψ) = SR(¬ϕ) ∪ SR(ψ).

(c) If φ = φ(x, x1, . . . , xn) is an R-formula then

SR(∃ x φ) = {(a1, . . . , an) ∈ Rn : ∃ a ∈ R (a, a1, . . . , an) ∈ SR(φ)},
SR(∀ x φ) = {(a1, . . . , an) ∈ Rn : ∀ a ∈ R (a, a1, . . . , an) ∈ SR(φ)}.

1.6.12 Proposition. Given a homomorphism α : A → R into a real closed field
R, the A-semialgebraic sets in Rn are precisely the relations SR,α(ϕ) defined by
quantifier-free A-formulas ϕ = ϕ(x1, . . . , xn).

Proof. A typical A-semialgebraic set has the form

m⋃
i=1

{
x ∈ Rn : fi(x) = 0, gi1(x) > 0, . . . , giri (x) > 0

}
with polynomials fi, gi j ∈ A[x]. This is precisely the relation SR(ϕ) defined by the
quantifier-free A-formula

ϕ :
m∨

i=1

(
fi = 0 ∧

ri∧
j=1

gi j > 0
)
.

And conversely, since the sets defined by prime A-formulas are A-semialgebraic,
every quantifier-free A-formula defines an A-semialgebraic set. �

1.6.13 Definition. Let A be a ring. Two A-formulas ϕ, ψ are called A-equivalent,
denoted ϕ ≡A ψ, if SR,α(ϕ) = SR,α(ψ) holds for every homomorphism α : A → R
into a real closed field R.

The reader with a model-theoretic background will realize that our notation ϕ ≡
ψ signalizes that the formula ∀ (ϕ↔ ψ) holds in every model of ThRCF,A, the theory
of real closed fields with constants in A. Or equivalently, by completeness of first
order logic, that ∀ (ϕ↔ ψ) can be proved within ThRCF,A.
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1.6.14 Remarks.

1. The formulas x ≥ 0 and ∃ y x = y2 are Z-equivalent, since for any real closed
field R and any a ∈ R one has: a ≥ 0⇔ ∃ b ∈ R a = b2.

2. If ϕ ≡A ϕ
′ and ψ ≡A ψ

′, then also ϕ ∧ ψ ≡A ϕ
′ ∧ ψ′, ¬ ϕ ≡A ¬ϕ

′ and (∀ x ϕ)
≡A (∀ x ϕ′) hold (for any variable x). This is obvious from Lemma 1.6.11.

3. Every quantifier-free A-formula is A-equivalent to a formula of the form∨
i

(
fi = 0 ∧

∧
j

gi j > 0
)

with fi, gi j ∈ A[Var], see Exercise 1.6.1.

1.6.15 Theorem. (Quantifier elimination, 2nd version) Let A be a ring. Given any A-
formula ϕ = ϕ(x1, . . . , xn), there exists a quantifier-free A-formula φ = φ(x1, . . . , xn)
that is A-equivalent to ϕ.

Proof. The proof is by induction on the structure of ϕ. If ϕ is quantifier-free there
is nothing to show. If the theorem holds for ϕ and for ψ, it also holds for ϕ ∧ ψ and
¬ϕ. Let now ϕ be the formula

∃ y1 ψ(x1, . . . , xn, y1)

and assume by induction that ψ ≡A ψ′ for some quantifier-free formula ψ′. By
Remarks 2 and 3 in 1.6.14, we can assume that ψ has the form

f = 0 ∧
∧
ν

gν > 0

with polynomials f , gν ∈ A[x1, . . . , xn, y1]. With this we are in the situation of The-
orem 1.5.17. By this theorem there exist polynomials Fi, Gi j ∈ A[x1, . . . , xn] such
that ϕ is A-equivalent to the formula

∨
i(Fi = 0 ∧

∧
j Gi j > 0). So we are done. �

1.6.16 Corollary. For every A-formula ϕ = ϕ(x1, . . . , xn) and every homomorphism
α : A→ R into a real closed field, the set SR(ϕ) ⊆ Rn defined by ϕ is an A-semialge-
braic subset of Rn.

The emphasis here is on every formula: The conclusion is true not just for
quantifier-free formulas.

Proof. Choose a quantifier-free formula φ as in Theorem 1.6.15. Then SR(ϕ) =

SR(φ), and the second set is A-semialgebraic by Proposition 1.6.12. �

1.6.17 Corollary. (Transfer principle) Let K be a field, and let R1, R2 be two real
closed field extensions of K that induce the same ordering on K. Then for any K-
sentence ϕ we have

R1 |= ϕ ⇔ R2 |= ϕ.
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Proof. By Theorem 1.6.15 we can choose a quantifier-free K-sentence φ ≡K ϕ. This
φ is a logical-Boolean combination (finitely many operations ∧, ∨, ¬) of elementary
sentences fi = gi or fi < gi with fi, gi ∈ K. So the claim is obvious. �

Here is an application:

1.6.18 Corollary. Let R be a real closed field, let A ⊆ R be a subring, and let M ⊆ Rn

be an A-semialgebraic set. Then the closure M, the interior int(M), the boundary
∂M and the R-convex hull conv(M) of M are A-semialgebraic sets as well.

Of course, closure, interior and boundary refer to the order topology on Rn. A
subset M ⊆ Rn is R-convex if u, v ∈ M and 0 < t < 1 in R imply (1 − t)u + tv ∈ M.
The R-convex hull of M ⊆ Rn is

conv(M) :=
{ m∑

i=1

aiξi : m ≥ 1, 0 ≤ ai ∈ R, ξi ∈ M (i = 1, . . . ,m),
m∑

i=1

ai = 1
}
,

and is the smallest R-convex set containing M.

Proof. Each of these sets can be described by an A-formula, see Exercise 1.6.2. So
the corollary follows from 1.6.16. �

1.6.19 Remarks.

1. Let M ⊆ Rn be a semialgebraic set, say M =
⋃

i
(
Z( fi) ∩ U(gi1, . . . , giri )

)
with

polynomials fi, gi j. A description of M will usually require new polynomials, dif-
ferent from the fi. In particular, it is not true in general that M is obtained from
M by simply relaxing strict inequalities to non-strict ones. While this is not really
surprising, it will be more of a surprise to learn that the conclusion does hold under
suitable hypotheses. More on this in Section 4.3 (Thom’s lemma).

2. We could have derived Corollary 1.6.18 directly from the projection theorem
1.5.8, without using model-theoretic language. But converting a formula for the
closure M, say, into projections of semialgebraic sets would quickly become very
complicated and awkward, and would obscure the picture. The model-theoretic lan-
guage is way more elegant and transparent.

3. A word of caution. One should always be careful when checking whether a
property can, or cannot, be phrased in the formal language of ordered fields. Here
are a few examples:

(a) The sentence “Every bounded increasing sequence in R has a limit in R” is
true for R = R. It cannot be expressed in the language of ordered fields. In fact, it is
usually false in general real closed fields R.

(b) The sentence “If M ⊆ Rn is a semialgebraic set that is bounded (contained
in Br(0) for some r ∈ R) and closed, then any polynomial has a minimum on M” is
true for R = R. In order to deduce it for arbitrary R via Tarski, it is not possible, in
the language of ordered fields, to quantify over all semialgebraic sets in Rn. But one
may fix a concrete semialgebraic description of a given M, say as in (1.5), and may
fix upper bounds for the degrees of all the polynomials involved. By quantifying
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over all the occurring coefficients, one may then express both the assumption and
the conclusion.

(c) Let M ⊆ Rm×Rn be a semialgebraic set. For η ∈ Rn let Mη = {ξ ∈ Rm : (ξ, η) ∈
M}, the η-slice of M, which is a semialgebraic set in Rm. There is no general way
to express in a formal sentence whether a semialgebraic set is connected. Therefore
one would not expect that the set

{η ∈ Rn : Mη is connected }

is semialgebraic. But it turns out that it always is. For this, however, there is no
proof directly from Tarski’s principle. Rather one has to study decompositions of
semialgebraic sets into topologically simple pieces, as we will do in 4.3.

Exercises

1.6.1 Let A be a ring. Every quantifier-free A-formula is A-equivalent to a formula∨
i

(
fi = 0 ∧

∧
j

gi j > 0
)

with fi, gi j ∈ A[Var].
1.6.2 Let R be a real closed field, let ϕ = ϕ(x1, . . . , xn) be an R-formula, and let M = SR(ϕ) ⊆

Rn be the relation defined by ϕ. Find an explicit formula ψ(x1, . . . , xn) that defines (a) the
closure M, (b) the interior int(M), (c) the boundary ∂M, (d) the R-convex hull conv(M) of M.
(Remark: For (d) you will need Carathéodory’s theorem (in its version over R), see 8.1.2.)

1.6.3 Let n ∈ N, let f ∈ Q[x] = Q[x1, . . . , xn] be a polynomial that satisfies f (a) ≥ 0 for every
a ∈ Qn. Prove, or disprove by a counter-example: For every ordered field (K,≤) and every
ξ ∈ Kn one has f (ξ) ≥ 0.

1.6.4 Let R be a real closed field, let m, n ≥ 1, and let f1, . . . , fm, g ∈ R[x1, . . . , xn] be polynomials.
Let M ⊆ Rn be a semialgebraic set that is closed and (semialgebraically) bounded, and
assume that g(ξ) , 0 for every ξ ∈ M. Then the map

f : M → Rm, f (ξ) =

( f1(ξ)
g(ξ)

, . . . ,
fm(ξ)
g(ξ)

)
is well-defined. Use the transfer principle to prove that the image set f (M) is closed and
bounded in Rm. (A set in Rn is called (semialgebraically) bounded if it is contained in [−c, c]n

for some positive c ∈ R.)
1.6.5 Let I be an infinite set, let 2I be the power set of I, consisting of all subsets of I. An ultrafilter

on I (compare also Remark 4.1.20) is a non-empty subset F of 2I with ∅ < F, such that F is
stable under finite intersections and satisfies J ∈ F or I r J ∈ F for every J ∈ 2I . For every
index i ∈ I let Ki be a field. Given a tuple a = (ai)i∈I ∈

∏
i∈I Ki, let Z(a) = {i ∈ I : ai = 0},

and put JF =
{
a ∈

∏
i∈I Ki : Z(a) ∈ F

}
.

(a) Show that JF is a maximal ideal of the product ring
∏

i∈I Ki. The residue field(∏
i∈I

Ki

)/
F :=

(∏
i∈I

Ki

)/
JF

is called an ultraproduct of the fields Ki.
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(b) If each field Ki is real closed, show that the field
(∏

I Ki
)/
F is real closed as well.

Assume now that R is a fixed real closed field and that Ki = R for every i ∈ I. Write S for
the ultrapower RI/F of R. The diagonal map R → RI induces an embedding R → S of real
closed fields.

(c) Let φ(x1, . . . , xn) be an R-formula and let ξ = (ξ1, . . . , ξn) ∈ Sn, where ξν ∈ S is
represented by the tuple (ξi

ν)i∈I ∈ RI (ν = 1, . . . , n). Show that φ(ξ) holds in S if, and
only if, the set {i ∈ I : R |= φ(ξi

1, . . . , ξ
i
n)} lies in F.

1.6.6 Let R be a real closed field, let F be an ultrafilter on the set N. The ultrapower S = RN/F of
R is a real closed field extension of R, see Exercise 1.6.5. We assume that F is non-principal,
meaning that

⋂
J∈F J = ∅. Let Mk (k = 1, 2, . . . ) be a countable sequence of semialgebraic

sets in Sn. If M1 ∩ · · · ∩ Mk , ∅ for every k ≥ 1, show that
⋂

k≥1 Mk is non-empty.
Suggestion for proof : For every k ≥ 1 fix a quantifier-free S -formula φk(x1, . . . , xn) that

describes Mk ⊆ Sn. Lift all constants in φk to tuples in RN, thereby obtaining for each k a
sequence Mk

i (i ≥ 1) of semialgebraic sets in Rn. For each k, fix a tuple ak = (ak
i )i≥1 ∈ (Rn)N

that represents a point in M1 ∩ · · · ∩ Mk. Show for each k ≥ 1 that the set

Ik :=
{
i ∈ N : i ≥ k and a j

i ∈ Mm
i for each 1 ≤ m ≤ j ≤ k

}
lies in F, and observe Ik+1 ⊆ Ik for all k. Show that, for each i ≥ 1, a point bi ∈ Rn is
well-defined by bi := a j

i if i ∈ I j r I j+1, bi := 0 if i < I1. The point [b] ∈ Sn represented by b
lies in Mk for every k. (Use Exercise 1.6.5(c).)

The property of S proved in this exercise is known as ℵ1-saturatedness of S .

1.7 The Artin–Lang theorem

We now study orderings of function fields of algebraic varieties over a real closed
field R. In particular, we’ll arrive at several characterizations of those irreducible
varieties whose function field is real, i.e., can be ordered. We are also going to
generalize the statement of Hilbert 17 to arbitrary irreducible R-varieties.

We start with a few preliminaries on the order topology on (the R-points of)
algebraic R-varieties. For this we work in the more general setting of a topological
base field, since nothing is special in the case when the field topology comes from
an ordering,

1.7.1 For general conventions on algebraic varieties we refer to Appendix A.6. The
viewpoint of schemes is nowhere necessary in this course. All varieties that we
talk about can be assumed to be quasi-projective. Note that, in this book, the term
“variety” does not imply irreducibility. Recall that the coordinate ring of an affine
k-variety X is denoted k[X]. The function field of an irreducible k-variety X is k(X).
By X(k) we denote the set of k-rational points of X. For the main results to follow,
we will need the notion of non-singular points on k-varieties. It is recalled in A.6.17.

1.7.2 A topological field is a field k together with a Hausdorff topology T on k, such
that the sum and product map k × k → k, as well as the inversion map k∗ → k∗, x 7→
x−1, are continuous. Examples are R or C with the standard (Euclidean) topology.
Other examples (that otherwise will never play a role in this book) are the field Qp
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of p-adic numbers and its finite extensions (for p any prime), or the field F((t)) of
formal Laurent series over a finite field F. It is a well-known fact that together these
fields comprise the list of all fields with a non-discrete and locally compact field
topology. Note that the field R of real numbers is the only real field in this list (a fact
that was proved in Exercise 1.2.2). For the purpose of this section it is important that
every ordered field (K, P) is a non-discrete topological field with respect to its order
topology TP, see 1.2.12.4 and Exercise 1.2.2.

1.7.3 Let (k,T) be a topological field. For every k-variety X, the field topology on
k induces a natural topology on X(k). It is sometimes called the strong topology, to
distinguish it from the k-Zariski topology. When T = TP for some ordering P of
k, we also speak of the order topology induced by P. This topology is defined as
follows. A subset W ⊆ X(k) is open with respect to the strong topology if, and only
if, for every closed k-subvariety U of some affine space Am and every k-morphism
f : U → X, the preimage f −1(W) is relatively open in U(k), where U(k) is given
the relative topology induced from U(k) ⊆ km and the product topology on km. Note
that when X ⊆ An is locally closed, the strong topology is simply the restriction of
the product topology from An(k) = kn to X(k). For X ⊆ Pn it is similar. For any
morphism X → Y of k-varieties, the induced map X(k) → Y(k) is continuous with
respect to the strong topologies.

1.7.4 Lemma. Let k be a topological field, let X, Y be k-varieties.

(a) If f : X → Y is an open immersion of k-varieties, the induced map f : X(k) →
Y(k) is an open topological embedding (homeomorphism onto its open image).
Same with “open” replaced by “closed”.

(b) The strong topology on (X × Y)(k) is the product topology on X(k) × Y(k).
(c) The strong topology on X(k) is Hausdorff.

Proof. (a) is true when Y is affine, and this implies the general case by the definition
of morphisms. (b) is clear when X ⊆ Am and Y ⊆ An are locally closed. This implies
the general case, since if (Xi)i, (Y j) j are open-affine coverings of X and Y , then
(Xi×Y j)i, j is an open-affine covering of X×Y . When X is quasi-projective, it suffices
for (c) to show that the strong topology on Pn(k) is Hausdorff. For any k-hyperplane
H ⊆ Pn, the strong topology on (Pn r H)(k) is Hausdorff since Pn r H � An. Since
for any two points ξ , η ∈ Pn(k) there is a k-hyperplane H ⊆ Pn with ξ, η < H, this
proves (c) for quasi-projective X. If one wants to prove (c) for k-varieties that are
not necessarily quasi-projective (those are otherwise not considered in this course),
one needs to use the fact that the diagonal ∆X is Zariski closed in X×X (see A.6.12).
Therefore the diagonal of X(k) is closed in X(k)×X(k) in the strong topology, by (b),
and this means that X(k) is Hausdorff. �

1.7.5 Remark. If (k,≤) is an ordered field and V is an affine k-variety, the sets

UV ( f ) := {ξ ∈ V(k) : f (ξ) > 0} ( f ∈ k[V])

form a basis of open sets for the strong topology on V(k). In fact, if k[V] is generated
by x1, . . . , xn as a k-algebra, already the balls UV

(
r2 −

∑
i(xi − xi(ξ))2) (for ξ ∈ V(k)

and 0 , r ∈ k) are a basis of open sets.
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1.7.6 Proposition. Let k be a real field. Every quasi-projective k-variety X contains
a Zariski open affine subset U for which X(k) = U(k).

Proof. We can assume that X ⊆ Pn is Zariski locally closed. The subset W :=
Pn r V(x2

0 + · · · + x2
n) of Pn is open affine (A.6.10) and satisfies W(k) = Pn(k). So

we may replace X by X ∩ W and thereby assume that X ⊆ Am is locally closed.
Let X be the Zariski closure of X in Am. There exist f1, . . . , fr ∈ k[X] with X =

X rVX( f1, . . . , fr). Now U = X rVX( f 2
1 + · · ·+ f 2

r ) is an open affine subset of X and
satisfies U(k) = X(k). �

1.7.7 Remark. Proposition 1.7.6 is in fact true for any field k that is not alge-
braically closed. One may argue in a similar way as above, using the following
fact: For every integer n ≥ 1, there exists a non-constant homogeneous polynomial
fn ∈ k[x1, . . . , xn] such that fn(ξ) , 0 for every 0 , ξ ∈ kn. See Exercise 1.7.3.

Now let R be a real closed field. Whenever X is an R-variety, we consider the
set X(R) of R-rational points with the strong (order) topology. The next theorem
is of fundamental importance. It characterizes those irreducible R-varieties whose
function field can be ordered. In fact we prove a stronger version right away:

1.7.8 Theorem. Let R be a real closed field, let X be an irreducible R-variety and
f1, . . . , fr ∈ R(X). The following are equivalent:

(i) The function field R(X) has an ordering P for which f1 >P 0, . . . , fr >P 0;
(ii) the subset U := {ξ ∈ X(R) : fi is defined at ξ and fi(ξ) > 0 for i = 1, . . . , r} of

X(R) is Zariski dense in X;
(iii) U contains a non-singular R-point of X.

Proof. Let X′ be a non-empty open affine subset of X on which f1, . . . , fr are all
defined. The R-variety X′ is isomorphic to a closed subvariety V of An, for some n.
Let I = 〈h1, . . . , hm〉 be the vanishing ideal of V in R[x] = R[x1, . . . , xn]. For i =

1, . . . , r, the restriction of fi to X′ is a regular function, so there exists a polynomial
Fi ∈ R[x] for which Fi + I ∈ R[x]/I = R[V] corresponds to fi under the chosen
isomorphism X′ � V .

(i)⇒ (ii): Let S be a real closure of (R(X), P). By hypothesis (i), the R-sentence

∃ y = (y1, . . . , yn)
( m∧

j=1

h j(y) = 0 ∧
r∧

i=1

Fi(y) > 0
)

holds in S , since x = (x1, . . . , xn) is such a tuple y. By the transfer principle 1.6.16,
the sentence holds in R as well. Hence there exists ξ ∈ X′(R) with fi(ξ) > 0 for
i = 1, . . . , r. In particular U , ∅.

In fact, U is Zariski dense in X. For this it suffices to see that U ∩X′(R) is Zariski
dense in X′, since X′ is Zariski dense in X. But this means to find, for any non-zero
g ∈ R[X′], a point ξ in U ∩ X′(R) that satisfies g(ξ) , 0. We achieve this by simply
appending fr+1 := g2 to the list f1, . . . , fr and repeating the previous argument for
the extended list.



1.7 The Artin–Lang theorem 55

(ii)⇒ (iii): Assume that U is Zariski dense in X. Since the singular locus Xsing of
X is a proper Zariski closed subset, the set U contains a non-singular point of X.

We still need to give the proof of (iii) ⇒ (i). This proof makes use of the inter-
action between orderings and valuation rings of a field. Its proper context would be
Section 3.6 later, where this topic will be studied systematically. For now we give an
ad hoc proof. More background will later be given in Remark 3.6.10. Let ξ ∈ X(R)
be a non-singular point with fi(ξ) > 0 for i = 1, . . . , r, let Oξ = OX,ξ be the local ring
of X at ξ, and let mξ be its maximal ideal. To prove (i) it suffices to show that the
preordering T of R(X) generated by f1, . . . , fr does not contain −1. Indeed, Propo-
sition 1.1.26 will then imply the existence of a positive cone P of R(X) that satisfies
fi >P 0 for i = 1, . . . , r.

Assume to the contrary that −1 ∈ T . So there is an identity −1 =
∑m

i=1 pig2
i

in R(X) with gi ∈ R(X)∗ and pi ∈ Oξ, where the pi satisfy pi(ξ) > 0. Clearing
denominators, this implies an identity

p0q2
0 + · · · + pmq2

m = 0 (1.7)

where pi, qi ∈ Oξ are non-zero and pi(ξ) > 0 for every i. Since the local ring Oξ is
regular there exists, by Proposition A.5.5, a valuation ring B of R(X) that dominates
Oξ, and such that the induced map R = Oξ/mξ → B/mB between the residue fields
is an isomorphism. Now read (1.7) as an identity in B. Since B is a valuation ring,
there is some index j such that bi := qi/q j ∈ B for i = 0, . . . ,m. For simplicity of
notation assume j = 0. Dividing (1.7) by q2

0 now gives an identity p0 +
∑m

i=1 pib2
i = 0

with bi ∈ B. Reducing this identity modulo mB yields a contradiction, since the first
summand is strictly positive in B/mB = R and the others are non-negative. �

We isolate the case r = 0 of Theorem 1.7.8:

1.7.9 Corollary. (Artin–Lang) Let R be a real closed field. The following are equiv-
alent, for every irreducible R-variety X:

(i) The function field R(X) of X is real, i.e. can be ordered;
(ii) X(R) is Zariski dense in X;

(iii) X has a non-singular R-point. ut

(R = R) Irreducible R-varieties for which these equivalent conditions hold are
sometimes said to be real in the literature. We will not follow this usage, to avoid
the danger of confusing the meaning with “variety defined over the field of real
numbers”.

1.7.10 Examples. Let X an irreducible variety over a real closed field R.

1. From the theorem just proved, it follows that the existence of a non-singular
R-point on X is invariant under birational equivalence over R. Indeed, this property
depends only on the function field R(X), by Corollary 1.7.9.

2. The function field of an irreducible curve X over R is real if and only if |X(R)| =
∞. This follows from 1.7.9, since a subset of X(R) is Zariski dense in X if and only
if it is infinite. As an example of an irreducible curve X with a non-real function
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field but with X(R) , ∅, take the plane affine curve x4 + x2 + y2 = 0. In R(X) the
identity −1 = ( x

y )2 + ( x2

y )2 holds, so the field R(X) is not real. Still the origin is an
R-point contained in X.

3. Even if the function field R(X) is real, the non-singular R-points may fail to
be dense in X(R) in the strong (order) topology. Examples are the plane curve X
with equation x2 + y2 = x3, which has an isolated R-point at the origin, or the
surface V in affine 3-space with equation y2 = x2z. The surface V is known as the
Whitney umbrella. Its singular locus consists of the line x = y = 0 (the “stick” of the
umbrella).

x2 + y2 = x3 x2 = y2z

4. Let X be an irreducible R-variety of dimension n. Once we have developed the
notion of dimension for semialgebraic sets, we will see (Remark 4.6.5.6) that the
function field R(X) is real if and only if the (semi-) algebraic set X(R) has dimen-
sion n.

1.7.11 Corollary. Let X be an irreducible R-variety, and let W ⊆ X(R) be a subset
that is open in the order topology. Then W is Zariski dense in X if, and only if, W
contains a non-singular R-point of X.

Proof. If W is Zariski dense then it contains a non-singular point, since the non-
singular locus of X is open (non-empty) in the Zariski topology. Conversely let
ξ ∈ W be a non-singular point of X. Replacing X with an open affine neighborhood
of ξ we may assume that X itself is affine. Since W is open in X(R) there exist
f1, . . . , fr ∈ R[X] with fi(ξ) > 0 such that {η ∈ X(R) : fi(η) > 0, i = 1, . . . , r} ⊆ W
(see Remark 1.7.5). So W is Zariski dense by (iii)⇒ (ii) of Theorem 1.7.8. �

The next result generalizes the Hilbert 17 property, from affine space to arbitrary
irreducible R-varieties:

1.7.12 Theorem. Let X be an irreducible R-variety. A rational function f ∈ R(X) is
a sum of squares in R(X) if, and only if, there exists a non-empty Zariski open subset
U of X on which f is defined and such that f ≥ 0 on U(R).

Proof. We may assume that X is affine and f ∈ R[X]. Let f be a sum of squares in
R(X), so there is a non-zero polynomial h ∈ R[X] such that f h2 is a sum of squares
in R[X]. Then f (ξ) ≥ 0 for any ξ ∈ X(R) with h(ξ) , 0, so the assertion holds for the
principal open subset U = DX(h) of X. Conversely, if there is an open subset U , ∅
of X with f ≥ 0 on U(R), the set {ξ ∈ X(R) : f (ξ) < 0} is contained in (X r U)(R),
hence it is not Zariski dense in X. Theorem 1.7.8 therefore implies that f ≥P 0 for
every ordering P of R(X). According to Artin’s characterization 1.1.30, this means
that f is a sum of squares in R(X). �
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1.7.13 Remark. Beware that a rational function f on X may well be a sum of
squares in R(X) and, at the same time, take negative values at some points ξ ∈
X(R). This can be seen in the examples 1.7.10.3: On the curve X, the polynomial
f = x − 1 is the square of a rational function (namely f =

( y
x
)2), but f (ξ) < 0 for

ξ = (0, 0) ∈ X(R). Similarly, f = z is a rational square on the Whitney umbrella, but
is negative on the lower part of the “stick” of the umbrella. Generally it is true that
f (ξ) < 0 is only possible at singular R-points ξ of X, see Exercise 1.7.2.

For hypersurfaces there exists a particularly simple way to decide when the func-
tion field is real:

1.7.14 Theorem. (Sign-changing criterion) Let R be a real closed field, let f ∈
R[x1, . . . , xn] be an irreducible polynomial, and let X = V( f ) ⊆ An, the hyper-
surface defined by f . The following are equivalent:

(i) The function field R(X) is real;
(ii) f is indefinite on Rn, i.e. there exist ξ, η ∈ Rn with f (ξ) < 0 < f (η).

Proof. We abbreviate x = (x1, . . . , xn).
(i)⇒ (ii): Assume that f is positive semidefinite on Rn. By Artin’s theorem 1.5.21

there exists an identity f h2 =
∑r

i=1 g2
i with non-zero polynomials gi, h ∈ R[x]. We

may assume gcd(g1, . . . , gr, h) = 1. Then there is an index i such that f does not
divide gi. Reading the identity modulo f therefore shows that −1 is a sum of squares
in R(X).

(ii) ⇒ (i): Let f be indefinite on Rn. If n = 1 then f is linear and therefore
R(X) = R. So assume n ≥ 2 and fix ξ, η ∈ Rn with f (ξ) < 0 < f (η). After a
suitable affine-linear change of coordinates we may assume that ξ = (0, . . . , 0, a)
and η = (0, . . . , 0, b) for some a, b ∈ R. Let x′ = (x1, . . . , xn−1), let Q be an ordering
of R(x′) satisfying 0 <Q xi <Q ε for i = 1, . . . , n − 1 and every positive ε in R.
(Such an ordering can be inductively constructed by adjoining one variable at a time
and by successively extending the ordering using the P0,+-construction, cf. 1.1.15.)
Then

f (x′, a) <Q 0 <Q f (x′, b)

as elements of R(x′), since the constant terms in f (x′, α) or f (x′, β) dominate all
other terms in absolute value. Let R1 denote the real closure of (R(x′),Q). By the
intermediate value theorem 1.3.3, the polynomial f = f (x′, xn) (in the variable xn

and with coefficients in R1) has a zero in R1.
The polynomial f remains irreducible if we consider it as a polynomial in the

variable xn over the field R(x′). Indeed, otherwise we would have f =
g
s ·

h
t , i.e.

st f = gh, with g, h ∈ R[x] and 0 , s, t ∈ R[x′], where both g, h involve the variable
xn. By unique factorization, and since f is irreducible in R[x], f would have to di-
vide one of g or h in R[x], say g. This in turn would imply h ∈ R(x′), contradiction.
According to Corollary 1.4.12, the ordering Q can be extended from R(x′) to the
field K := R(x′)[xn]/〈 f 〉. We claim that K is isomorphic to the function field R(X)
of the hypersurface f = 0 (which finishes the proof). Indeed, the natural ring homo-
morphism R[x]/〈 f 〉 → K is injective by Gauss’s lemma. So there is an induced field
embedding of R(X) = qf(R[x]/〈 f 〉) into K, and it obviously is surjective. �
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1.7.15 Remarks.

1. Theorem 1.7.14 has an obvious extension to hypersurfaces over an ordered
base field (k, P): If f ∈ k[x1, . . . , xn] is irreducible and X = V( f ) ⊆ An, the ordering
P can be extended to the function field k(X) if and only if f is indefinite on Rn,
where R denotes the real closure of (k, P). Note however that it is not enough in
general that f is indefinite on kn, see Exercise 1.5.3 for an example.

2. An alternative topological proof for the implication (ii) ⇒ (i) in Theorem
1.7.14 will be available once we have discussed the concepts of dimension and con-
nectedness for semialgebraic sets. See Exercise 4.6.5.

Exercises

Let R always be a real closed field.

1.7.1 Let k be a real field, let X be an irreducible k-variety. If X has a non-singular k-point, show
that the function field k(X) is real. Give an example to show that the converse does not hold
in general.

1.7.2 Let X be an irreducible R-variety, let the rational function f ∈ R(X) be a sum of squares in
R(X). Suppose that ξ ∈ X(R) is a point where the rational function f is defined and satisfies
f (ξ) < 0. Show that ξ is a singular point of X.

1.7.3 Let k be a field that is not algebraically closed. Prove for every n ≥ 1 that there exists a
non-constant homogeneous polynomial fn ∈ k[x1, . . . , xn] with fn(ξ) , 0 for every 0 , ξ ∈
kn. Conclude that any quasi-projective k-variety X contains an open affine subset U with
X(k) = U(k) (cf. Proposition 1.7.6).

1.7.4 Let K = R(x, y), the rational function field in two variables. Construct an explicit positive
cone P of K that satisfies

signP( f ) = sign f (0, 0)

for every f ∈ R[x, y] with f (0, 0) , 0.

1.7.5 Let K be a field with char(K) , 2, and let f ∈ K[t] be a monic irreducible polynomial. Use
the sign changing criterion to prove: The field L = K[t]/〈 f 〉 is real if and only if f is not a
sum of squares in K(t).

Remark: If f ∈ K[t] is a sum of squares in K(t), we will later prove that f is in fact a sum
of squares in K[t] (Corollary 6.4.2). Try not to use this fact.

1.7.6 Show that the sign changing criterion holds for projective hypersurfaces over R as well: Let
f ∈ R[x0, . . . , xn] be an irreducible homogeneous polynomial, let X ⊆ Pn be the projective
hypersurface f = 0. The function field R(X) is real if and only if f is indefinite on Rn+1.

1.8 Notes

The material in this chapter is classical, and is fundamental for real algebra and
geometry. Orderings of arbitrary fields were introduced by Artin and Schreier [6]
in 1927, together with real closed fields and real closures of ordered fields. The
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authors also prove the uniqueness properties of real closures from Section 1.4. Be-
fore, orderings were essentially only considered for number fields. The results of
[6] were used by Artin [5] to prove Theorem 1.1.30, and subsequently to give the
solution to Hilbert’s 17th problem (Theorem 1.5.21). Hilbert’s original article with
descriptions of all 23 problems is in [93] or [95]. An English translation can be
found in [94]. Hölder’s theorem 1.1.18 was proved already in 1901. Theorem 1.2.4
is due to Springer, and is a particular case of his theorem for anisotropic quadratic
forms [201].

Descartes’ rule of signs 1.3.12 was described in 1637. It may be the oldest math-
ematical result in this book that is not considered elementary by today. Sturm’s
method 1.3.18 dates back to 1829. Today it is seen as the historically first algorithm
for real root isolation. The approach 1.3.26 via the Hermite matrix, or more gener-
ally via (scaled) trace forms, was developed around 1850 and is often referred to as
the Hermite–Sylvester method. But also Borchardt and Jacobi contributed, and the
priority question appears to be subtle.

The Tarski–Seidenberg projection theorem and transfer principle were found and
announced by Tarski already in 1930, but not published before 1948 (Tarski [207]).
See also Seidenberg 1954 [196]. The Artin–Lang theorem is based on Lang’s 1953
paper [120]. Our exposition is inspired by Becker [13]. The sign-changing criterion
1.7.5 is due to Dubois and Efroymson [59].





Chapter 2
Positive Polynomials and Sums of Squares

We start the chapter by introducing the important notion of Gram matrices (Section
2.1). To some extent, this technique allows to linearize the problem of finding sum
of squares representations of a given polynomial. Next we discuss Newton poly-
topes, from which natural restrictions for such representations arise. The rest of the
chapter is devoted to classical results on sums of squares representations. First we
present the Fejér–Riesz theorem, featuring sums of squares on the circle (Section
2.3). The highlight are Hilbert’s results from 1888, presented in Section 2.4. Let f
be a homogeneous real polynomial in n variables that takes non-negative values on
all of Rn. The starting point for Hilbert was the question whether such f can always
be written as a sum of squares of real polynomials. His results in [91] went far be-
yond answering this question, since he was able to decide the problem separately
for every fixed pair (n, d) where d = deg( f ). In Section 2.4 we present his results
almost in full completeness. Most interesting is the case (n, d) = (3, 4) of ternary
quartic forms, for which Hilbert proved that every non-negative such form is a sum
of three squares of quadratic forms. For the moment, we give an elementary proof
of a slightly weaker result (four squares instead of three). In Chapter 7 we’ll return
to this question and proof the full result, embedded in a much more general context.

2.1 Sums of squares of polynomials

2.1.1 If A is a (commutative) ring, recall (1.1.7) that ΣA2 denotes the set of all sums
of squares in A. We are often going to replace the phrase “ f ∈ A is a sum of squares
in A” by the shortcut “ f is sos in A”, a slight abuse of language that is both very
customary and convenient. For f ∈ ΣA2 we define the sum of squares length (or sos
length) of f as

`( f ) = `A( f ) = inf{r ≥ 0: ∃ f1, . . . , fr ∈ A with f = f 2
1 + · · · + f 2

r }.

If f ∈ A and f < ΣA2 we put `( f ) = ∞. The Pythagoras number of A is

61
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p(A) := sup
{
`A( f ) : f ∈ ΣA2}

2.1.2 Remark. For a well-known example, recall that p(Z) = p(Q) = 4 by La-
grange’s theorem. Generally speaking, the Pythagoras number p(A) is very hard to
determine, even in the case of fields. As was already mentioned (Remark 1.5.25),
the Pythagoras number of the rational function fields R(x1, . . . , xn) is unknown for
n ≥ 3. Even the order of magnitude of this invariant for n→ ∞ is not known.

2.1.3 We can generalize these definitions to symmetric matrices. A symmetric
matrix S ∈ Symn(A) is a (matrix) sum of squares if there exist column vectors
u1, . . . , ur ∈ An such that S =

∑r
i=1 uiu>i . The smallest number r ≥ 0 for which such

ui exist is the sos length `(S ) = `A(S ) of S . See Exercise 2.1.1 for other equivalent
characterizations of `(S ), and see Exercise 2.1.2 for equivalent characterizations of
matrix sums of squares in the case where A = k is a field.

2.1.4 We start by showing that the problem of finding sum of squares represen-
tations of polynomials can be linearized. Always let k be a (coefficient) field, let
x = (x1, . . . , xn) with n ∈ N. Recall some standard notation and terminology. For
α = (α1, . . . , αn) ∈ Zn

+ a multi-index, let |α| = α1 + · · ·+αn and xα = xα1
1 · · · x

αn
n . The

(total) degree deg( f ) of f ∈ k[x] is defined by deg(0) = −1 and

deg
( ∑
α∈Zn

+

cα xα
)

= sup
{
|α| : cα , 0

}
for cα ∈ K. For d ≥ 0 let k[x]≤d =

{
f ∈ k[x] : deg( f ) ≤ d

}
, which is a linear

subspace of k[x] of dimension
(

n+d
n

)
. A polynomial

∑
α∈Zn

+
cαxα is homogeneous of

degree d if cα = 0 whenever |α| , d. Homogeneous polynomials of degree d are
often called forms of degree d. We let k[x]d = { f ∈ k[x] : f is homogeneous of
degree d}, a linear subspace of k[x] of dimension

(
n+d−1

d

)
. From Exercise 1.1.10(b)

we recall:

2.1.5 Lemma. If k is a real field then deg( f 2
1 + · · · + f 2

r ) = 2 maxi deg( fi) for any
f1, . . . , fr ∈ k[x].

Proof. Let d = maxi deg( fi), and let gi be the degree d homogeneous subform of
fi (i = 1, . . . , r), so gi = 0 if deg( fi) < d. The homogeneous subform of

∑r
i=1 f 2

i of
degree 2d is

∑r
i=1 g2

i . This form is non-zero since the field k(x) is real and gi , 0
for at least one index i. The inequality ≤ in the lemma is obvious, and the lemma is
proved. �

2.1.6 We continue to assume that k is real. Fix d ≥ 0 in the following and put
Jd := {α ∈ Zn

+ : |α| ≤ d}. So (xα)α∈Jd is the standard monomial basis of k[x]≤d. Let
X := (xα)α∈Jd , the column vector of all monomials of degree ≤ d, whose components
are indexed by the set Jd. The map

kJd → k[x]≤d, u = (uα)α∈Jd 7→ X> · u =
∑
α∈Jd

uαxα
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is a linear isomorphism. Let SymJd
(k) be the space of symmetric matrices over k

whose rows and columns are indexed by Jd. The linear map

γ : SymJd
(k)→ k[x]≤2d, S =

(
aαβ

)
α,β∈Jd

7→ X>S X =
∑
α,β∈Jd

aαβ xα+β

is called the Gram map, and it is clearly surjective. For every polynomial f ∈ k[x]≤2d

write G f := γ−1( f ), an affine-linear subspace of SymJd
(k). The matrices in G f are

called the Gram matrices of f .

2.1.7 Proposition. Let k be a real field. A polynomial f ∈ k[x] is a sum of squares
in k[x] if and only if f has a Gram matrix S with S �P 0 for every ordering P of k.
In this case the sos length is

`( f ) = min
{
`(S ) : S ∈ G f , S �P 0 for every ordering P

}
.

In particular, if k = R is real closed then `( f ) = min{rk(S ) : S ∈ G f , S � 0}.

Proof. Choose d with deg( f ) ≤ 2d and put J = Jd. If f =
∑r

j=1 f 2
j with f j ∈ k[x]

then deg( f j) ≤ d for all j. Let B ∈ MJ×r(k) be the matrix whose j-th column is the
coefficient vector of f j ( j = 1, . . . , r). Then X>B = ( f1, . . . , fr), and hence

f = (X>B)(X>B)> = X>(BB>)X.

So BB> is a Gram matrix of f with `(BB>) ≤ r that is psd with respect to every
ordering. The same argument works backward: If S ∈ G f is psd with respect to
every ordering and if r = `(S ), there is B ∈ MJ×r(k) with S = BB> (Exercise 2.1.1).
Therefore f =

∑r
j=1 f 2

j where the coefficients of f j are those in the j-th column of B
( j = 1, . . . , r). �

2.1.8 Definition. Let k be a real field and let f ∈ k[x]≤2d. Given an sos representation
f = f 2

1 + · · · + f 2
r with f j ∈ k[x], let B be the Jd × r matrix whose j-th column is

the coefficient vector of f j ( j = 1, . . . , r). The symmetric Jd × Jd matrix S = BB>

is called the Gram matrix of f associated with the given sos representation. We put
G+

f := {S ∈ G f : S �P 0 for every ordering P of k}, the set of all totally psd Gram
matrices of f .

2.1.9 Remark. If S is the Gram matrix associated with f = f 2
1 +· · ·+ f 2

r , observe that
the rank of S coincides with the dimension of the linear span of f1, . . . , fr (Exercise
2.1.3). When the field k = R is real closed, this is also the minimum number of
squares among all sos representations with Gram matrix S .

2.1.10 Remark. As we have seen, every sos representation of f gives a totally psd
Gram matrix of f , and conversely, every totally psd Gram matrix of f arises from
such a representation. When do two sos representations give the same Gram matrix?
If

f = f 2
1 + · · · + f 2

r (2.1)



64 Positive Polynomials and Sums of Squares

is an sos representation of f and U = (ui j) is any orthogonal r × r matrix over k (i.e.
UU> = I), then

f =
(∑

i

ui1 fi
)2

+ · · · +
(∑

i

uir fi
)2

(2.2)

is another representation of f , and both have the same Gram matrix. Indeed, if B
is the coefficient matrix of (2.1), then (2.2) has coefficient matrix BU, and both
representations have Gram matrix BB> = (BU)(BU)>. We turn this observation
into a definition:

2.1.11 Definition. Two sum of squares representations

f 2
1 + · · · + f 2

r = g2
1 + · · · + g2

r

of the same polynomial (with fi, gi ∈ k[x]) are said to be (orthogonally) equivalent
if there exists an orthogonal r × r matrix U = (ui j) over k such that g j =

∑r
i=1 ui j fi

( j = 1, . . . , r). (Note that this definition also applies if the representations have
different length, by filling up the shorter one with zeros.)

Equivalent sos representations have the same Gram matrix, as we just saw. The
converse is true as well:

2.1.12 Proposition. Let k be a real field. Two sum of squares representations f 2
1 +

· · · + f 2
r = g2

1 + · · · + g2
r (with fi, gi ∈ k[x]) have the same Gram matrix if and only

if they are orthogonally equivalent.

2.1.13 Corollary. The orthogonal equivalence classes of sum of squares represen-
tations of f ∈ k[x] are in bijection with the set of totally psd Gram matrices of f .

ut

To prove Proposition 2.1.12 it remains to show that two sos representations
with the same Gram matrix are orthogonally equivalent. This follows from the next
lemma:

2.1.14 Lemma. Let k be a real field. Given two rectangular matrices B, C over k of
the same size n × r, the following are equivalent:

(i) BB> = CC>;
(ii) there exists an orthogonal matrix U ∈ Or(k) with C = BU.

Proof. (ii) ⇒ (i) is obvious (and true over any field). Conversely assume BB> =

CC>. For x, y ∈ kr put 〈x, y〉 =
∑r

i=1 xiyi. Let V resp. W be the linear subspace of kr

that is spanned by the rows b1, . . . , bn of B resp. c1, . . . , cn of C. By hypothesis we
have 〈bi, b j〉 = 〈ci, c j〉 for any i, j = 1, . . . , n. Whenever λ1, . . . , λn ∈ k are such that∑n

i=1 λibi = 0, then〈∑
i

λici, c j

〉
=

∑
i

λi〈ci, c j〉 =
∑

i

λi〈bi, b j〉 =
〈∑

i

λibi, b j

〉
= 0
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for j = 1, . . . , n, which implies
∑

i λici = 0 since the field k is real. So there exists
a linear map ψ : V → W satisfying ψ(bi) = ci (i = 1, . . . , n). Moreover ψ is an
isometry from V to W, which means that ψ is bijective and 〈ψ(v), ψ(v′)〉 = 〈v, v′〉
holds for all v, v′ ∈ V .

Let V⊥ = {x ∈ kr : ∀ y ∈ V 〈x, y〉 = 0} be the orthogonal complement of V , and
define W⊥ similarly. The two subspaces V⊥ and W⊥ of kr are isometric, i.e. there
exists a linear isomorphism ψ′ : V⊥ → W⊥ satisfying 〈ψ′(y), ψ′(y′)〉 = 〈y, y′〉 for
y, y′ ∈ V⊥. This is clear if k = R is real closed. We won’t prove the case of a general
(real) field k; here the desired conclusion follows directly from Witt cancellation,
see [176] 1.5.8 or [119] I.4.2, for example.

As a consequence, the map φ = ψ ⊕ ψ′ : V ⊕ V⊥ → W ⊕W⊥ is an isometry from
kr to itself with φ(bi) = ci for i = 1, . . . , n. If U ∈ Or(k) denotes the matrix with
φ(x) = Ux for x ∈ kr then BU> = C holds by construction. ut

Note that Lemma 2.1.14 becomes false whenever the field k has no ordering
(Exercise 2.1.3).

2.1.15 Example. To illustrate these results, consider the case of univariate polyno-
mials over a real closed field R. Up to equivalence, the sos representations of a poly-
nomial f =

∑2d
i=0 aiti ∈ R[t] correspond to those psd symmetric matrices (bi j)0≤i, j≤d

over R that have fixed skew diagonal sums

k∑
i=0

bi,k−i = ak, k = 0, . . . , 2d. (2.3)

In particular, the polynomial f is a sum of squares if and only if there exist numbers
bi j = b ji ∈ R (0 ≤ i, j ≤ d) such that identities (2.3) hold, and such that the
symmetric matrix (bi j) (of size (d + 1) × (d + 1)) is positive semidefinite. For a
concrete example let f = t4 + 1. Then a direct computation shows that G+

f consists
of all matrices  1 0 −a

0 2a 0
−a 0 1

 (2.4)

in Sym3(R) that are psd, which comes down to the condition 0 ≤ a ≤ 1. For such
a, an sos representation of f that corresponds to the matrix (2.4) is f = (t2 − a)2 +

2at2 + (1 − a2).

We record a consequence and assume for simplicity that the field k = R is real
closed.

2.1.16 Corollary. Let U ⊆ R[x] = R[x1, . . . , xn] be an m-dimensional linear sub-
space, and let f ∈ R[x] be a sum of squares of elements from U. Then f is a sum of
m squares of elements from U.

Proof. The Gram matrix associated with the given sos representation of f has rank
≤ dim(U). �
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Note that this is a better (smaller) bound on the number of squares than one would
get from Carathéodory’s theorem (Proposition 8.1.2).

2.1.17 Corollary. Every sum of squares f in R[x1, . . . , xn] with deg( f ) ≤ 2d is a
sum of

(
n+d

n

)
squares. ut

2.1.18 Remark. Let f ∈ R[x1, . . . , xn] be a polynomial. The set G+
f of all psd Gram

matrices of f (Definition 2.1.8) is a spectrahedron, meaning that it is an affine-
linear section of the cone of psd symmetric N × N matrices (where N =

(
n+d

n

)
if

deg( f ) = 2d). Spectrahedra will be discussed later in more detail, see Section 8.2.
Therefore, deciding whether f is a sum of squares means to decide whether a certain
linear matrix inequality (LMI) has a solution. This is the question for the existence
of a tuple (u1, . . . , us) of real numbers such that

A0 + u1A1 + · · · + usAs � 0,

where A0, . . . , As are symmetric N × N matrices given explicitly from f . Using
techniques from convex optimization, and under mild conditions, it is effectively
possible to decide solvability of an LMI, and to find a solution in case there exists
one, up to any prescribed numerical precision. In particular, it is essentially possible
to decide algorithmically whether f is sos, and to find a concrete (approximate) sos
decomposition of f if the answer is positive. Much more on this in Chapter 8.

2.1.19 Remark. (This remark will not be used further) From a general perspective,
the following basis-free approach to Gram matrices is convenient. Let R be a real
closed field (for simplicity) and let A be an R-algebra. Given a finite-dimensional
linear subspace V of A, let VV denote the subspace of A that is spanned by all
products p1 p2 (p1, p2 ∈ V). Let S2V ⊆ V ⊗V denote the space of all tensors that are
invariant under the involution p1⊗ p2 7→ p2⊗ p1. Elements of S2V may be identified
with symmetric bilinear forms on the dual space V∨ of V . In particular, any such
element can be written as a finite sum ϑ =

∑
i(±pi ⊗ pi) with pi ∈ V , and has a

well-defined Sylvester signature. The Gram map γ : S2V → VV is the restriction of
the (linear) product map V ⊗ V → VV , p1 ⊗ p2 7→ p1 p2 to S2V . For f ∈ VV , the set

G+
f ,V =

{
ϑ ∈ S2V : γ(ϑ) = f , ϑ � 0

}
is in natural bijection with the equivalence classes of representations of f as sums of
squares of elements of V . Under this bijection, a tensor

∑
i pi⊗pi in G+

f ,V corresponds
to the sos representation f =

∑
i p2

i . The proof is exactly the same as for Proposition
2.1.12.
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Exercises

Let R always be a real closed field.

2.1.1 Let A be a (commutative) ring, let S ∈ Symn(A) be a symmetric matrix over A and let x =

(x1, . . . , xn)> (considered as a column vector). For every r ≥ 1, the following are equivalent:

(i) The polynomial qS (x) = x>S x is a sum of r squares of linear forms in A[x1, . . . , xn];
(ii) there exist (column) vectors u1, . . . , ur ∈ An such that S =

∑r
i=1 uiu>i ;

(iii) there exists a matrix T ∈ Mn×r(A) with S = TT>.

2.1.2 Let k be a field with char(k) , 2, and let S ∈ Symn(k) with characteristic polynomial
pS (t) = tn +

∑n
i=1 aitn−i. Show that the following are equivalent:

(i) S �P 0 for every ordering P of k;
(ii) S is a matrix sum of squares;

(iii) (−1)iai ∈ Σk2 for i = 1, . . . , n.

Show `(S ) ≤ rk(S ) · p(k) if (i)–(iii) are satisfied, where p(k) is the Pythagoras number of k
(2.1.1). How does one have to modify (ii) and (iii), so as to make either of them equivalent
to “S �P 0 for every ordering P of k”?

2.1.3 Let k be a field.

(a) When the field k is real, show that rk(BB>) = rk(B) holds for every (rectangular) matrix
B over k.

(b) Assuming that k is non-real, show that (a) fails. Moreover find (rectangular) matrices
B, C over k of the same size n × r such that BB> = CC>, but there is no orthogonal
matrix U ∈ Or(k) with C = BU.

2.1.4 Let f ∈ R[x1, . . . , xn] be a polynomial with deg( f ) ≤ 2d. For the Gram spectrahedron G+
f of

f , show that dim(G+
f ) ≤ 1

2 N(N + 1) −
(

n+2d
n

)
where N =

(
n+d

n

)
.

2.1.5 Let x = (x1, . . . , xn), let Σn,≤2d denote the cone of sums of squares in R[x] of degree ≤ 2d, let
N =

(
n+d

n

)
. Show that the following conditions are equivalent for f ∈ R[x] with deg( f ) ≤ 2d:

(i) f lies in the interior of the cone Σn,≤2d;
(ii) f has a positive definite Gram matrix of size N × N.

2.1.6 How many representations as a sum of two squares does a sufficiently general positive poly-
nomial f ∈ R[t] of degree 2d have (up to equivalence)? Find all such representations explic-
itly for f = t6 + 1. (Hint: x2 + y2 = (x + iy)(x − iy))

2.1.7 Let k be a field and let f ∈ k[x1, . . . , xn] be a non-constant polynomial that is irreducible
over the algebraic closure k of k. Prove that rk(S ) ≥ 3 for every Gram matrix S of f .

2.1.8 Let S ⊆ Rn be an unbounded closed semialgebraic set that is star-shaped with respect to
some point u ∈ S , i.e., for every v ∈ S the segment [u, v] = {(1 − t)u + tv : 0 ≤ t ≤ 1} is
contained in S . Then S contains a halfline centered at u: There is 0 , w ∈ Rn with u+ tw ∈ S
for all t ≥ 0 in R. (Hint: Tarski’s principle may be used (how precisely?) to reduce to the
case R = R.)

2.1.9 For any polynomial f ∈ R[x1, . . . , xn], the set G+
f of all psd Gram matrices of f is a semial-

gebraic R-convex set that is closed and bounded. (Hint: Use Exercise 2.1.8)
2.1.10 Let A be an R-algebra, and let V be a linear subspace of A of dimension dim(V) = m < ∞.

Generalize Corollary 2.1.16 as follows: Every sum of squares of elements from V is a sum
of m such squares.

2.1.11 Let A be an R-algebra, let V ⊆ A be a linear subspace with dim(V) < ∞. We use notation
from the basis-free setup in Remark 2.1.19. Let f ∈ VV , and let U = U f be the linear
subspace of V that is spanned by all p ∈ V with f − p2 ∈ ΣV2. Prove the following:
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(a) G+
f ,V = {ϑ ∈ S2V : γ(ϑ) = f , ϑ � 0} is contained in S2U ⊆ U ⊗ U.

(b) f has a Gram tensor that is positive definite as an element of S2U.
(c) Conclude that the dimension of G+

f ,V is given by dim(G+
f ,V ) = 1

2 r(r + 1) − s where
r = dim(U) and s = dim(UU).

Here dim(G+
f ,V ) is defined to be the dimension of the affine-linear hull of G+

f ,V (as in 8.1.1).

2.2 Newton polytopes

As a second technique we now introduce Newton polytopes, and apply them to sums
of squares.

2.2.1 Definition. Let k be a field, let f =
∑
α∈Zn

+
aαxα be a polynomial in k[x] =

k[x1, . . . , xn]. The support of f is the set

supp( f ) := {α ∈ Zn
+ : aα , 0},

corresponding to those monomials that actually occur in f . The Newton polytope of
f is the convex hull of supp( f ) in Rn,

New( f ) := conv(supp( f )).

2.2.2 Remark. Being the convex hull of finitely many points in Rn, New( f ) is in-
deed a polytope, i.e. a compact intersection of finitely many closed affine-linear
halfspaces in Rn. For the following discussion write 〈u, v〉 =

∑n
i=1 uivi for u, v ∈ Rn,

and let
Hu,c :=

{
ξ ∈ Rn : 〈ξ, u〉 ≤ c

}
for 0 , u ∈ Rn and c ∈ R. Every closed halfspace is of this form.

2.2.3 Any n-tuple u ∈ Rn defines a grading of the polynomial ring k[x] =

k[x1, . . . , xn], by declaring the variable xi to be homogeneous of degree ui (i =

1, . . . , n). So the monomial xα = xα1
1 · · · x

αn
n is homogeneous of degree 〈α, u〉. If

G = Z+u1 + · · · + Z+un ⊆ R denotes the semigroup generated by u1, . . . , un in R, we
therefore have

k[x] =
⊕
g∈G

k[x]g,

and each homogeneous component k[x]g is a k-linear subspace of k[x] that is gener-
ated by monomials. We’ll say that f ∈ k[x] is u-homogeneous if f is homogeneous
with respect to this grading.

Let 0 , f ∈ k[x], write f =
∑

g∈G fg where fg ∈ k[x]g for g ∈ G. We call

degu( f ) := max{g ∈ G : fg , 0} = max
{
〈α, u〉 : α ∈ supp( f )

}
the u-degree of f . If degu( f ) = g then Lu( f ) := fg is the u-leading form of f . By
definition, Lu( f ) is non-zero and u-homogeneous. For any two polynomials f1, f2 ,
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0 we have degu( f1 f2) = degu( f1) + degu( f2) and Lu( f1 f2) = Lu( f1) Lu( f2). From the
definitions it follows that New( f ) ⊆ Hu,c if and only if degu( f ) ≤ c.

2.2.4 Remarks.

1. For u = (1, . . . , 1), the u-grading of k[x] is the standard grading, degu( f ) is
the usual total degree of f and Lu( f ) is the highest degree subform of f . If u =

(−1, . . . ,−1) then − degu( f ) is the smallest degree of a monomial in f , and Lu( f ) is
the sum of all terms in f of this degree.

2. Let k = R be real closed. For 0 < t ∈ R and every q ∈ Q, the power tq is a
well-defined positive element in R. If u ∈ Qn and f ∈ R[x] is u-homogeneous with
degu( f ) = g ∈ Q, then

f
(
tu1ξ1, . . . , tunξn

)
= tg f (ξ)

for every ξ ∈ Rn and 0 < t ∈ R. The positive multiplicative group R∗+ of R acts on Rn

via
R∗+ × Rn → Rn, (t, ξ) 7→

(
tu1ξ1, . . . , tunξn

)
Typical pictures of the induced orbit decomposition for this action (for n = 2) are

u = (1, 1) u = (1,−1) u = (2, 1)

The following result characterizes the Newton polytope New( f ) in terms of the val-
ues of f along orbits:

2.2.5 Proposition. Let R be real closed, let 0 , f ∈ R[x]. For u = (u1, . . . , un) ∈ Qn

and c ∈ Q, the following are equivalent:

(i) New( f ) ⊆ Hu,c, i.e. degu( f ) ≤ c;
(ii) t−c · f

(
tu1ξ1, . . . , tunξn

)
remains bounded for t → ∞, t ∈ R and for every ξ ∈ Rn.

Proof. Let f = fg1+· · ·+ fgr be the decomposition of f into non-zero u-homogeneous
components, such that degu( f ) = g1 > · · · > gr. Fix ξ ∈ Rn and put ηt :=(
tu1ξ1, . . . , tunξn

)
for t > 0. Remark 2.2.4.2 shows that

f (ηt) =

r∑
i=1

tgi fgi (ξ) (2.5)

for t > 0. Condition (i) means that gi ≤ c for every index i (see 2.2.3), so (i) implies
that t−c f (ηt) remains bounded for t → ∞. For the converse choose ξ ∈ Rn with
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fg1 (ξ) , 0. The highest power of t in t−c f (ηt) is tg1−c. So (ii) implies g1 − c ≤ 0,
which is (i). �

We had to assume that u and c are rational since otherwise the powers don’t
usually make sense for R , R. If R = R then u and c may be arbitrary.

2.2.6 Proposition. Let 0 , f , g ∈ R[x].

(a) New( f g) = New( f ) + New(g).
(b) If f , g are psd then New( f + g) = conv

(
New( f ) ∪ New(g)

)
.

(Part (a) is true for polynomials over an arbitrary field k.)

In (a), A1 + A2 = {x + y : x ∈ A1, y ∈ A2} is the Minkowski sum of A1 and A2.

+ =

If A1 and A2 are both compact or both convex, the same is true for A1 + A2. In
particular, conv(A1 + A2) = conv(A1) + conv(A2) holds for any subsets A1, A2 of Rn.

Proof. (a) Every monomial of f g is the product of a monomial of f and a monomial
of g. Hence supp( f g) ⊆ supp( f ) + supp(g) and therefore New( f g) ⊆ New( f ) +

New(g). For the converse it suffices to show: If 0 , u ∈ Qn and c ∈ Q are such
that New( f g) ⊆ Hu,c, then also New( f ) + New(g) ⊆ Hu,c. Let a = degu( f ) and
b = degu(g). By hypothesis we have degu( f g) ≤ c. Therefore a + b = degu( f g) ≤ c
and New( f ) ⊆ Hu,a, New(g) ⊆ Hu,b. Therefore New( f ) + New(g) ⊆ Hu,a + Hu,b =

Hu,a+b ⊆ Hu,c, as desired.
(b) The inclusion “⊆” follows from supp( f +g) ⊆ supp( f )∪supp(g). It remains to

show New( f )∪New(g) ⊆ New( f +g). For this it suffices to see that New( f +g) ⊆ Hu,c

implies New( f ) ∪New(g) ⊆ Hu,c. Let ξ ∈ Rn and let ηt = (tu1ξ1, . . . , tunξn) for t > 0,
we are going to use Proposition 2.2.5. By hypothesis, t−c( f (ηt) + g(ηt)

)
is bounded

for t → ∞. Since f and g are psd, this implies that both t−c f (ηt) and t−cg(ηt) are
bounded as well. So the conclusion follows from 2.2.5. �

2.2.7 Remark. If K ⊆ Rn is any convex set, the m-fold Minkowski sum K + · · ·+ K
is the same as mK = {mξ : ξ ∈ K} (check this). So Proposition 2.2.6(a) implies
New( f m) = m New( f ) for every m ≥ 1.

We now draw some conclusions and sketch applications. We keep assuming that
R is a real closed field.

2.2.8 Corollary. Let f = f 2
1 + · · · + f 2

r with polynomials fi ∈ R[x]. Then New( fi) ⊆
1
2 New( f ) for i = 1, . . . , r.
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Proof. 2.2.6(b) implies New( f 2
i ) ⊆ New( f ) for all i, and this means New( fi) ⊆

1
2 New( f ) according to 2.2.6(a). �

2.2.9 Corollary. Let f ∈ R[x] be a sum of squares. If N is the number of integral
(lattice) points in 1

2 New( f ), every sum of squares representation of f is equivalent
to a sum of at most N squares.

Proof. If f =
∑

i f 2
i then each monomial of each fi lies in 1

2 New( f ), by 2.2.8. So
the assertion follows from Corollary 2.1.16. �

Here are a few applications.

2.2.10 Examples.

1. In Exercise 1.5.5 it was shown that the Motzkin polynomial f = x4y2 + x2y4 −

3x2y2 + 1 is psd but not sos. The psd property follows directly from the arithmetic-
geometric inequality

1
3

(
1 + x4y2 + x2y4

)
≥

3
√

1 · x4y2 · x2y4, (2.6)

as remarked in Example 1.5.24.1. By a term inspection of a hypothetical sos rep-
resentation, one checks that f cannot be a sum of squares. This last argument sim-
plifies if one uses the Newton polytope: 1

2 New( f ) is the convex hull of (2, 1), (1, 2),
(1, 1) and (0, 0), and these are the only lattice points it contains.

(0,0)

(1,2)

(2,1)

So if f were sos, there would have to be an identity

f =
∑

i

(aix2y + bixy2 + cixy + di)2

with real numbers ai, bi, ci, di. But the coefficient of x2y2 in the right hand sum is∑
i c2

i ≥ 0, which shows that such an identity cannot exist.
Note that f has exactly four zeros in R2, namely (±1,±1) (this follows from

inequality (2.6), see Remark 1.5.24.1). For every real number c > 0, the polynomial
fc := f + c is strictly positive on R2, but is still not sos since nothing changes in the
argument just given.

2. The following example is due to Choi and Lam [41]: The form

f = w4 + x2y2 + x2z2 + y2z2 − 4wxyz
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in R[w, x, y, z] is psd, again by the arithmetic-geometric inequality (applied to w4,
x2y2, x2z2 and y2z2). To see that f is not sos, note that 1

2 New( f ) is the convex hull
of the five points

2e1, e2 + e3, e2 + e4, e3 + e4,
1
2

(
e1 + e2 + e3 + e4

)
in R4. The last point is the barycentre of the others, hence it doesn’t contribute to
the convex hull. The only lattice points in 1

2 New( f ) are the first four points. So if f
were sos, we would have to have

f =
∑

i

(aiw2 + bixy + cixz + diyz)2.

The coefficient of wxyz reveals that this cannot be the case.
3. In the preceding two examples, non-negativity of f was a consequence of

the arithmetic-geometric inequality (AGI). Systematizing this observation, Iliman,
de Wolff et al. were lead to the notion of circuit polynomials ([98], [99], [54]). Let
α(0), . . . , α(n) ∈ 2Zn

+ be n + 1 even tuples that are affinely independent, so the convex
hull P := conv(α(0), . . . , α(n)) is an n-simplex. Let β ∈ Zn

+ be a further tuple that lies
in the interior of P. Given non-zero real numbers a0, . . . , an, b, the support of the
polynomial

f =

n∑
i=0

aixα(i) + bxβ

is a circuit, in the sense that supp( f ) is a minimal affinely dependent set. Let
λ0, . . . , λn ≥ 0 with

∑
i λi = 1 be the unique numbers for which

β =

n∑
i=0

λiα
(i).

Generalizing the preceding examples, one shows that the polynomial f is psd on Rn

provided that ai > 0 for i = 0, . . . , n and

|b| ≤
n∏

i=0

(ai

λi

)λi
(2.7)

(Exercise 2.2.6). Conversely one can show that if f is psd, either (2.7) holds, or else
f is a non-negative linear combination of monomial squares [98]. The convex cone
generated by non-negative circuit polynomials is known as the SONC cone (sums of
non-negative circuit polynomials). It is not contained in the sos cone except for ob-
vious cases, and was much studied in the last years as an alternative and complement
to the sos cone in polynomial optimization.



2.3 The Fejér–Riesz theorem 73

Exercises

2.2.1 Let R be a real closed field, let f =
∑
α cαxα be a psd polynomial in R[x] = R[x1, . . . , xn].

For every vertex (extreme point) β of the Newton polytope New( f ), show that β ∈ 2Zn and
cβ > 0.

2.2.2 Let f ∈ R[x] = R[x1, . . . , xn] be a psd polynomial that is not a sum of squares. Show that f
contains at least four monomials.

2.2.3 Find all zeros of the Choi–Lam form 2.2.10.2 in real projective space P3(R).
2.2.4 The Robinson form is the symmetric ternary form

f = x6 + y6 + z6 − x4y2 − x2y4 − x4z2 − x2z4 − y4z2 − y2z4 + 3x2y2z2.

Show that f is psd but not sos (in R[x, y, z]).
Hints: Projectively, f has ten real zeros that are easy to guess. Use them to prove that f

is not sos. To show that f is psd, write the product (x2 + y2) f as a sum of squares.
2.2.5 (Choi) Let x = (x1, x2, x3) and y = (y1, y2, y3), and let f be the biquadratic form

(x1y1)2 +(x2y2)2 +(x3y3)2−2(x1 x2y1y2 +x2 x3y2y3 +x3 x1y3y1)+2(x1y2)2 +2(x2y3)2 +2(x3y1)2

in R[x, y]. Show that f is psd but not a sum of squares. (Hint: f is invariant under cyclic
permutation of the indexes 1, 2, 3. The monomials (x1y3)2, (x2y1)2 and (x3y2)2 are absent
in f .)

We add the remark that every psd biform f (x1, . . . , xn; y1, y2) of bidegree (2, 2d) can
be shown to be a sum of squares of biforms. (This fact is contained in the main result of
Chapter 7, see Remark 7.2.16.) Choi’s example above shows that, in this result, the limitation
on the number of variables in the second group cannot be avoided.

2.2.6 With the notation of Remark 2.2.10.3, let f =
∑n

i=0 ai xα(i) + bxβ be a circuit polynomial with
real coefficients a1 > 0, . . . , an > 0 and b. Show that f is psd provided that

|b| ≤
n∏

i=0

( ai

λi

)λi
.

2.3 The Fejér–Riesz theorem

We now turn to concrete results on sum of squares representations. Given a polyno-
mial f that is non-negative on the (unit) circle, we prove that f can be written as a
sum of squares of polynomials on the circle. In fact, the main result (Theorem 2.3.4)
will be quite a bit stronger.

Let R denote an arbitrary real closed field, and let X be the plane affine curve
x2 + y2 = 1 over R. So X has coordinate ring R[X] = R[x, y]/〈x2 + y2 − 1〉, and has
the unit circle X(R) = {(s, t) ∈ R2 : s2 + t2 = 1} as the set of its R-points.

2.3.1 Proposition. Every element of R[X] that is psd on X(R) is a sum of two squares
in R[X].

We start with an elementary lemma:

2.3.2 Lemma. Every binary form f ∈ R[x1, x2] that is non-negative on R2 is a sum
of two squares of binary forms.
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Proof. By the fundamental theorem of algebra 1.2.9, f is a product of squares of
linear forms and of positive definite quadratic forms. Since each of these factors is
a sum of two squares, the same holds for f , by the identity

( f 2
1 + f 2

2 )(g2
1 + g2

2) = ( f1g1 − f2g2)2 + ( f1g2 + f2g1)2. �

Proof of Proposition 2.3.1. The coordinate ring R[X] is isomorphic to the homoge-
neous localization

R[u, v](u2+v2) =

{
f (u, v)

(u2 + v2)r : r ≥ 0, f ∈ R[u, v]2r

}
(2.8)

via the homomorphism R[X] → R[u, v](u2+v2) given by x 7→ u2−v2

u2+v2 and y 7→ 2uv
u2+v2 .

This can be checked directly, e.g. by writing down the inverse isomorphism. So we
may replace R[X] by the ring (2.8). Its elements are the rational functions on the
projective line P1

R with poles at most at (1 : ±i). Let f =
p(u,v)

(u2+v2)r be a psd such
function, where p ∈ R[u, v] is homogeneous of degree deg(p) = 2r. Clearly p is
psd itself, and we may assume that r = 2s is even, by multiplying numerator and
denominator with u2 + v2 if necessary. Then, by 2.3.2, there exist forms p1, p2 ∈

R[u, v] of degree r = 2s with p = p2
1 + p2

2. Therefore

f =

(
p1

(u2 + v2)s

)2

+

(
p2

(u2 + v2)s

)2

is a decomposition of f in R[u, v](u2+v2) into a sum of two squares, as desired. ut

2.3.3 To state and prove an even stronger version, we switch to a complex view
point. Let i =

√
−1 and C = R(i). On the ring C[z, z−1] of Laurent polynomials over

C (in one variable z) we consider the C/R-involution f 7→ f ∗, characterized by z∗ =

z−1 and a∗ = a for a ∈ C. So f 7→ f ∗ is an R-linear ring endomorphism of C[z, z−1]
that satisfies f ∗∗ := ( f ∗)∗ = f for every f . Explicitly, if f =

∑
n∈Z anzn ∈ C[z, z−1]

then f ∗ =
∑

n∈Z anz−n. Note that f ∗(α) = f (α −1) holds for every α ∈ C, α , 0. In
particular, if f = f ∗ then f (α) ∈ R for every α ∈ C with |α| = 1.

2.3.4 Theorem. (Fejér–Riesz) Let f ∈ C[z, z−1] satisfy f = f ∗. If f ≥ 0 on the unit
circle S = {u ∈ C : |u| = 1}, there exists a polynomial g ∈ C[z] with f = gg∗. In
fact there is such g satisfying g(u) , 0 for any u ∈ C with |u| < 1 (assuming f , 0).
Under this assumption, g is even unique up to a constant factor γ ∈ C with |γ| = 1.
If n ≥ 0 is the minimal integer with zn f ∈ C[z], then deg(g) = n.

Proof. Let f ∈ C[z, z−1] satisfy f = f ∗ and f , 0. Let n ≥ 0 be minimal such
that zn f ∈ C[z]. Then f has the form f =

∑n
j=−n c jz j, where the coefficients c j ∈ C

satisfy c− j = c j for all j and cn , 0. Hence

f = cz−n
2n∏
j=1

(z − α j) (2.9)
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with c ∈ C, where α1, . . . , α2n are the zeros of f in C∗ = C r {0}. If α is any zero
of f then α −1 is a zero of f as well, since f = f ∗ by assumption. So there exists
a permutation σ of the numbers 1, . . . , 2n with σ2 = id such that α j · ασ( j) = 1 for
all j. The constant c ∈ C satisfies c = c

∏
j α j. Indeed, f ∗ = czn ∏

j(z−1 − α j) =

cz−n ∏
j(1 − α jz), and f = f ∗ implies c

∏
j(z − α j) = c

∏
j(1 − α jz). Substituting

z = 0 gives
c
∏

j

α j = c. (2.10)

Let α be a zero of f with |α| = 1, let m be the multiplicity of z − α in the product
decomposition (2.9). The restriction f |S of f changes sign at α if and only if m
is odd, as can be seen by a local Taylor expansion (Exercise 2.3.3). Therefore, the
assumption f |S ≥ 0 implies that every zero of f in S has even multiplicity. So we
may select n elements β1, . . . , βn out of the 2n elements α1, . . . , α2n in such a way
that

f = cz−n
n∏

k=1

(z − βk)(z − βk
−1).

In doing this we may assume |βk | ≥ 1 for every k = 1, . . . , n, which makes β1, . . . , βn

unique up to permutation. The constant c satisfies c = c
∏

k
βk

βk
by identity (2.10),

hence s := c/
∏

k βk , 0 lies in R and satisfies c = s
∏

k βk. Using the identity

βz−1 · (z − β)(z − β
−1

) = (z − β)(β − z−1) = −(z − β)(z − β)∗ (β ∈ C∗)

it follows that

f = (−1)ns ·
n∏

k=1

(z − βk)(z − βk)∗.

Consequently, f = tgg∗ with 0 , t ∈ R and g =
∏n

k=1(z − βk). Since f ≥ 0 on S
we must have t > 0. By construction, the polynomial g has no roots in the open unit
disk. �

2.3.5 Remark. Let us relate Theorem 2.3.4 to the simpler formulation 2.3.1. An
isomorphism

ϕ : C[x, y]/〈x2 + y2 − 1〉 → C[z, z−1] (2.11)

of C-algebras is given by x 7→ 1
2 (z + z−1) and y 7→ 1

2i (z − z−1). The inverse map
sends z to (the coset of) x + iy. If we transfer the C/R-involution ∗ from C[z, z−1] to
C[x, y]/〈x2 +y2−1〉 using (2.11), the elements x and y are fix under ∗. Therefore, the
fixring of ∗ in C[z, z−1] is isomorphic to the R-algebra R[X] = R[x, y]/〈x2 + y2 − 1〉.
If p ∈ R[X] is non-negative on the unit circle X(R) = S , the Laurent polynomial
f = ϕ(p) satisfies f |S ≥ 0 and f = f ∗. Given any Laurent polynomial g with
f = gg∗, we have f = g2

0 + g2
1 where g0 = 1

2 (g + g∗) and g1 = 1
2i (g − g∗) are fix

under ∗. Transforming back to R[X] via (2.11), we get a decomposition of p as a
sum of two squares in R[X].
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Exercises

2.3.1 Let f ∈ R[x, y] be a polynomial with f (cos t, sin t) ≥ 0 for every t ∈ R, let d = deg( f ). Prove
that there exist polynomials f1, f2 ∈ R[x, y] with

f (cos t, sin t) = f1(cos t, sin t)2 + f2(cos t, sin t)2

for every t ∈ R, and such that deg( fi) ≤ d d
2 e (i = 1, 2).

2.3.2 Show that the Laurent polynomial f = −6z2 − 5z + 38− 5z−1 − 6z−2 has strictly positive real
values on the complex unit circle |z| = 1, and find a Laurent polynomial g ∈ C[z, z−1] with
f = gg∗ and g(z) , 0 for z ∈ C, |z| ≤ 1. (Hint: z = 2 is a root of f .)

2.3.3 Let R be a real closed field, let C = R(
√
−1). On C[z, z−1] consider the C/R-involution ∗ as

in 2.3.3. Let f ∈ C[z, z−1] with f = f ∗, and let α ∈ C with f (α) = 0 and |α| = 1. Prove that
the function f changes sign on {z ∈ C : |z| = 1} at z = α if, and only if, the multiplicity of α
as a root of f is odd. (Hint: The argument gets easier for α = 1.)

2.4 Hilbert’s 1888 theorems

We now present the results from Hilbert’s famous 1888 paper [91]. We give com-
plete proofs for almost all the main statements, the only exception being the quan-
titative theorem on ternary quartics, of which we only show a weakened version.
The full version will later be proved in Chapter 7 (Theorem 7.2.8), as part of a more
general theory that is much more recent.

Here and later we often switch freely between homogeneous and non-homoge-
neous polynomials. We start by observing that this is harmless, as far as the psd
or sos property is concerned. In the following let R be a real closed field, and let
x = (x1, . . . , xn) with n ≥ 1.

2.4.1 Lemma. If f1, . . . , fr ∈ R[x] are such that f = f 2
1 + · · · + f 2

r is homogeneous
of degree d, then d is even and each fi is homogeneous of degree d

2 .

Of course the lemma is true for polynomials with coefficients in an arbitrary base
field k, as long as k is real. Over a non-real field the lemma becomes false, as the
identity 4x = (x + 1)2 − (x − 1)2 shows.

Proof. By assumption New( f ) ⊆ {α ∈ Zn
+ : |α| = d}, and so the lemma follows

directly from Corollary 2.2.8. �

2.4.2 Lemma. Any psd polynomial f , 0 in R[x] has even total degree deg( f ).

Proof. Let deg( f ) = d, write f = fd + g with fd homogeneous of degree d and
deg(g) < d. Assuming that d is odd, there exists ξ ∈ Rn with fd(ξ) < 0. So f (tξ), as
a polynomial in the variable t, has negative leading coefficient f (ξ), which implies
f (tξ) < 0 for sufficiently large t > 0 in R, contradiction. �

2.4.3 Definition. The homogenization of a polynomial f , 0 in R[x] = R[x1, . . . , xn]
is f h = xdeg( f )

0 · f
( x1

x0
, . . . , xn

x0

)
. For f = 0 we define 0h = 0.
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So if f =
∑
|α|≤d cαxα has total degree d, then f h =

∑
|α|≤d cαxd−|α|

0 xα is homoge-
neous of degree d.

2.4.4 Lemma. Let f ∈ R[x0, x] = R[x0, . . . , xn] be a homogeneous polynomial and
let f̃ = f (1, x1, . . . , xn) ∈ R[x] be its dehomogenization. Then f is psd if and only if
f̃ is psd and deg( f ) is even. The same is true with psd replaced by sos.

Proof. The forward implications are clear. Conversely assume that f̃ is psd and
deg( f ) = 2d is even. Then deg(( f̃ )h) = deg( f̃ ) = 2e is even by Lemma 2.4.2, and
( f̃ )h is psd since ( f̃ )h(t, ξ) = t2e f̃ (ξ/t) ≥ 0 for t , 0 (and by a limit argument).
Moreover f = xm

0 · ( f̃ )h where xm
0 is the maximal x0-power that divides f . So it

follows that m = 2(d − e) is even as well, and hence f is psd. If f̃ is sos then f sos
follows by homogenizing an sos representation of f̃ . �

Note that strict positivity is usually not preserved by homogenization. That is,
if f ∈ R[x] is strictly positive on Rn, its homogenization f h ∈ R[x0, x] may have
non-trivial zeros in Rn+1. (Example?)

2.4.5 For discussing whether psd polynomials are sums of squares, we may there-
fore freely choose between the homogeneous and the inhomogeneous setting. We’ll
take the homogeneous point of view, as Hilbert already did. So we consider ho-
mogeneous polynomials (forms) f ∈ R[x] in n variables x = (x1, . . . , xn). A form
p ∈ R[x] is positive definite if p(ξ) > 0 holds for every ξ ∈ Rn, ξ , 0. Recall that
R[x]d is the R-vector space of all forms of degree d, and dim R[x]d =

(
n+d−1

n−1

)
. The

set of all positive semidefinite (psd) forms of degree d is denoted

Pn,d =
{
f ∈ R[x]d : ∀ ξ ∈ Rn f (ξ) ≥ 0

}
,

the set of all sum of squares (sos) forms of degree is

Σn,d =

{
f ∈ R[x]d : ∃ r ≥ 0, ∃ f1, . . . , fr ∈ R[x] with f =

r∑
i=1

f 2
i

}
.

Obviously Σn,d ⊆ Pn,d holds. We only consider the case where d is even, since
otherwise both sets are reduced to {0}.

2.4.6 Proposition. If d is even, both Pn,d and Σn,d are closed and R-convex semial-
gebraic cones with non-empty interior in R[x]d.

Proof. Both sets Pn,d and Σn,d are R-convex cones, since with f1, f2 they also contain
f1 + f2 and a f1 for a ≥ 0. The cone Σn,d has non-empty interior by Exercise 2.4.1.
A fortiori, Pn,d has non-empty interior.

The set Pn,d can be described by a formula in the coefficients of the polynomial,
so it is a semialgebraic subset of R[x]d. Clearly Pn,d is a closed set since Pn,d =⋂
ξ∈Rn { f ∈ R[x]d : f (ξ) ≥ 0} is an intersection of sets that are obviously closed. Let

d = 2e, and let N = dim R[x]e =
(

n−1+e
e

)
. According to 2.1.16, Σn,d is the image set

of the map
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φ :
(
R[x]e

)N
→ R[x]d, (g1, . . . , gN) 7→ g2

1 + · · · + g2
N .

The map φ is polynomial in the coefficients of the gi, so Σn,d is a semialgebraic set.
Moreover φ is homogeneous of degree two and satisfies φ−1(0) = {0}. Therefore
im(φ) = Σn,d is a closed subset of R[x]d, by the following lemma: �

2.4.7 Lemma. Let f : Rm → Rn be a polynomial map that is homogeneous of even
degree d, i.e. f satisfies f (aξ) = ad f (ξ) for ξ ∈ Rm and a ∈ R. Moreover assume
that f −1(0) = {0}. If M ⊆ Rm is any closed semialgebraic set such that R+ξ ⊆ M for
every ξ ∈ M, the image set f (M) is closed in Rn.

Proof. Let S = S n−1 be the unit sphere in Rn. The radial projection map

p : Rn r {0} → S , p(ξ) =
ξ

|ξ|
(0 , ξ ∈ Rn)

is continuous. For any closed subset B ⊆ S , the set c(B) := p−1(B)∪ {0} is therefore
closed in Rn. The semialgebraic set M ∩ S is closed and bounded and does not
contain 0. Therefore (p ◦ f )(M∩S ) is a closed subset of S , by (a mild generalization
of) Exercise 1.6.4. On the other hand (p ◦ f )(M ∩ S ) = f (M) ∩ S , and so f (M) =

c
(
f (M) ∩ S

)
is closed by the first remark. �

The condition that f is polynomial can be weakened to f being a (continuous)
semialgebraic map, as introduced in 4.3.1 later. The proof is the same, using 4.5.22
instead of Exercise 1.6.4.

Presumably inspired by Minkowski, Hilbert wondered whether every psd form in
R[x]d might be a sum of squares of forms. In some cases this is true by elementary
reasons:

2.4.8 Lemma. Let x = (x1, . . . , xn), and let f ∈ Pn,d ⊆ R[x]d.

(a) If n = 1 then f is a square.
(b) If n = 2 then f is a sum of two squares.
(c) If d = 2 then f is a sum of n squares.

Proof. (a) is obvious, (b) was proved in Lemma 2.3.2, and (c) is well-known from
linear algebra. �

These are the “trivial” cases. For any other pair (n, d) with d even, the answer is
not obvious. Hilbert settled them all at once:

2.4.9 Theorem. (Hilbert 1888) Let n ≥ 1 and d ≥ 0 be integers with d even. If n ≤ 2
or d ≤ 2, or if (n, d) = (3, 4), then Σn,d = Pn,d. In all other cases the inclusion
Σn,d ⊆ Pn,d of cones is strict.

So, apart from the trivial cases 2.4.8, there is precisely one additional (non-trivial)
case where the answer is positive, namely (n, d) = (3, 4), the case of ternary quartics.

The obvious cases n ≤ 2 or d ≤ 2 were just discussed. The Motzkin form
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f = x2
1x2

2(x2
1 + x2

2 − 3x2
3) + x6

3 (2.12)

lies in P3,6 r Σ3,6, see Exercise 1.5.5 or Example 2.2.10. Hence f lies in Pn,6 r Σn,6
for any n ≥ 3. Moreover, for any k ≥ 0, the form x2k

1 f is psd and not a sum of
squares, by Exercise 1.1.10. Therefore, x2k

1 f lies in Pn,6+2k r Σn,6+2k for any k ≥ 0
and n ≥ 3. The Choi-Lam form (Example 2.2.10.2) lies in P4,4 r Σ4,4, and hence in
Pn,4 r Σn,4 for any n ≥ 4.

It remains to settle the case (n, d) = (3, 4). Hilbert proved an even stronger state-
ment here:

2.4.10 Theorem. (Hilbert 1888) Any psd ternary form of degree four is a sum of
three squares of quadratic forms.

Hilbert’s original proof is not easy to understand. There exist several alternative
and more explicit approaches to the three-squares theorem, e.g. [174], [206], [151].
In Chapter 7 (see Theorem 7.2.8 and Remark 7.2.9) we’ll reconsider the question
from a more general point of view and prove a general theorem that encompasses
both Hilbert theorems 2.4.9 and 2.4.10. For now, we are going to use elementary
methods to show a statement that is just slightly weaker than Theorem 2.4.10:

2.4.11 Proposition. Let f ∈ R[x, y, z] be a psd form of degree four.

(a) If f has a non-trivial real zero then f is a sum of three squares.
(b) f is always a sum of four squares.

Proof. The proof is due to Pfister [150]. First note that (b) follows from (a). Indeed,
let a := min f (S 2) be the minimal value taken by f on the unit sphere S 2 (note that
a exists, as follows from the case R = R by an application of Tarski transfer). The
quartic form

g(x, y, z) := f (x, y, z) − a(x2 + y2 + z2)2

is non-negative on S 2, and hence on all of R3. Since g has a non-trivial zero by
construction, g is a sum of three squares by (a). This implies that f is a sum of four
squares. So it remains to prove (a).

2.4.12 Lemma. Let q ∈ R[s, t] be a binary form of degree two that is positive defi-
nite. Then for any psd form f ∈ R[s, t] there exist forms g, h in R[s, t] with

f = g2 + qh2. (2.13)

Proof. We prove the lemma in the dehomogenized setting. So let q ∈ R[t] satisfy
deg(q) = 2 and q(t) > 0 for all t ∈ R. Then q = (at + b)2 + c2 where a, b, c ∈ R and
ac , 0, and so q = c2(u2 + 1) with u = c−1(at + b). We may change variables since
R[u] = R[t], and so we can assume q = t2 + 1.

Let f ∈ R[t] be psd, and assume first that deg( f ) = 2, say f = (t + a)2 + b2 where
a, b ∈ R. If a = 0 then f = (b2 − 1) + q (if b2 ≥ 1), or f = (1− b2)t2 + b2q (if b2 ≤ 1)
gives an identity as desired. So assume that a , 0. We want to find λ ∈ R, λ ≥ 0
such that
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f − λq = f − λ(t2 + 1) = (1 − λ)t2 + 2at + (a2 + b2 − λ)

is a perfect square. This means we are looking for 0 ≤ λ < 1 such that the discrimi-
nant

δ(λ) := 4a2 − 4(1 − λ)(a2 + b2 − λ) = −4
(
λ2 − (a2 + b2 + 1)λ + b2

)
vanishes. Regarding δ as a polynomial function of λ, it follows from the mean value
theorem that such λ exists, since δ(0) = −4b2 ≤ 0 and δ(1) = 4a2 > 0.

An arbitrary psd polynomial f ∈ R[t] is a product of quadratic psd polynomials.
From the identity

(g2
1 + h2

1q)(g2
2 + h2

2q) = (g1g2 + h1h2q)2 + (g1h2 − g2h1)2q

it therefore follows that f has a representation (2.13) as desired. �

2.4.13 We now prove part (a) of Proposition 2.4.11. Let f = f (x, y, z) be a psd
ternary form of degree four that has a non-trivial zero in R3. After a suitable linear
change of coordinates we can assume f (0, 0, 1) = 0, and so

f = f2(x, y) · z2 + f3(x, y) · z + f4(x, y) (2.14)

where f j = f j(x, y) is a binary form of degree j (or f j = 0), for j = 2, 3, 4. (Note that
degz( f ) cannot be 3.) Since f is a psd ternary form, each of the three binary forms
f2, f4 and 4 f2 f4 − f 2

3 is psd by itself, and hence is a sum of two squares. If f2 = 0,
this implies f3 = 0, and then f = f4 is a sum of two squares. If f2 = l2 is the square
of a linear form l, then l divides f3, say f3 = 2lg2 for some quadratic binary form
g2. Since 4 f2 f4 − f 2

3 = 4l2( f4 − g2
2) is a sum of two squares, f4 − g2

2 is a sum of two
squares as well. Hence f = (lz + g2)2 + ( f4 − g2

2) is a sum of three squares.
It remains to consider the case where f2 is positive definite. By Lemma 2.4.12

there exist binary forms p = p(x, y) and q = q(x, y) with 4 f2 f4 − f 2
3 = q2 + p2 f2, i.e.

q2 + f 2
3 = f2(4 f4 − p2), (2.15)

and here deg(p) = 2 and deg(q) = 3. Since f2 is psd, there exist linear forms l1, l2 ∈
R[x, y] with f2 = l21 + l22 = (l1 + il2)(l1 − il2), where i =

√
−1 as usual. So (2.15)

implies that l1+il2 divides one of the two forms q±i f3 (in the “complex” polynomial
ring C[x, y] where C = R(i) and i =

√
−1). We may replace l2 by −l2 if needed, and

so we can assume that l1 + il2 divides q + i f3. Multiplying both sides with l1− il2, we
see that f2 divides (q+ i f3)(l1− il2) = (ql1 + f3l2)+ i( f3l1−ql2) (in C[x, y]). Hence f2
divides both the real and the imaginary part of this form (in R[x, y]). So the rational
functions

h1 :=
f3l1 − ql2

2 f2
, h2 :=

ql1 + f3l2
2 f2

are in fact binary quadratic forms with R-coefficients. From (2.15) we conclude
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h2
1 + h2

2 =
(q2 + f 2

3 )(l21 + l22)

4 f 2
2

=
q2 + f 2

3

4 f2
= f4 −

1
4

p2.

Since

h1l1 + h2l2 =
f3(l21 + l22)

2 f2
=

1
2

f3,

we finally see that

f =
( p

2

)2
+ (h1 + l1z)2 + (h2 + l2z)2

is a sum of three squares of quadratic forms. ut

This also completes the proof of Theorem 2.4.9. ut

2.4.14 Remarks.

1. Starting from a non-trivial zero of f in R3, the proof of 2.4.11(a) was entirely
explicit and constructive. See Exercise 2.4.2 for a particular example.

2. The minimal cases where the psd cone is strictly larger than the sos cone are
(n, d) = (3, 6) and (4, 4). We proved P , Σ in these cases by presenting explicit
forms, for which we could show that they are psd but not sums of squares. It is in-
teresting to note that Hilbert’s proof was very different. He did not bother to look
for explicit forms in P r Σ. Instead he used heavier tools from algebraic geometry,
to give an abstract proof for the existence of such forms. His construction is nicely
explained in Reznick [167]. From Hilbert’s arguments, it would have easily been
possible to extract explicit examples. But it was not before 1967 that the first ex-
plicit example of a psd non-sos form was published [141]. This was Motzkin’s form
(2.12).

3. The Motzkin form has real zeros, and the same is true for many other promi-
nent standard examples of psd, non-sos forms (Choi–Lam, Robinson etc.). On the
other hand note that, for any pair (n, d) with Σn,d , Pn,d, there do exist forms in
Pn,d r Σn,d that are strictly positive definite. Indeed, given f ∈ Pn,d r Σn,d, the form
ft := f + t(xd

1 + · · · + xd
n) is positive definite for every positive scalar t > 0. But for

sufficiently small t > 0, ft cannot be a sum of squares since the sos cone is closed
(Proposition 2.4.6). It is less straightforward, though, to give explicit examples; see
Rudin [174] for one particulary nice construction.

4. For ternary quartics, Hilbert’s three-squares theorem 2.4.10 is a significant im-
provement of the general upper bound from Corollary 2.1.17. In fact, better bounds
are known for all pairs (n, 2d). Write

p(n, 2d) := max
{
`( f ) : f ∈ R[x1, . . . , xn] sos, deg( f ) = 2d

}
for the maximal sos length of an sos form in n variables of degree 2d. Apart from
the elementary cases p(2, 2d) = 2 and p(n, 2) = n, the precise value of p(n, 2d) is
known in the three cases p(3, 4) = 3 (Theorem 2.4.10), p(3, 6) = 4 and p(4, 4) = 5
[185]. Moreover it is known that p(3, 2d) ∈ {d + 1, d + 2} for all d, and for every
n ≥ 4 there exist upper and lower bounds for p(n, 2d) that are considerably smaller
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than 2.1.17 (see [185]). From p(3, 2d) ≥ d + 1 it follows that there exist ternary
sos forms of arbitrarily large sos length. Dehomogenizing, we see for every n ≥ 2
that the polynomial ring R[x1, . . . , xn] has infinite Pythagoras number. This fact was
already proved in [40].

5. With Theorem 2.4.9, Hilbert determined the complete list of all pairs (n, 2d)
for which every psd form of degree 2d in n variables is a sum of squares of forms.
As indicated before, this is not yet the end of the story. In Chapter 7, we will con-
sider projective R-varieties V on which every psd quadratic form on V is a sum of
squares of linear forms. We will arrive at an essentially complete classification of
the varieties with this property, and will see in what precise sense Hilbert’s results
from this section are particular cases of this theorem. The generalization goes even
further since it also extends to the quantitative side. In particular, a proof of Hilbert’s
three-squares theorem 2.4.10 will be given there.

2.4.15 Remark. A natural way of generalizing the questions studied by Hilbert is to
consider psd polynomials with a given Newton polytope. More concretely, consider
lattice polytopes P ⊆ Rn

+, i.e. polytopes that are the convex hull of finitely many
points with non-negative integers as coordinates. Given the preceding examples, it
is natural to ask for a characterization of all lattice polytopes P for which every psd
polynomial f ∈ R[x1, . . . , xn] with New( f ) ⊆ 2P is a sum of squares of polynomials
f =

∑
i f 2

i (necessarily satisfying New( fi) ⊆ P for all i). From the results proved in
Chapter 7, a classification of these polytopes is indeed possible. This is remarked in
7.2.20.

Exercises

2.4.1 Let n, d ≥ 1 and x = (x1, . . . , xn), let Σn,2d ⊆ R[x]2d be the sos cone of forms of degree 2d.
Prove that the interior of Σn,2d relative to R[x]2d is non-empty.

2.4.2 Find an explicit representation of the ternary quartic

f = x4 + x2y2 + y4 + x2z2 + y2z2

as a sum of three squares of quadratic forms over R. (Hint: f has a real zero.)

2.4.3 Show that a polynomial f = ax2y + bxy2 + cxy + d with a, b, c, d ∈ R is non-negative on R2
+

if, and only if, a , b, d ≥ 0 and c3 + 27abd ≥ 0.

2.4.4 Show that the polynomial 1 + x + (y2 − x3)2 is strictly positive on R2, but that it is not a sum
of squares in R[x, y].

2.4.5 Let f (x, y, z) = x4y2 + x2y4 − 3x2y2z2 + z6 be the Motzkin form. Show that f (x2, y2, z2) is a
sum of squares of sextic forms.

2.4.6 Let q ∈ R[x1, x2, x3, x4, x5] be the quadratic form

q = (x1 + · · · + x5)2 − 4(x1 x2 + x2 x3 + x3 x4 + x4 x5 + x5 x1)

(a) Check the identities q = (x1− x2 + x3 + x4− x5)2 +4x2 x4 +4x3(x5− x4) = (x1− x2 + x3−

x4 + x5)2 + 4x2 x5 + 4x1(x4 − x5), and use them to show that q(ξ) ≥ 0 for every ξ ∈ R5
+.

(b) Determine the zero set of q in R5
+.
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(c) Show that the psd quartic form f = q(x2
1, x

2
2, x

2
3, x

2
4, x

2
5) is not a sum of squares of forms.

(Hint: Show that no non-zero quadratic form vanishes on the real zeros of f .)

The quartic form f is known as the Horn form.

2.4.7 (International Mathematical Olympiad 1971) Let n ≥ 1 and consider the polynomial

fn =

n∑
i=1

n∏
j=1
j,i

(xi − x j)

in R[x1, . . . , xn]. Show that fn is psd if and only if n ∈ {1, 2, 3, 5}. (The argument is ele-
mentary but somewhat tricky.) In fact, the form f5 fails to be sos. Can you show this as
well?

2.5 Notes

Hilbert’s interest in sum of squares representations of non-negative forms was prob-
ably inspired by Minkowski, as he records in his obituary for Minkowski [95]. It
was already mentioned that Motzkin [141] contains the first published example of
a psd polynomial that is not a sum of squares of polynomials. Soon after, many
more constructions of such polynomials were found, by Robinson [170], Choi, Lam
and Reznick (e.g. [39], [41], [164], [42]), Lax and Lax [125] and others. We refer to
[166] for an excellent and detailed historical account with an extensive bibliography.

Newton polytopes play a central role in algebra and geometry, for example in
Gröbner bases, elimination theory, toric geometry or tropical geometry. We refer to
the books [72], [48] and [205] for more background.

Corollary 2.2.8 was proved by Reznick [164]. The correspondence between sums
of squares representations and Gram matrices is due to Choi, Lam and Reznick
[43]. The Fejér–Riesz theorem 2.3.4 was originally proved in [66] and [168]. This
theorem plays an important role in Riesz’s proof of the spectral theorem for bounded
self-adjoint or unitary operators. For an overview with far-reaching generalizations
in operator theory, see [56].





Chapter 3
The Real Spectrum

We now generalize the concept of orderings from fields to arbitrary commutative
rings. The central object is the real spectrum Sper(A) of a ring A, introduced in the
late 1970s by Coste and Roy. As a first application we prove various “stellensätze”
(Sections 3.2 and 3.3). In their geometric versions, they assert that positivity of a
polynomial on a given closed set can always be certified by an identity from which
the positivity is obvious. We then discuss the topology of the real spectrum in some
detail (Sections 3.4 to 3.6). Krull valuations play a key role here since they are
strongly related to specializations in the real spectrum.

3.1 Real spectrum of a ring

Always let A be a ring in the following. We keep the general convention that all
rings are commutative and have a unit, and that every ring homomorphism sends 1
to 1. If p is a prime ideal of A, the residue field of p is denoted

κ(p) := qf(A/p) = Ap/pAp,

and ρp : A→ κ(p) is the natural residue map.

3.1.1 Definition. The real spectrum Sper(A) of A is the set of all pairs α = (p,≤),
where p ∈ Spec(A) and ≤ is an ordering of the residue field κ(p). The prime ideal
p is called the support of α, denoted supp(α) = p. The elements of Sper(A) will be
called the orderings of the ring A.

3.1.2 Notation. Given an ordering α = (p,≤) of A, we alternatively refer to the
residue field of p as the residue field of α and write κ(α) := κ(p). The residue map
is denoted ρα : A → κ(α). By R(α) we denote the real closure of the ordered field
(κ(α),≤), and rα : A

ρα
−→ κ(α) ⊆ R(α) is the composite homomorphism. For f ∈ A

we call
signα( f ) := sign≤ ρα( f ) = signR(α) rα( f )

85
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the sign of f at α. For elements f , g ∈ A we briefly write f >α g and f ≥α g instead
of signα( f − g) = 1 and signα( f − g) ≥ 0, respectively, and f <α g, f ≤α g are
defined similarly.

We often like to think of the elements f ∈ A as generalized “functions” on the
set (or rather space, see 3.1.6) Sper(A), in such a way that the “value” that f takes
at α ∈ Sper(A) is the element rα( f ) in the real closed field R(α). Guided by this
point of view, we may alternatively write f (α) > 0, f (α) = 0 or f (α) < 0 instead of
f >α 0, f =α 0 or f <α 0, respectively. Notation f (α) ≥ 0 or f (α) ≤ 0 is defined
accordingly. If Y is any subset of Sper(A), we will also write f |Y > 0 instead of
f >α 0 for every α ∈ Y , etc.

Generalizing the case of fields, there is an equivalent description of orderings by
positive cones:

3.1.3 Definition. A positive cone of the ring A is a subset P ⊆ A with P + P ⊆ P,
PP ⊆ P and P ∪ (−P) = A, such that the ideal P ∩ (−P) of A is prime. This prime
ideal is called the support of P, denoted supp(P).

3.1.4 Remarks.

1. Any positive cone of A contains the set ΣA2 of sums of squares in A. When
A = K is a field, the notions of orderings or positive cones just introduced agree
with the respective notions from Chapter 1 (see 1.1.2 and 1.1.4).

2. In Definition 3.1.3, the condition that P∩ (−P) is a prime ideal can be replaced
by the two conditions −1 < P and

∀ a, b ∈ A
(
a < P ∧ b < P ⇒ −ab < P

)
,

see Exercise 3.1.1.

3.1.5 Proposition. The map

α = (p, ≤) 7−→ Pα := { f ∈ A : f (α) ≥ 0}

is a bijection from Sper(A) to the set of all positive cones of A. Moreover this map
respects supports.

In view of this proposition, we feel free to confuse orderings of A with positive
cones whenever this is convenient, in the same way as we already did for fields. In
particular, we’ll use notation like f >P g, f ≥P g etc., whenever f , g ∈ A and P is a
positive cone of A.

Proof. Given α = (p,≤), the set Pα clearly is a positive cone of A, and supp(Pα) =

Pα ∩ (−Pα) = p. Conversely, if P is a positive cone of A and p := supp(P), then
P defines an ordering ≤P of the residue field κ(p) = qf(A/p). It is characterized by
a/b ≥P 0⇔ ab ∈ P for a, b ∈ A r p (where a := ρp(a) etc). The map P 7→ (p, ≤P)
is the inverse of α 7→ Pα. �
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3.1.6 Definition. Given a subset M ⊆ A, we write

U(M) = UA(M) = {α ∈ Sper(A) : ∀ f ∈ M f (α) > 0},
X(M) = XA(M) = {α ∈ Sper(A) : ∀ f ∈ M f (α) ≥ 0},
Z(M) = ZA(M) = {α ∈ Sper(A) : ∀ f ∈ M f (α) = 0}.

When M = { f1, . . . , fn} is finite we use simplified notation U(M) = U( f1, . . . , fn)
etc. A subset of Sper(A) of the form U(M) or X(M), where M ⊆ A is a finite set, is
called basic open or basic closed, respectively.

3.1.7 Definition. The Harrison topology on Sper(A) is the topology whose open sets
are the unions of basic open sets.

In other words, the basic open sets in Sper(A) are a basis of open sets for the
Harrison topology on Sper(A). Unless otherwise mentioned, Sper(A) will always be
considered with this topology.

3.1.8 Remarks.

1. Rewriting the definition of U(M) and X(M) in terms of positive cones, we see
that a positive cone P of A lies in U(M) if and only if (−M) ∩ P = ∅. Similarly,
P ∈ X(M) if and only if M ⊆ P.

2. Recall that the Zariski topology on the Zariski spectrum Spec(A) has the sets
D( f ) = {p ∈ Spec(A) : f < p} ( f ∈ A) as a basis of open sets. The support map
Sper(A) → Spec(A), α 7→ supp(α) is continuous since the preimage of D( f ) is the
open set U( f 2) in Sper(A).

3. The real spectrum is functorial in a straightforward way: Any ring homomor-
phism ϕ : A → B induces a (pull-back) map ϕ∗ : Sper(B) → Sper(A). In terms of
positive cones, ϕ∗ is given by ϕ∗(Q) = ϕ−1(Q), for Q ⊆ B a positive cone. Given
f ∈ A and β ∈ Sper(B) we have

signϕ∗(β)( f ) = signβ ϕ( f )

by definition of ϕ∗. In particular, (ϕ∗)−1(UA( f )
)

= UB
(
ϕ( f )

)
( f ∈ A), so ϕ∗ is a

continuous map. Note also that ϕ∗ commutes with support, i.e. ϕ−1(supp(β)) =

supp(ϕ∗(β)) for β ∈ Sper(B). If ψ : B → C is a second ring homomorphism then
(ψ ◦ ϕ)∗ = ϕ∗ ◦ ψ∗.

4. If ϕ : A → B is a ring homomorphism, and if β ∈ Sper(B), α := ϕ∗(β), then ϕ
extends uniquely to an embedding R(α)→ R(β) of the real closed fields:

A B

R(α) R(β)

ϕ

rα rβ

Indeed, ϕ induces a map κ(α) → κ(β) between the residue fields that is order-
compatible with respect to α and β. So this map extends uniquely to the real closures
(Theorem 1.4.6).
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The proof of the next proposition is straightforward (Exercise 3.1.2):

3.1.9 Proposition. Let A be a ring, let S ⊆ A be a multiplicative subset and I ⊆ A
an ideal, and let ϕ : A→ AS and π : A→ A/I denote the natural homomorphisms.

(a) ϕ∗ is a homeomorphism from Sper(AS ) onto the subspace UA(s2 : s ∈ S ) =

{α : S ∩ supp(α) = ∅} of Sper(A).
(b) π∗ is a homeomorphism from Sper(A/I) onto the closed subspace ZA(I) =

{α : I ⊆ supp(α)} of Sper(A).

3.1.10 Corollary. If p is a prime ideal of A the homomorphism ρp : A → κ(p) in-
duces a homeomorphism from Sper κ(p) onto

{
α ∈ Sper(A) : supp(α) = p

}
.

Proof. Write ρp as the composition A → Ap → Ap/pAp = κ(p) and apply 3.1.9 to
both maps. �

We will frequently identify orderings of the residue field κ(p) with points in
Sper(A) that have support p.

3.1.11 Let X be a topological space. Given x, y ∈ X, we write x  y if y ∈ {x}.
In this case one says that y is a specialization of x, or that x is a generalization
of y. The space X has the T0 property (A.1.2) if and only if the relation x  y is
antisymmetric, meaning that x  y and y  x imply x = y. Hence x  y is a
(partial) order relation on X in this case. In general, the T0 property is much weaker
than the Hausdorff (T2) property. For example, the Zariski topology on Spec(A) is
T0, but it usually fails to be Hausdorff, like already for A = Z.

The next observation shows that the Harrison topology on the real spectrum is T0
as well, and that it has an additional property that is quite particular:

3.1.12 Proposition. Let P, Q, Q′ be positive cones of A.

(a) P Q if and only if P ⊆ Q. In particular, Sper(A) is a T0-space.
(b) If P ⊆ Q then Q = P + supp(Q) = P ∪ supp(Q).
(c) If P ⊆ Q and P ⊆ Q′ then one of Q ⊆ Q′ or Q′ ⊆ Q holds.

Note that (c) says that any two specializations of a point in Sper(A) are compa-
rable with respect to . In other words, the specializations of α form a chain with
respect to .

Proof. (a) P  Q means that “ f ≥P 0 ⇒ f ≥Q 0” holds for every f ∈ A. This
simply says P ⊆ Q. In (b) the inclusions P ∪ supp(Q) ⊆ P + supp(Q) ⊆ Q are
obvious. Conversely let f ∈ Q. Since f ∈ P ∪ (−P) we may assume f ∈ − P. But
then f ∈ supp(Q) since −P ⊆ −Q. For the proof of (c) assume Q * Q′, so there is
f ∈ Q with f < Q′. To show Q′ ⊆ Q let g ∈ Q′ and assume g < Q. So g ≥Q′ 0 and
g <Q 0. Since also f ≥Q 0 and f <Q′ 0 it follows that f − g <Q′ 0 and g − f <Q 0.
From P Q and P Q′ it follows that f − g <P 0 and g − f <P 0, contradicting
P ∪ (−P) = A. �



3.1 Real spectrum of a ring 89

3.1.13 Corollary. If α ∈ Sper(A) and β, γ ∈ {α}, then supp(β) = supp(γ) implies
β = γ. In particular, if supp(α) is a maximal ideal of A then α is a closed point of
Sper(A). ut

The converse to the last remark is usually false, as already shown by the ring
A = Z of integers and the unique element α in Sper(Z).

3.1.14 Examples. Here are first examples of real spectra.

1. For every unit f ∈ A∗, the real spectrum Sper(A) is the disjoint union of U( f )
and U(− f ). So the sets U(± f ) are open and closed in Sper(A). In particular, the real
spectrum of a field is a totally disconnected Hausdorff space.

2. A topological space X is said to be Noetherian if every descending sequence
X1 ⊇ X2 ⊇ · · · of closed subsets of X gets stationary, i.e. if there is N ≥ 1 with
Xn = XN for all n ≥ N. While the Zariski spectrum of every Noetherian ring is
a Noetherian topological space, this usually fails for the real spectrum (Exercise
3.1.3).

3. Let R be a real closed field and let R[t] be the polynomial ring in one variable.
The complete list of all positive cones and specializations in Sper R[t] is as follows
(Exercise 3.1.4):

(1) For every c ∈ R, a closed point Pc with support 〈t − c〉, plus two general-
izations Pc,± of Pc with support {0};

(2) two closed points P±∞ with support {0};
(3) for every free Dedekind cut ξ of R, a closed point Pξ with support {0}.

Note that points of type (3) exist if and only if R , R (see 1.1.12 and Exercises
1.1.2, 1.1.3).

P−∞ Pa,−

Pa

Pa,+ Pξ Pb,−

Pb

Pb,+ P+∞

As the schematic picture suggests, there exists a natural total ordering on the set
Sper R[t] that extends the ordering of R (Exercises 3.1.5 and 1.1.4). It is easy to see
that the topological space Sper R[t] is quasi-compact, and that it contains R with its
order topology as a dense topological subspace. We are soon going to prove that
these properties hold in much greater generality.

4. Let k be a field and let k[[t]] be the ring of formal power series in the variable t.
This is a discrete valuation ring with maximal ideal m = 〈t〉 and quotient field k((t)).
Every ordering of k extends to k((t)) in precisely two ways, which are distinguished
by the sign of t. In more detail, if f =

∑
ν≥0 aνtν ∈ k[[t]], f , 0, let ord( f ) =

min{ν : aν , 0} be the vanishing order and a f := aord( f ) the leading coefficient of f .
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If P is a positive cone of k, let P =
{∑

n≥0 anxn : a0 ∈ P
}
, which is a positive cone of

A with supp(P) = m. Moreover,

P+ = {0} ∪
{
f ∈ k[[t]] : f , 0, a f >P 0

}
,

P− = {0} ∪
{
f ∈ k[[t]] : f , 0, (−1)ord( f )a f >P 0

}
are two positive cones of k[[t]] with support {0} that specialize to P. When P ranges
over all orderings of k, this gives the complete lists of points in Sper k[[t]] and spe-
cializations between them.

5. Let (A,m) be a local domain, with residue field k = A/m and field of fractions
K = qf(A). Let orderings α of K and β of k be given, and consider α, β as elements
of Sper(A) as in 3.1.10 (with supp(α) = 〈0〉 and supp(β) = m). It follows directly
from the definitions that the specialization α  β holds in Sper(A) if, and only if,
signα(u) = signβ(u) for every unit u ∈ A∗. Here u ∈ k∗ denotes the residue class of u.

3.1.15 We have seen two different ways of representing elements of Sper(A). De-
pending on the situation, a third possibility is often convenient. Every ring homo-
morphism ϕ : A → R into a real closed field R defines a unique point in Sper(A),
namely the image point α of the induced map ϕ∗ : Sper(R) → Sper(A). We’ll write
α = [ϕ] and say that ϕ represents α. Here are two characterizations for when two
such homomorphisms represent the same point:

3.1.16 Lemma. Let ϕi : A → Ri (i = 1, 2) be two ring homomorphisms into real
closed fields R1, R2. The following conditions are equivalent:

(i) [ϕ1] = [ϕ2], i.e. ϕ1 and ϕ2 represent the same point in Sper(A);
(ii) there exists a homomorphism ρ : A → R0 into a real closed field R0 together

with homomorphisms ψi : R0 → Ri (i = 1, 2), such that ψi ◦ ρ = ϕi for i = 1, 2;
(iii) there exists a real closed field R together with homomorphisms ψi : Ri → R

(i = 1, 2), such that ψ1 ◦ ϕ1 = ψ2 ◦ ϕ2.

Proof. Condition (ii) requires that ϕ1(A) and ϕ2(A) are contained in a common real
closed subfield of R1 and R2, whereas condition (iii) requires that R1 and R2 can be
amalgamated over A into a real closed field R:

(ii)

R1

A R0

R2

ϕ1

ϕ2

ρ

ψ1

ψ2

(iii)

R1

A R

R2

ψ1ϕ1

ϕ2 ψ2

If [ϕ1] = [ϕ2] = α, it suffices to take R0 = R(α) and ρ = rα, then ψ1, ψ2 will
(uniquely) exist by Theorem 1.4.6. This proves (i) ⇒ (ii). The implication (ii) ⇒
(iii) follows from Exercise 1.4.3, and (iii)⇒ (i) is trivial. �

3.1.17 Remark. We have seen several ways of representing elements of Sper(A). To
summarize, an element of Sper(A) may be given in any of the following ways:
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1. As a pair (p,≤) where p is a prime ideal of A and ≤ is an ordering of the residue
field κ(p) = qf(A/p) of p;

2. as a positive cone P of A (Definition 3.1.3);
3. as the equivalence class [ϕ] of a homomorphism ϕ : A → R into a real closed

field R, the equivalence relation being described in Lemma 3.1.16.

From the algebraic geometry perspective, it is natural to ask whether the defini-
tion of the real spectrum can be extended from (commutative) rings A to arbitrary
schemes X. This is indeed possible in a natural way, by glueing the real spectra of
open affine subsets of X along their intersections. We’ll outline the construction later
in some detail in 4.1.15, in the case of algebraic varieties over fields.

Exercises

3.1.1 Let A be a ring, let P ⊆ A be a subset with P + P ⊆ P, PP ⊆ P and P∪ (−P) = A. Show that
P is a positive cone of A if, and only if, −1 < P and

a < P ∧ b < P ⇒ −ab < P

holds for all a, b ∈ A.

3.1.2 Prove the two assertions in Proposition 3.1.9.

3.1.3 Show that the topological spaces SperR[t] and SperR(t) fail to be Noetherian (cf. Remark
3.1.14.2).

3.1.4 Let R[t] be the polynomial ring in the variable t over the real closed field R. Verify the asser-
tions made in Example 3.1.14.3, that is, determine all positive cones of Sper R[t], together
with all specializations between them.

3.1.5 Let R be a real closed field. Show that the set of positive cones of the univariate polynomial
ring R[t] is naturally identified with the set of generalized Dedekind cuts (Exercise 1.1.4) of
the totally ordered set (R,≤).

3.1.6 For any ring A, the following are equivalent:

(i) Every f ∈ A with f (α) , 0 for all α ∈ Sper A is a unit in A;
(ii) the residue field of every maximal ideal of A is real;

(iii) 1 + ΣA2 ⊆ A∗.

If B is an arbitrary ring, the localization A := B1+ΣB2 of B in the multiplicative set 1 + ΣB2

has the above properties.

3.1.7 If K/k is a finite field extension, show that the image set of the restriction map Sper(K) →
Sper(k) is open in Sper(k). (A more general statement will be proved in Exercise 3.4.5.)

3.1.8 Let ϕ1 : A → B1, ϕ2 : A → B2 be ring homomorphisms, and consider the natural commuta-
tive square of ring homomorphisms

A B2

B1 B1 ⊗A B2

ϕ2

ϕ1 ψ2

ψ1

Show that image of the map



92 The Real Spectrum

Sper
(
B1 ⊗A B2

)
→ Sper(B1) × Sper(B2), γ 7→

(
ψ∗1(γ), ψ∗2(γ)

)
(3.1)

is the set of pairs (β1, β2) for which ϕ∗1(β1) = ϕ∗2(β2). Give an example to show that (3.1)
need not be injective.

3.1.9 (For readers who have seen inductive and projective limits) Let (I,≤) be a directed set and let
{Ai, ϕi j : Ai → A j (i, j ∈ I, i ≤ j)} be an inductive system of rings and ring homomorphisms.
Show that the natural map

Sper
(
lim
−−→
i∈I

Ai
)
→ lim
←−−
i∈I

Sper(Ai)

is a homeomorphism.
3.1.10 Let k be a field and let k(t) be the rational function field over k in one variable. Show that

the topological space X := Sper k(t) is self-similar: For every integer m ≥ 1 there exists a
homeomorphism between X and the m-fold disjoint topological sum X q · · · q X.

Using this observation it can be shown [76] that if F1, F2 are any two real function fields
of dimension one over a real closed field R, the topological spaces Sper(F1) and Sper(F2)
are homeomorphic.

3.2 Preorderings and abstract stellensätze

Always let A be a ring.

3.2.1 Definition. A preordering of A is a subset T ⊆ A that satisfies T + T ⊆ T ,
TT ⊆ T and a2 ∈ T for every a ∈ A. The preordering T is proper if −1 < T .

3.2.2 Remarks. This obviously generalizes the definition given for fields in 1.1.23.
Here are some immediate remarks.

1. Any positive cone of A is a preordering of A. Conversely, a preordering T is a
positive cone if and only if T ∪ (−T ) = A and T ∩ (−T ) is a prime ideal.

2. Any intersection of preorderings of A is a preordering of A. For any subset
S ⊆ A, we may therefore consider

PO(S ) = POA(S ) :=
⋂{

T : T preordering of A, S ⊆ T
}
,

the preordering of A generated by S . Explicitly, PO(S ) consists of all finite sums of
products a2 f1 · · · fr with a ∈ A, r ≥ 0 and f1, . . . , fr ∈ S . In particular,

PO( f1, . . . , fr) =

{ ∑
e∈{0,1}r

se f e1
1 · · · f er

r : se ∈ ΣA2 (e ∈ {0, 1}r)
}
.

3. Any intersection of positive cones in A is a preordering. If A is a field then,
conversely, every proper preordering is an intersection of positive cones (Proposition
1.1.28). But for more general rings this usually fails. For example, the preordering
T = PO(t3) in R[t] is not an intersection of positive cones (why not?). The question
will be discussed more systematically in Section 6.2.

4. Every preordering of A contains ΣA2, the set of sums of squares in A. Clearly,
ΣA2 is the unique smallest preordering of A.



3.2 Preorderings and abstract stellensätze 93

5. If A contains 1
2 then every element in A is a difference of two squares. There-

fore T − T = A holds for every preordering T in this case, and T = A is the unique
improper preordering of A.

6. If T is a preordering of A then supp(T ) := T ∩ (−T ) is called the support of T .
This is an additive subgroup of A, and is an ideal of A if T − T = A (for example if
1
2 ∈ A). Indeed, this follows from T · supp(T ) ⊆ supp(T ).

We are going to state several versions of an abstract “stellensatz” for the real
spectrum. For more geometric versions in the polynomial setting, see the next sec-
tion. We start with the following “ur-stellensatz”:

3.2.3 Theorem. Let A be a ring. Then every proper preordering of A is contained in
a positive cone of A.

When A is a field this was proved in Proposition 1.1.26. Here are two equivalent
statements:

3.2.4 Corollary. Let A be any ring.

(a) Every maximal proper preordering of A is a positive cone of A.
(b) If T is a preordering of A with X(T ) = ∅, then −1 ∈ T.

Note that 3.2.4(a) was proved for fields in Proposition 1.1.27. The proof given
there does however not carry over to general rings (Exercise 3.2.3). The statement
of 3.2.4(a) implies (and hence is equivalent to) Theorem 3.2.3, by Zorn’s lemma,
since an ascending union of a family of proper preorderings is again a proper pre-
ordering. Statement 3.2.4(b) is directly equivalent to 3.2.3. Altogether it suffices to
prove 3.2.4(a).

3.2.5 Lemma. Let T be a proper preordering of A and let a ∈ A. Then at least one
of the two preorderings T + aT and T − aT is again proper.

Proof. Assume −1 ∈ (T + aT ) ∩ (T − aT ). Then there exist s1, s2, t1, t2 ∈ T with
−1 = s1 + as2 and −1 = t1 − at2, which means −as2 = 1 + s1 and at2 = 1 + t1.
Multiplying both identities gives −a2s2t2 = 1 + s1 + t1 + s1t1 and therefore −1 =

s1 + t1 + s1t1 +a2s2t2 ∈ T . This is a contradiction since the right hand side lies in T .�

3.2.6 We now give the proof of 3.2.4(a), and hence of Theorem 3.2.3. Let T be a
maximal proper preordering of A. Then A = T ∪ (−T ) by Lemma 3.2.5, and so
supp(T ) is an ideal of A. It remains to show that this is a prime ideal. Assume to the
contrary that there exist a, b ∈ A with ab ∈ supp(T ) and a, b < supp(T ). We may
assume a, b ∈ T , and so −a, −b < T and −ab ∈ T . From maximality of T it follows
that −1 ∈ (T −aT )∩ (T −bT ). Hence there are identities as2 = 1+ s1 and bt2 = 1+ t1
with s1, s2, t1, t2 ∈ T . Multiplying both gives −1 = s1 + t1 + s1t1−abs2t2, and hence
−1 ∈ T , a contradiction. ut

From Theorem 3.2.3 we deduce a number of important consequences.
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3.2.7 Corollary. (Positivstellensatz, Krivine–Stengle) Let T be a preordering of A.
For f ∈ A the following properties are equivalent:

(i) f > 0 on X(T );
(ii) there exist s, t ∈ T with s f = 1 + t;

(iii) there exist s, t ∈ T with (1 + s) f = 1 + t.

Proof. (i) ⇒ (ii): Let f > 0 on X(T ), then X(T − f T ) = X(T ) ∩ X(− f ) = ∅. It
follows from Theorem 3.2.3 that −1 ∈ T − f T , which is (ii). To prove (ii) ⇒ (iii),
multiply 1 + t = s f with f to get (1 + t) f = s f 2. Then addition of both equalities
gives (1 + s + t) f = 1 + (t + s f 2). The implication (iii)⇒ (i) is obvious: Evaluating
both sides of identity (iii) in any given point α ∈ X(T ) immediately gives f (α) > 0,
since both 1 + s and 1 + t are strictly positive in α. �

Statement (iii) of Corollary 3.2.7 is just a variant of (ii), and it is obvious that
both (ii) and (iii) imply (i). The essential part of 3.2.7 is therefore the implication (i)
⇒ (ii). We may informally rephrase it by saying that, whenever a strict inequality
f > 0 holds on the closed set X(T ), there is a certificate for this inequality, in the
form of an identity that makes this strict positivity obvious. A similar remark applies
to each of the next two results:

3.2.8 Corollary. (Nichtnegativstellensatz) Let T be a preordering of A and let f ∈
A. The following are equivalent:

(i) f ≥ 0 on X(T );
(ii) there exist m ≥ 0 and s, t ∈ T with s f = f 2m + t.

Proof. To show (i)⇒ (ii), assume f ≥ 0 on X(T ) and let T f =
{ t

f 2m : m ≥ 0, t ∈ T
}
,

the preordering generated by T in the ring of fractions A f . The element f is a unit
in A f , and it is strictly positive on XA f (T f ) by hypothesis (i) (see 3.1.9). Therefore
Corollary 3.2.7, applied to A f and T f , implies an identity s1 f = 1 + s2 in A f with
s1, s2 ∈ T f . Multiplication with a suitable even power f 2m gives an identity (ii). The
implication (ii)⇒ (i) is again obvious. �

3.2.9 Remark. In the situation of Theorem 3.2.8, one could think of other identities
that imply f ≥ 0 on X(T ), like (1 + s) f = t with s, t ∈ T . However it is not true
in general that f ≥ 0 on X(T ) implies the existence of such an identity. Examples
showing this will later be constructed in Exercise 6.1.6.

3.2.10 Corollary. (Abstract real nullstellensatz, first version) Let T be a preordering
of A and let f ∈ A. The following are equivalent:

(i) f ≡ 0 on X(T );
(ii) there is m ≥ 0 with f m ∈ supp(T );

(iii) there is m ≥ 0 with − f 2m ∈ T.

When supp(T ) is an ideal of A (which is the case if 1
2 ∈ A), condition (ii) is saying

f ∈
√

supp(T ).
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Proof. (i) implies − f 2 ≥ 0 on X(T ), so 3.2.8 implies that −s f 2 = f 4m + t for suitable
m ≥ 0 and s, t ∈ T . This is an identity of type (iii). The implications (iii)⇒ (ii)⇒
(i) are trivial. �

All three stellensätze 3.2.7, 3.2.8 and 3.2.10 were deduced from Theorem 3.2.3.
Conversely, each of the three contains 3.2.3 as a particular case, namely for f = −1.
This means that all four are essentially just different incarnations of the same result.
It is also possible to combine the three stellensätze into a single one:

3.2.11 Theorem. (General real stellensatz) Let F, G, H be subsets of A. The subset

U(F) ∩ X(G) ∩ Z(H) =
⋂
f∈F

{ f > 0} ∩
⋂
g∈G

{g ≥ 0} ∩
⋂
h∈H

{h = 0}

of Sper(A) is empty if, and only if, there is an identity s + t + a = 0 in A with s ∈ S ,
t ∈ T and a ∈ I. Here S denotes the multiplicative semigroup generated by F ∪ {1}
in A, while T = PO(F ∪G) and I = 〈H〉 =

∑
h∈H Ah.

Proof. Put W = U(F) ∩ X(G) ∩ Z(H). An identity s + t + a = 0 as above implies
W = ∅ since s(α) > 0, t(α) ≥ 0 and a(α) = 0 hold for every α ∈ W. To prove the
converse let B = AS /IAS and let

T ′ := POB(T ) =

{ t
s

+ IAS : t ∈ T, s ∈ S
}
,

the preordering generated by T in B. If we identify Sper(B) with a subset of Sper(A)
as in 3.1.9, then XB(T ′) = W. Therefore W = ∅ implies that −1 ∈ T ′ (Corollary
3.2.4(b)), say −1 = t

s + a
s′ in AS with s, s′ ∈ S , t ∈ T and a ∈ I. This means

s0(ss′ + s′t + sa) = 0 in A with s0 ∈ S . Now the three summands lie in S , T and I,
respectively. �

3.2.12 Remarks.

1. Usage of the German terms “positivstellensatz” or “nichtnegativstellensatz”
(literally meaning “theorem of the positivity locus” or “of the nonnegativity locus”,
respectively) has become customary in English and French texts as well. This may
be a continued, and extended, reference to Hilbert, whose famous nullstellensatz
(A.3.1) is fundamental in modern algebraic geometry. Since there is a small zoo
of such theorems in real algebraic geometry, the general term stellensatz (plural
stellensätze) is used to refer to any of them, or to the whole group.

2. In remarkable contrast to their importance, the proof for the various stel-
lensätze (essentially not more than 3.2.5 and 3.2.6 above) did not use anything be-
yond the definition of orderings and preorderings, combined with Zorn’s lemma.

3.2.13 Definition. A prime ideal p of A is said to be real if its residue field κ(p) =

qf(A/p) is a real field, i.e. can be ordered. Equivalently, p is real if and only if∑
i a2

i ∈ p (with ai ∈ A) implies ai ∈ p for all i. For any ideal I of A, the ideal

re√
I :=

⋂{
p ∈ Spec(A) : p real, I ⊆ p

}
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of A is called the real radical of I.

3.2.14 Remarks.

1. Taking I = {0} we get the real nilradical N =
re√
〈0〉 of A. The natural map

Sper(A/N) → Sper(A) is a homeomorphism, and N is the largest ideal of A with
this property (immediate from Proposition 3.1.9).

2. Recall that the radical
√

I of an ideal I is the intersection of all prime ideals of
A that contain I. So the inclusion

√
I ⊆ re√I holds always, and in general it is strict.

The alternative description
√

I = {a ∈ A : ∃ n ≥ 1 an ∈ I} of the usual radical has
the following analogue for the real radical:

3.2.15 Corollary. (Abstract real nullstellensatz, second version) For any ideal I of
A,

re√
I =

{
f ∈ A : ∃m ≥ 0 ∃ s ∈ ΣA2 f 2m + s ∈ I

}
.

Moreover, if A contains 1
2 then re√I =

√
supp

(
I + ΣA2).

Proof. T = I +ΣA2 is a preordering of A and satisfies X(T ) = Z(I) (the zero set of I
in Sper(A)). Given f ∈ A, the condition f ∈ re√I means that f is contained in every
real prime ideal p ⊇ I, i.e. that f ≡ 0 on Z(I) = X(T ). By 3.2.10 it is equivalent that
f 2m ∈ −T for some m ≥ 0, which proves the first claim. If 1

2 ∈ A then the support of
any preordering is an ideal. Since − f 2m ∈ I + ΣA2 means f 2m ∈ supp(I + ΣA2), the
existence of some m ≥ 1 with this property means that f ∈

√
supp(I + ΣA2). �

Recall that a field K is real, i.e., can be ordered, if and only if it satisfies the
equivalent conditions

(1) −1 < ΣK2,
(2) a1, . . . , an ∈ K and a2

1 + · · · + a2
n = 0 implies a1 = · · · = an = 0.

For rings more general than fields, the implication (1) ⇒ (2) usually fails. This is
why, for rings, we find two different natural concepts of being real:

3.2.16 Lemma and Definition. A ring A is said to be real if it satisfies the following
equivalent conditions:

(i) Sper(A) , ∅;
(ii) A has a real prime ideal;

(iii) −1 < ΣA2.

Otherwise the ring A is non-real.

Proof. It is obvious that (i), (ii) are equivalent and both imply (iii). Conversely, if
−1 < ΣA2 then apply Theorem 3.2.3 for T = ΣA2 to get (i). �

Note the following remarkable consequence of the previous lemma: If −1 is a
sum of squares in every residue field of a ring A, then −1 is a sum of squares in A
itself.

The next lemma defines a stronger property:
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3.2.17 Lemma and Definition. A ring A is said to be real reduced if the following
equivalent conditions hold:

(i) If a1, . . . , an ∈ A and a2
1 + · · · + a2

n = 0 then a1 = · · · = an = 0;
(ii) A is reduced, and every minimal prime ideal of A is real;

(iii) re√
〈0〉 = {0}, i.e. the real nilradical of A is trivial.

Proof. (i) ⇒ (ii): It is obvious that A is reduced. If p is a minimal prime ideal
of A then Ap is a field. Assuming that the prime ideal p is not real would mean
that −1 is a sum of squares in Ap. Clearing denominators would give an identity
s2 + a2

1 + · · · + a2
r = 0 in A where s, a1, . . . , ar ∈ A and s < p, contradicting (i).

(ii)⇒ (iii): Since A is reduced, the intersection of all minimal prime ideals of A
is {0}. Since all these prime ideals are real it follows that re√

〈0〉 = {0}.
(iii) ⇒ (i): If a1, . . . , an ∈ A satisfy a2

1 + · · · + a2
n = 0 then each ai lies in every

real prime ideal of A, and therefore in re√
〈0〉 = {0}. �

Note that a ring A is real reduced if and only if A is isomorphic to a subring
of a direct product of real fields. Clearly, if A is real reduced and A , {0}, then
A is real. The converse isn’t true in general. For example, the rings R[x]/〈x2〉 or
R[x, y]/〈x2 + y2〉 are real but not real reduced. The nullring {0} is real reduced but
not real.

Using the real spectrum, it is clear which elements of a ring A should be consid-
ered to be non-negative everywhere.

3.2.18 Definition. If A is a ring we write

A+ :=
{
f ∈ A : f ≥ 0 on Sper(A)

}
.

This is the preordering of positive semidefinite elements (or psd elements, for short)
of A.

3.2.19 Remarks.

1. The nichtnegativstellensatz 3.2.8 allows to characterize the psd elements with-
out mentioning of the real spectrum. Indeed, an element f ∈ A lies in A+ if and only
if f satisfies an identity s f = f 2m + t with m ≥ 0 and sums of squares s, t ∈ ΣA2.

2. It is obvious that ΣA2 ⊆ A+ holds for every ring: Every sum of squares is
psd. Equality holds when A is non-real and 1

2 ∈ A, by the identity x =
( x+1

2
)2
−( x−1

2
)2. Less trivial examples where equality holds are fields of characteristic , 2

(Theorem 1.1.30), or the rings R[x] or R[x, y]/〈1 − x2 − y2〉 (Fejér–Riesz) over a
real closed field R. In Chapter 6 we will see families of rings with A+ = ΣA2 that
are substantially more interesting. However, for most real rings A, the inclusion
ΣA2 ⊆ A+ is strict. For example, this is so for polynomial rings A = R[x1, . . . , xn] in
n ≥ 2 variables, by Hilbert’s results (2.4.9) and since A+ consists of the polynomials
that are non-negative on Rn (Proposition 3.3.2 below).
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Exercises

3.2.1 Let T be a preordering of a ring A and let f ∈ A. Show that ‘ f ≥ 0 on X(T )’ is also equivalent
to each of the following two conditions (cf. Corollary 3.2.8):

(i) There exist m ≥ 0 and s, t ∈ T with f ( f 2m + s) = t;
(ii) there exist m ≥ 0 and s, t ∈ T with f ( f 2m + s) = f 2m + t.

3.2.2 Let R be a real closed field and let p ∈ R[x] = R[x1, . . . , xn] be an irreducible polynomial.
Show that the following properties are equivalent:

(i) The (principal) prime ideal 〈p〉 in R[x] is real;
(ii) the set of R-points on the hypersurface V(p) ⊆ An is Zariski dense in V(p);

(iii) p is indefinite, i.e. there exist u, v ∈ Rn with p(u) < 0 < p(v).

(Hint: Section 1.7)

3.2.3 The statement of Lemma 3.2.5 is slightly weaker than its cousin 1.1.25, that we proved for
fields. Show that Lemma 1.1.25 does not extend to arbitrary rings. That is, construct a ring
A, a proper preordering T of A and an element f ∈ A such that f < T and T − f T = A.

3.2.4 Let ϕ : A → B be a ring homomorphism, let P be a positive cone of A. Using Theorem
3.2.11, show that there exists a positive cone Q of B with ϕ−1(Q) = P if, and only if,

ϕ( f ) +

r∑
i=1

ϕ(ai)b2
i , 0

holds in B whenever f ∈ P r (−P), r ∈ N and ai ∈ P, bi ∈ B (i = 1, . . . , r).

3.2.5 Let (A,m) be a Henselian local ring (see A.4.8 for the definition).

(a) Assuming 1
2 ∈ A, show that supp(α) = m for every closed point α of Sper(A).

(b) Show that (a) remains true if 2 is not a unit in A, i.e. show that Sper(A) is empty then.

Hints: To prove (a), show P+m , A for every positive cone P of A. For (b), show that 2 ∈ m
implies that −7 is a square in A.

3.2.6 Let A be a ring that contains a real closed field R, and let U ⊆ A be an R-linear subspace
of finite dimension. If A is real reduced, show that ΣU2 is a closed semialgebraic subset of
UU, where UU is the R-linear span of all products u1u2 (u1, u2 ∈ U) in A. (Hint: Lemma
2.4.7)

3.3 Geometric stellensätze

We now transfer the “abstract” stellensätze (Section 3.2) from the real spectrum
setting to a “geometric” and more concrete situation, namely polynomials over R (or
over a real closed field). These results will allow us to derive a series of non-obvious
strengthenings and generalizations of (the solution of) Hilbert’s 17th problem. The
results of this section may be seen as a first evidence for the usefulness of the real
spectrum.

As usual, R denotes a real closed field.

3.3.1 Given an affine R-variety V , the set V(R) of R-points can be naturally iden-
tified with a subset of the real spectrum of R[V]. Indeed, an R-point ξ ∈ V(R)
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gives the element αξ = [ϕξ] in Sper R[V] (see 3.1.15), where ϕξ : R[V] → R,
f 7→ f (ξ) denotes evaluation in ξ. The positive cone of R[V] associated with αξ
is Pξ := { f ∈ R[V] : f (ξ) ≥ 0}, the support is supp(αξ) = ker(ϕξ) = mξ, the maximal
ideal of R[V] at ξ. Note that, by definition, sign f (ξ) = signαξ ( f ) holds for every
f ∈ R[V]. We’ll denote the map ξ 7→ αξ by ι : V(R)→ Sper R[V].

3.3.2 Proposition. Let x = (x1, . . . , xn), and let finitely many polynomials fi (i =

1, . . . , r), g j ( j = 1, . . . , s) and hk (k = 1, . . . , t) in R[x] be given. The following are
equivalent:

(i) There is α ∈ Sper R[x] with fi(α) > 0, g j(α) ≥ 0 and hk(α) = 0 for all i, j, k;
(ii) there is ξ ∈ Rn with fi(ξ) > 0, g j(ξ) ≥ 0 and hk(ξ) = 0 for all i, j, k.

Proof. (ii)⇒ (i) is obvious by 3.3.1. The forward implication (i)⇒ (ii) is a conse-
quence of Tarski’s transfer principle: Given α as in (i), let rα : R[x] → R(α) be the
natural homomorphism, see 3.1.1. Then rα( fi) > 0, rα(g j) ≥ 0 and rα(hk) = 0 hold
in R(α) for all i, j, k, by (i). So the R-sentence

∃ y = (y1, . . . , yn)
(∧

i

fi(y) > 0 ∧
∧

j

g j(y) ≥ 0 ∧
∧

k

hk(y) = 0
)

holds in the real closed field R(α), since y = rα(x) ∈ R(α)n is such a tuple. By Tarski
1.6.17, the sentence is true in R itself, which means (ii). �

We extend the notion of semialgebraic sets from Rn (1.5.2) to arbitrary affine
R-varieties:

3.3.3 Definition. Let V be an affine R-variety with coordinate ring R[V].

(a) If f1, . . . , fr ∈ R[V], write

UV ( f1, . . . , fr) :=
{
ξ ∈ V(R) : fi(ξ) > 0 (i = 1, . . . , r)

}
,

SV ( f1, . . . , fr) :=
{
ξ ∈ V(R) : fi(ξ) ≥ 0 (i = 1, . . . , r)

}
,

ZV ( f1, . . . , fr) :=
{
ξ ∈ V(R) : fi(ξ) = 0 (i = 1, . . . , r)

}
.

The subsets UV ( f1, . . . , fr) and SV ( f1, . . . , fr) of V(R) are called basic open and
basic closed, respectively.

(b) A subset M of V(R) is called semialgebraic (with respect to V , but see below)
if M is a finite Boolean combination of sets UV ( f ) with f ∈ R[V].

When V is a closed subvariety of another affine R-variety W, a set M ⊆ V(R)
is semialgebraic with respect to V , if and only if it is semialgebraic with respect
to W (check this!). Hence there is no need to mention a reference variety. Since this
remark applies in particular when W = An, the projection theorem 1.5.9 implies:

3.3.4 Proposition. Images and preimages of semialgebraic sets under morphisms
of affine R-varieties are again semialgebraic. ut
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The identification of V(R) with a subset of Sper R[V] is compatible with the re-
spective topologies:

3.3.5 Proposition. Let V be an affine R-variety. The map ι : V(R) → Sper R[V],
ξ 7→ αξ is a dense topological embedding.

In more detail, the proposition is saying that ι is a homeomorphism from V(R),
equipped with the order topology, onto its image set, equipped with the topology
induced from Sper R[V], and that this image set is dense in Sper R[V].

Proof. It is obvious that ι is injective. For f1, . . . , fr ∈ R[V] consider the basic open
set U := UR[V]( f1, . . . , fr) in Sper R[V] (3.1.6). Then ι−1(U) = UV ( f1, . . . , fr), a basic
open semialgebraic set in V(R). Since basic open sets form a basis for the topology
of either Sper R[V] or V(R), it follows that ι is a homeomorphism onto its image.
Moreover ι(V(R)) is dense in Sper R[V] since U , ∅ implies ι−1(U) , ∅, according
to Proposition 3.3.2. �

3.3.6 Remark. With Proposition 3.3.5 in mind, we may think of the real spec-
trum Sper R[V] as arising from the topological space V(R) by adding certain “ideal
points”. Usually, we will identify V(R) with its ι-image in Sper R[V]. In doing so,
no topological information on V(R) is lost. In fact, there is something to be gained,
since the real spectrum has notable advantages compared to V(R). For R , R, the
space V(R) has poor topological properties, it is totally disconnected and fails to
be locally compact (as long as |V(R)| = ∞). Whereas Sper R[V] is a quasi-compact
space that has only finitely many connected components, as will be shown in Section
4.4. Therefore Sper R[V] is an object of a much more geometric nature.

The connection between V(R) and Sper R[V] will be made even stronger in Sec-
tion 4.1 (operation tilda).

3.3.7 Corollary. Let V be an affine R-variety. Then:

(a) The ring R[V] is real ⇔ V(R) , ∅;
(b) the ring R[V] is real reduced ⇔ V(R) is Zariski dense in V.

Proof. (a) By definition, the ring R[V] is real if and only if Sper R[V] , ∅. This is
equivalent to V(R) , ∅ by Proposition 3.3.5.

(b) Since the ring R[V] is always reduced (by our conventions on varieties, Ap-
pendix A.6), it is real reduced if and only if the function field of every irreducible
component Vi of V is real (Proposition 3.2.17). By Corollary 1.7.9, it is equivalent
that Vi(R) is Zariski dense in Vi for every i, and hence that V(R) is Zariski dense
in V . �

Combining the “abstract” stellensätze with the density properties of Proposition
3.3.2, we obtain “concrete” geometric versions as follows:

3.3.8 Theorem. (Geometric real stellensätze) Let f1, . . . , fr ∈ R[V] where V is an
affine R-variety, and put K = SV ( f1, . . . , fr) ⊆ V(R) and T = POR[V]( f1, . . . , fr). For
f ∈ R[V], the following equivalences hold:
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(a) f > 0 on K ⇔ ∃ s, t ∈ T with s f = 1 + t;
(b) f ≥ 0 on K ⇔ ∃m ≥ 0, ∃ s, t ∈ T with s f = f 2m + t;
(c) f ≡ 0 on K ⇔ ∃m ≥ 0, ∃ t ∈ T with f 2m + t = 0.

Proof. If an inequality f > 0 (or ≥ 0, or = 0) holds on K, the same inequality will
hold on the subset X(T ) of Sper R[V], by Proposition 3.3.2. Therefore, the implica-
tions “⇒” are immediate consequences of the abstract stellensätze 3.2.7, 3.2.8 and
3.2.10. The reverse implications “⇐” are trivial thanks to the embedding ι (3.3.1).�

3.3.9 Corollary. (Real nullstellensatz) Let V be an affine R-variety, let I ⊆ R[V] be
an ideal and let W ⊆ V be its vanishing subvariety. A polynomial f ∈ R[V] vanishes
identically on W(R) if, and only if, f ∈ re√I.

Compare this to the usual Hilbert nullstellensatz (A.6.3) from algebraic geome-
try, which corresponds to replacing R by an algebraically closed field k and the real
radical of an ideal by the usual radical.

Proof. Assume that f ≡ 0 on W(R). Let p be a real prime ideal of R[V] with I ⊆ p,
we have to show f ∈ p. If Z ⊆ W is the irreducible subvariety belonging to p, then
Z(R) is Zariski dense in Z by Corollary 1.7.9. Since f ≡ 0 on Z(R), this implies f ∈ p
as desired. The reverse implication is obvious since re√I ⊆ mξ for every ξ ∈ W(R).�

3.3.10 Remark. The role of the geometric stellensätze is that they characterize the
(strict or non-strict) positivity of a polynomial f on a basic closed set by the exis-
tence of an identity of suitable shape. In each case, the sign behavior in question is
trivial from the identity, whereas the converse is not obvious at all. A similar (but
simpler) situation is well known from Hilbert’s nullstellensatz in algebraic geome-
try.

We record a few consequences. The following is at the same time a generalization
and a strengthening of Artin’s solution to Hilbert 17:

3.3.11 Theorem. Let V be an affine R-variety and let K = SV ( f1, . . . , fr) be a basic
closed semialgebraic set in V(R), where f1, . . . , fr ∈ R[V]. If a polynomial f ∈ R[V]
is non-negative on K, there exists h ∈ R[V] with f h2 ∈ POR[V]( f1, . . . , fr), and such
that K ∩ ZV (h) ⊆ ZV ( f ).

Proof. Write T := POR[V]( f1, . . . , fr). According to Theorem 3.3.8(b), there exist
s, t ∈ T and m ≥ 0 such that s f = f 2m + t. The claim follows (with h = s) by
multiplying the identity with s. Indeed, if ξ ∈ K satisfies s(ξ) = 0, the first identity
implies f (ξ) = 0 since t(ξ) ≥ 0. �

3.3.12 Remarks.

1. In the situation of Hilbert’s 17th problem (V = An, r = 1 and f1 = 1), Theorem
3.3.11 asserts in particular that every psd polynomial f ∈ R[x1, . . . , xn] has a sum
of squares representation f =

∑
i g2

i , in which the gi are rational functions whose
denominators vanish only in zeros of f (in Rn).
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2. The geometric stellensätze 3.3.8 are purely existential statements. Their proofs
made essential use of Zorn’s lemma, and so these proofs are completely non-
constructive. For example, if f1, . . . , fr ∈ R[x1, . . . , xn] = R[x] satisfy S( f1, . . . , fr) =

∅, the positivstellensatz asserts the existence of an identity

−1 =
∑

e∈{0,1}r
se · f e1

1 · · · f er
r

with sums of squares se ∈ R[x]. One would like to know an upper bound for the
degrees of the se, depending only on n, r and the deg( fi). While the existence of
such a bound follows rather easily from general principles (Exercise 3.3.4), it is
a very difficult problem to prove concrete bounds, or even just to estimate their
magnitude. The question is directly related to the problem of bounding degrees in
Hilbert 17, see Remark 1.5.25.

3. As we have seen, the geometric stellensätze 3.3.8 are consequences of their
“abstract” counterparts (3.2.7 etc), the proofs of which were essentially immediate.
On the other hand, Theorem 3.3.8 implies Hilbert 17, and even far-reaching gener-
alizations thereof. This approach did not use the statement of Hilbert 17, so have we
found an easier approach to this theorem?

The answer is no: To deduce the geometric stellensätze from their abstract ver-
sions, we had to use Proposition 3.3.2, which in turn depends on the Tarski transfer
principle in an essential way.

We conclude with another geometric application of the stellensätze. First here is
an abstract version that holds in the real spectrum of an arbitrary ring:

3.3.13 Proposition. Let T be a preordering in the ring A, and let elements f , g ∈ A
be given such that Z( f ) ∩ X(T ) ⊆ Z(g) holds (in Sper(A)). Then there exist h ∈ A
and m ≥ 0 such that |g|m ≤ | f h| holds on X(T ).

Conversely, if an inequality |g|m ≤ | f h| holds on X(T ), it is obvious that Z( f )∩X ⊆
Z(g).

Proof. By assumption, g vanishes identically on X(T ) ∩ Z( f ) = X(T − f 2T ). So
Corollary 3.2.10 implies that −g2m ∈ T − f 2T for some m ≥ 0. In particular, there
are s, t ∈ T with g2m = s f 2 − t. On X(T ) this implies the inequality g2m ≤ s f 2 ≤

(1 + s)2 f 2, and so the inequality |g|m ≤ |(1 + s) f | is satisfied on X(T ). �

For polynomials we state the following more precise version. Let R be a real
closed field as before, and let x = (x1, . . . , xn).

3.3.14 Proposition. (Łojasiewicz inequality, first version) Let M ⊆ Rn be a basic
closed semialgebraic set and let f , g ∈ R[x] be polynomials such that g vanishes on
Z( f )∩M. Then there are a positive constant c > 0 in R and integers m, p ≥ 1, such
that

|g(ξ)|m ≤ c · | f (ξ)| ·
(
1 + |ξ|

)p

holds for all ξ ∈ M.
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Proof. Transferring the proof of Proposition 3.3.13 to the geometric setting (and
invoking Theorem 3.3.8(c) instead of Corollary 3.2.10), we get m ≥ 0 and a poly-
nomial h ∈ R[x] such that |g|m ≤ | f h| holds on M. It only remains to show that there
exist c > 0 in R and an integer p ≥ 1 with |h(ξ)| ≤ c(1 + |ξ|)p for all ξ ∈ Rn. It
suffices to treat the case where h = xα is a monomial (with α ∈ Zn

+). In this case, the
inequality |ξα| =

∏
i |ξi|

αi ≤ (1 + |ξ|)|α| holds on Rn. �

The qualitative essence of Proposition 3.3.14 is that if a polynomial g vanishes on
the (real) zero set of another polynomial f , then the growth of |g| in a neighborhood
of the zeros of f is polynomially bounded in terms of | f |. Later we’ll prove a much
stronger version of this result (Section 4.5).

Exercises

Let R be a real closed field.

3.3.1 Given n ≥ 1, prove that the sets of positive semidefinite and of positive definite symmetric
n × n matrices are basic closed and basic open in Symn(R), respectively.

3.3.2 Let f ∈ R[x] = R[x1, . . . , xn] be a homogeneous polynomial with f ≥ 0 on Rn. Prove the
following homogeneous version of Corollary 3.3.11: There exists a non-zero form h ∈ R[x]
such that f h2 is a sum of squares of forms in R[x], and such that f vanishes in every real
zero of h.

3.3.3 Let V be an affine R-variety and W a closed subvariety of V , and let I ⊆ R[V] be an ideal
with real zero set W(R). Show that a polynomial f ∈ R[V] has no zero in W(R) if, and only
if, f divides some element of the form 1 + g + h with g ∈ I and h ∈ ΣR[V]2.

3.3.4 Let non-negative integers n, r, d be fixed. Show that there exists a non-negative inte-
ger N = N(n, r, d) such that, for every real closed field R and arbitrary polynomials
f1, . . . , fr ∈ R[x] = R[x1, . . . , xn] with deg( fi) ≤ d (i = 1, . . . , r), the following is true:

Whenever S( f1, . . . , fr) = ∅, there exist sums of squares se ∈ R[x] (for e ∈ {0, 1}r)
with

− 1 =
∑

e∈{0,1}r
se · f e1

1 · · · f er
r (3.2)

and with deg(se) ≤ N for every multi-index e.

Hint: For N ≥ 1 consider the set XN of all tuples ( f1, . . . , fr) in R[x]r with deg( fi) ≤ d, for
which an identity (3.2) exists with deg(se) ≤ N for all e. First show that the sets XN and⋃

N≥1 XN are semialgebraic, then use Exercise 4.1.6 (equivalence (i)⇔ (ii)) from Chapter 4.

3.4 The constructible topology

Always let A be a ring. We now introduce a secondary topology on the real spectrum
of A. Although the Harrison topology remains the primary one, the constructible
topology is a highly useful auxiliary tool.
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3.4.1 Definition.

(a) A subset of Sper(A) is said to be constructible if it is a Boolean combination
(unions, intersections, complements) of finitely many sets of the form UA( f ) =

{α ∈ Sper(A) : f (α) > 0} (with f ∈ A).
(b) The constructible topology on Sper(A) is the topology that has the constructible

sets as a basis of open sets. The topological space defined in this way is denoted
Sper(A)con.

3.4.2 Remarks.

1. The constructible subsets of Sper(A) are precisely the sets that can be de-
scribed by sign conditions on finitely many elements of A. Also, they are precisely
the finite unions of sets of the form UA( f1, . . . , fr) ∩ ZA(g) with f1, . . . , fr, g ∈ A.

2. The constructible topology is finer than the Harrison topology. If A = K is a
field then both topologies coincide, since every constructible set is Harrison-open in
this case.

3. If ϕ : A → B is a ring homomorphism, preimages of constructible subsets
under the induced map ϕ∗ : Sper(B) → Sper(A) are constructible. Therefore, ϕ∗ is
continuous also with respect to the constructible topologies.

Let R be a real closed field, let V be an affine R-variety. We have seen that the
topological space V(R) is naturally identified, via the map ι : V(R) → Sper R[V],
with a dense subspace of Sper R[V], equipped with the Harrison topology (Proposi-
tion 3.3.5). In fact, we already proved a stronger statement:

3.4.3 Proposition. ι(V(R)) is dense in Sper R[V] with respect to the constructible
topology.

Proof. Immediate from Proposition 3.3.2 and Remark 3.4.2.1. �

From Section 1.6 recall the concepts of A-formulas and A-sentences. In partic-
ular, an A-sentence is an A-formula with no free variables. Given a ring homomor-
phism ϕ : A → B and an A-formula φ, the B-formula φϕ arises from φ by applying
ϕ to all constants appearing in φ. Recall also for α ∈ Sper(A) that rα : A → R(α)
denotes the natural homomorphism into the real closed field R(α) associated with α
(3.1.2).

3.4.4 Definition. If φ is an A-sentence, the subset

KA(φ) :=
{
α ∈ Sper(A) : R(α) |= φrα }

of Sper(A) is called the solution set of φ in the real spectrum of A.

Thus, KA(φ) is the set of all α ∈ Sper(A) for which the A-sentence φ, read via rα
in the real closed field R(α), is true. By definition, the constructible sets in Sper(A)
are precisely the solution sets of quantifier-free A-sentences. Quantifier elimination
tells us that the word “quantifier-free” may be dropped here:
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3.4.5 Proposition.

(a) A subset K ⊆ Sper(A) is constructible if and only if there is an A-sentence φ
with K = KA(φ).

(b) Two A-sentences φ1, φ2 are A-equivalent (see 1.6.13) if and only if KA(φ1) =

KA(φ2).

Proof. (b) Every homomorphism ϕ : A → R into a real closed field factors as ϕ =

ψ◦rα for unique α ∈ Sper(A) and a unique homomorphism ψ : R(α)→ R. Therefore,
if KA(φ1) = KA(φ2), the transfer principle 1.6.17 implies the equivalence (R |= φ

ϕ
1)

⇔ (R |= φ
ϕ
2) for every such homomorphism. This implies (b), and (a) follows from

quantifier elimination (Theorem 1.6.15). �

Therefore, the constructible subsets of Sper(A) are in natural bijection with the
A-equivalence classes of A-sentences. The obvious rules

KA(φ1 ∧ φ2) = KA(φ1) ∩ KA(φ2),

KA(φ1 ∨ φ2) = KA(φ1) ∪ KA(φ2),

KA(¬ φ) = Sper(A) r KA(φ)

hold for any A-sentences φ, φ1, φ2.

3.4.6 Remark. As a consequence of quantifier elimination (Proposition 3.4.5(a)),
one shows easily (Exercise 3.4.4): If A is a Noetherian ring and ϕ : A → B is a
finitely generated A-algebra, the induced map ϕ∗ : Sper(B) → Sper(A) sends con-
structible sets to constructible sets. The analogous statement is true for the Zariski
spectrum as well, and is known as Chevalley’s theorem (cf. Remark 1.5.7). This is
not an accident: Chevalley’s theorem can be proved in formally exactly the same
way as we proved the result for the real spectrum, the only difference being that
the Tarski principle (that is used here) has to be replaced by the Lefschetz principle.
Loosely speaking, the Lefschetz principle states that quantifier elimination holds for
algebraically closed fields of fixed characteristic.

3.4.7 Theorem. For every ring A, the topological space Sper(A)con is compact
(Hausdorff) and totally disconnected. The constructible subsets of Sper(A) are pre-
cisely the sets that are open and closed in the constructible topology.

Proof. Let X := Sper(A)con. Given α , β in X, there is f ∈ A with sign f (α) ,
sign f (β). In particular, there is a constructible set U ⊆ Sper(A) with α ∈ U and
β < U. So U and X rU are complementary open subsets of X that separate α and β.
Hence X is a totally disconnected Hausdorff space.

The last assertion follows easily once it is known that X is compact. Indeed, if
U ⊆ X is open and closed, U is a union of constructible subsets since U is open.
Since U is closed in X it is compact, and so it is a finite such union. Hence U is
constructible. It therefore only remains to show that X is compact.

Let 2A =
∏

a∈A{0, 1}, equipped with the product topology. By Tikhonov’s theo-
rem, this is a compact topological space. We identify 2A with the set of subsets S
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of A, identifying S with the indicator (characteristic) function of S . By regarding
points in Sper(A) as positive cones of A, we consider Sper(A) as a subset of 2A. The
topology induced on Sper(A) in this way is the constructible topology, so it remains
to show that the complement of Sper(A) is open in 2A. For this let S be a subset of
A that is not a positive cone of A. Then one of the following properties fails for S
(Exercise 3.1.1):

(1) S + S ⊆ S ,
(2) S S ⊆ S ,
(3) S ∪ (−S ) = A,
(4) a < S ∧ b < S ⇒ −ab < S (a, b ∈ A),
(5) −1 < S .

In each case, this immediately implies that the same property fails for all subsets
S ′ ⊆ A in some neighborhood of S . For example, suppose that (4) fails for S , which
means there are a, b ∈ A r S with −ab ∈ S . Then the set U of subsets S ′ ⊆ A with
a, b < S ′ and −ab ∈ S ′ is an open neighborhood of S in 2A, and U ∩ Sper(A) = ∅.
For the other four properties the argumentation is similar, and so the theorem is
proved. �

A topological space that is compact (Hausdorff) and totally disconnected is called
a Boolean space (see A.1.3). A number of equivalent characterizations of such
spaces can be found in [52], for example. By Theorem 3.4.7, Sper(A)con is always a
Boolean space.

Compactness of the constructible topology has important consequences for the
Harrison topology:

3.4.8 Corollary. Every constructible subset of Sper(A) is quasi-compact in the Har-
rison topology. In particular, Sper(A) is quasi-compact.

Proof. The Harrison topology is coarser than the constructible topology. Every con-
structible set is closed in Sper(A)con, therefore it is compact in Sper(A)con by Theo-
rem 3.4.7. A fortiori, it is quasi-compact in the Harrison topology. �

3.4.9 Corollary. An open subset of Sper(A) is quasi-compact (in the Harrison topol-
ogy) if and only if it is constructible.

Proof. If U is open and quasi-compact in the Harrison topology, then U is a union
of finitely many basic open sets. Therefore U is constructible. The converse is con-
tained in 3.4.8. �

3.4.10 Proposition. Equip Sper(A) with the Harrison topology. For any closed irre-
ducible subset X of Sper(A), there exists α ∈ X with X = {α}.

Note that the point α is uniquely determined by X, since Sper(A) is a T0-space
(3.1.12(a)). One says that α is the generic point of X.
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Proof. Let

Z :=
⋂{

U ∩ X : U ⊆ Sper(A) open constructible, U ∩ X , ∅
}
.

Every intersection of finitely many of these sets U ∩ X is non-empty since X is
irreducible. Moreover, X and all sets U∩X are closed in Sper(A)con, and are therefore
compact. It follows that Z , ∅. Let α ∈ Z, then X = {α}. Indeed, if there existed
β ∈ X r {α} then β would have an open constructible neighborhood U in Sper(A)
with α < U, contradicting α ∈ Z. �

3.4.11 Remark. Let A be any ring and X = Sper(A), equipped with the Harrison
topology. As we have seen, the topological space X has the following properties:

(1) X is a quasi-compact T0-space,
(2) the topology of X has a basis of open quasi-compact sets that is stable under

finite intersections,
(3) every closed irreducible subset of X has a generic point.

(For (2), one may take all basic open sets.) A topological space X with properties
(1)–(3) is called a spectral space. If X is any spectral space, a subset of X is called
constructible if it is a finite Boolean combination of open quasi-compact subsets.
The constructible topology on X is defined to be the topology that has all con-
structible sets as a basis of open sets. Note that this generalizes the case of real
spectra, by Corollary 3.4.9. The analogue of Theorem 3.4.7 holds for all spectral
spaces: Every spectral space is a Boolean space when equipped with its constructible
topology. Examples of spectral spaces, other than real spectra, are Zariski spectra of
arbitrary (commutative) rings. A remarkable theorem of Hochster [96] states that,
conversely, every spectral space is homeomorphic to the Zariski spectrum of some
ring.

A map f : X → Y between spectral spaces X and Y is said to be a spectral
map if f is continuous with respect to both the original (spectral) topologies and
the constructible topologies. In other words, f is a spectral map if, and only if, the
preimage of every open quasi-compact subset of Y is open in X and quasi-compact.
The category of spectral spaces and spectral maps is dual (anti-equivalent) to the
category of distributive lattices: This is the famous Stone duality. We will discuss a
particular instance of this duality in Section 4.1, when the real spectrum of semial-
gebraic sets is considered.

All this and much more can be found in the book [52] by Dickmann, Schwartz
and Tressl.

We continue with consequences of Theorem 3.4.7.

3.4.12 Definition. A subset X ⊆ Sper(A) is pro-constructible if it is an intersection
of constructible subsets of Sper(A).

3.4.13 Proposition.

(a) A subset X ⊆ Sper(A) is pro-constructible if and only if X is closed (equiva-
lently, compact) in the constructible topology of Sper(A).
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(b) Every covering of a pro-constructible set by constructible sets has a finite sub-
covering.

(c) Every family (Xi)i∈I of pro-constructible sets has the finite intersection property:
If

⋂
j∈J X j , ∅ for every finite subset J ⊆ I, then

⋂
i∈I Xi , ∅.

Proof. (a) Pro-constructible sets are clearly closed in Sper(A)con. Conversely, if X
is closed then the complement of X is open. Therefore it is a union of constructible
sets, which means that X is pro-constructible. The other statements follow from (a)
and from compactness of Sper(A)con. �

3.4.14 Proposition. Let X be a pro-constructible subset of Sper(A).

(a) X =
⋃
α∈X {α}: The (Harrison) closure of X consists of all specializations of

points of X.
(b) If Y ⊆ X is an irreducible subset that is (Harrison) closed relative to X, then

there is α ∈ Y with Y = X ∩ {α}.

Proof. (a) Given β ∈ X, every finite sub-intersection of⋂{
X ∩ U : U ⊆ Sper(A) open constructible, β ∈ U

}
is non-empty. So the total intersection is non-empty by 3.4.13(c), which means that
there exists α ∈ X with α β.

(b) The relative closure Y of Y in X is irreducible, so it has a generic point α ∈ Y
by 3.4.10. Since Y is pro-constructible, there exists β ∈ Y with β  α, by (a). But
also α β, and so α = β ∈ Y . �

3.4.15 Remarks.

1. Proposition 3.4.14(a) is very useful. It implies that a pro-constructible set in
Sper(A) is (Harrison) closed as soon as it is stable under specialization. Passing to
the complement, a constructible set is (Harrison) open as soon as it is stable under
generalization.

2. Every finite subset of Sper(A) is pro-constructible (by 3.4.13(a)).
3. Every pro-constructible subset X of Sper(A) is itself a spectral space (in the

Harrison topology). Indeed, properties (1) and (3) from Remark 3.4.11 hold by
3.4.13(a) and 3.4.14(b), respectively, and (2) is a direct consequence of (1).

4. If X is a quasi-compact subset of Sper(A), the set

Gen(X) := {α ∈ Sper(A) : {α} ∩ X , ∅}

of all generalizations of elements of X is pro-constructible (Exercise 3.4.10).
5. Let ϕ : A → B be a ring homomorphism, let f = ϕ∗ : Sper(B) → Sper(A)

be the induced map. Both preimages and images of pro-constructible sets under f
are again pro-constructible. (For images this follows from 3.4.13(a) by the com-
pactness theorem 3.4.7.) In particular, the fibre f −1(α) of any α ∈ Sper(A) is a
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pro-constructible set in Sper(B). Images of constructible sets are not in general con-
structible, but they are if A is Noetherian and B is finitely generated as an A-algebra
(Exercise 3.4.4).

6. If A is a general ring, the closure of a constructible set in Sper(A) need not
be constructible. An example where this fails can be found in [3], p. 199. Under
quite general assumptions on A, though, it is true that closures of constructible sets
are again constructible. For example, this is so when A is an excellent ring ([3]
Proposition VII.6.1). In 4.2.5 we’ll see this property in the case where A is a finitely
generated algebra over a real closed field.

7. The definition of pro-constructible sets, together with Propositions 3.4.13,
3.4.14 and Remarks 1–5 above, generalizes to arbitrary spectral spaces.

Recall the general definition of Krull dimension for topological spaces (A.1.4).
For real spectra, and more generally for all spectral spaces, we have:

3.4.16 Proposition. If X is a spectral space, the Krull dimension dim(X) is the
supremum of all lengths d of finite specialization chains α0  · · ·  αd in X
(with αi−1 , αi for i = 1, . . . , d).

Proof. The irreducible closed subsets of X are precisely the closures {α} of single-
tons, and {α} is a proper subset of {β} if and only if β α and β , α. This implies
the proposition immediately. �

From Corollary 3.1.13 we see:

3.4.17 Corollary. dim(Sper A) ≤ dim(A) for every ring A. ut

So far, everything that we discussed for real spectra is in fact true for arbitrary
spectral spaces (3.4.11). Now we’ll see properties that are particular for real spectra.

3.4.18 Definition. Let X be a topological space. By Xmin (resp. Xmax) we denote
the set of all points x ∈ X that are minimal (resp. maximal) in X with respect to
specialization. In other words, Xmax consists of the closed points of X, while Xmin
consists of those points of X that are not contained in the closure of any other point.

3.4.19 Proposition. Let X ⊆ Sper(A) be a pro-constructible set.

(a) Every point α ∈ X has a unique specialization in Xmax.
(b) The subset Xmax of X is compact (and in particular, Hausdorff) in the relative

Harrison topology.

Proof. Let α ∈ X. The intersection

Z :=
⋂

β∈X∩{α}

(
X ∩ {β}

)
is non-empty. Indeed, the sets X ∩ {β} are pro-constructible, and the intersection of
any finite subsystem is non-empty since {α} is a chain with respect to specialization
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(Proposition 3.1.12(c)). If β ∈ Z then β ∈ Xmax ∩ {α}. Uniqueness of β follows again
from 3.1.12(c).

This proves (a). Note that (a) implies that X is the only neighborhood of Xmax in
X. Indeed, there cannot be a closed subset Y , ∅ of X with Y ∩ Xmax = ∅ since
such Y would be pro-constructible, and so Ymax (which is a subset of Xmax) would
be non-empty by (a), a contradiction. Therefore, Xmax is quasi-compact since X is.
It remains to show that Xmax is Hausdorff, so let α , β in Xmax. Neither of them
specializes to the other, so there are f , g ∈ A with f (α) > 0, f (β) ≤ 0 and g(β) > 0,
g(α) ≤ 0. Therefore UA( f − g) and UA(g − f ) are disjoint open neighborhoods of α
and β, respectively. �

3.4.20 Remarks.

1. In every spectral space X, it is true that Xmax ∩ {x} , ∅ for every x ∈ X (one
has to use an argument that is different from the one in the above proof). But the
other statements in 3.4.19 (uniqueness in (a), the Hausdorff property in (b)) usually
fail completely for Zariski spectra, even of decent rings like C[x].

2. For a spectral space X, property (a) of Proposition 3.4.19 is equivalent to X
being a normal topological space (Exercise 3.4.12). When X is a pro-constructible
set in Sper(A), we deduced this property from the fact that {α} is a chain under
specialization, for α ∈ X. A spectral space with this latter property has been called
a spectral root system in [52]. This property is much stronger than being normal.
It turns out that real spectra of rings are still not characterized by this property, i.e.
there exist spectral root systems that are not real spectra (Delzell–Madden [51]).

3. The set Sper(A)max of closed points usually fails to be pro-constructible (Ex-
ercise 3.4.11).

4. Every compact topological space is homeomorphic to the maximal real spec-
trum Sper(A)max of some commutative ring A, as we will see in Exercise 3.6.16.

Exercises

3.4.1 Let A be a ring and let M be a symmetric matrix with coefficients in A. For α ∈ Sper(A) let
signα(M) denote the signature of the matrix rα(M) over R(α). Show for k ∈ Z that the set
{α ∈ Sper(A) : signα(M) = k} is constructible in Sper(A).

3.4.2 For any ring A, show that the support map Sper(A) → Spec(A) is spectral (Remark 3.4.11).
If A is Noetherian and X is any pro-constructible subset of Sper(A), conclude that there exists
a finite subset X0 of X with the following property: For every α ∈ X there is β ∈ X0 with
supp(β) ⊆ supp(α).

3.4.3 Let R be a real closed field, let x = (x1, . . . , xn) with n ≥ 1, and let ι : Rn → Sper R[x] be the
natural embedding (3.3.1). A finite subset of Sper R[x] is constructible in Sper R[x] if and
only if it is contained in ι(Rn).

3.4.4 Let A be a Noetherian ring and let ϕ : A → B be a finitely generated A-algebra. Then the
induced map ϕ∗ : Sper(B) → Sper(A) sends constructible sets to constructible sets. Give
an example of a ring homomorphism ϕ for which ϕ∗ does not have this property. (Hint
on the first part: If Y ⊆ Sper(B) is constructible, write ϕ∗(Y) as solution set of a suitable
A-sentence.)
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3.4.5 If K/k is a finitely generated field extension, show that the restriction map Sper(K) →
Sper(k) is an open map. This generalizes Exercise 3.1.7.

3.4.6 Let R be a real closed field, let K/R be a finitely generated field extension of transcendence
degree n ≥ 1, and assume that the field K is real. For any real closed field extension S/R with
trdegR(S ) ≥ n, prove that there exists an R-embedding K → S . Hint: Use a transcendence
basis for K/R and observe Exercise 3.4.5.

3.4.7 Show that the conclusion of Proposition 3.3.13 remains true when the set X(T ) is replaced
by an arbitrary closed subset X of Sper(A).

3.4.8 Let A be a ring, let P be a positive cone of A, and let Q be the specialization of P in
Sper(A)max (Proposition 3.4.19). Show that an element a ∈ A lies in supp(Q) if and only
a does not divide any element of 1 + P.

3.4.9 For α, β ∈ Sper(A), show that the following are equivalent:

(i) α and β are incomparable with respect to specialization, i.e. α < {β} and β < {α};
(ii) there is f ∈ A with f (α) > 0 and f (β) < 0;

(iii) there exist open neighborhoods U of α and V of β with U ∩ V = ∅.

3.4.10 Let A be a ring, let X ⊆ Sper(A) be a pro-constructible set, and let

Gen(X) =
{
α ∈ Sper(A) : {α} ∩ X , ∅

}
,

the set of all generalizations of elements in X.

(a) Every neighborhood of X in Sper(A) contains a constructible neighborhood of X.
(b) The set Gen(X) is pro-constructible in Sper(A), and is the intersection of all open neigh-

borhoods of X in Sper(A).
(c) If a constructible subset K of Sper(A) contains Gen(X), then K contains a neighborhood

of X in Sper(A).

3.4.11 Let R be a real closed field and let V be an affine R-variety. Show that the set (Sper R[V])max

of closed points of Sper R[V] is pro-constructible in Sper R[V], (if and) only if V(R) is a
finite set. (An easier way of reasoning will be available after Section 4.6, see Exercise 4.6.4
for a more general formulation.)

3.4.12 For every spectral topological space X, the following are equivalent:

(i)
∣∣∣{x} ∩ Xmax

∣∣∣ = 1 for every x ∈ X;
(ii) X is a normal topological space, i.e., any two disjoint closed subsets of X have disjoint

open neighborhoods in X.

Hint: Use Exercise 3.4.10.

3.4.13 Let X be a normal spectral space (Exercise 3.4.12). The map ρ : X → Xmax defined by
ρ(x) ∈ {x} ∩ Xmax (x ∈ X) is called the canonical retraction of X to Xmax.

(a) The map ρ is continuous and closed.
(b) Y 7→ ρ(Y) defines a bijection between the connected components Y of X and the con-

nected components of Xmax.

3.5 Convex subrings of ordered fields and valuations

Convex subrings of ordered rings or fields are strongly related to valuations and
valuation rings. In this section we’ll be working at the level of ordered fields, in the
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next section we consider general ordered rings. The central result here is the Baer–
Krull theorem 3.5.11. We refer to the appendix (Section A.5) for terminology and
basic facts on (Krull) valuations and valuation rings. We isolate the following basic
fact for its importance:

3.5.1 Proposition. If v is a valuation of a field K, and if the residue field of v is real,
then v(

∑
i a2

i ) = 2 mini v(ai) for arbitrary ai ∈ K.

See Exercise 3.5.1 for the proof of a more general version.

3.5.2 Definition. Let (K, P) be an ordered field. A subset M ⊆ K is said to be P-
convex if a, b ∈ M, c ∈ K and a <P c <P b imply c ∈ M. The smallest P-convex set
that contains a given set M ⊆ K is called the P-convex hull of M in K.

In Section 3.6 we’ll consider notions of convexity that are more general.
Valuation rings play a key role in many areas of real algebra and geometry. One

main reason for their importance lies in the following fact. Taken by itself it is almost
trivial:

3.5.3 Proposition. If (K, P) is an ordered field, every P-convex subring of K is a
valuation ring of K.

Proof. Let B ⊆ K be a P-convex subring. Then [−1, 1]P ⊆ B. So if a ∈ K∗ satisfies
|a| ≤P 1 then a ∈ B. If |a| >P 1 then |a−1| <P 1, and hence a−1 ∈ B. �

3.5.4 Proposition. Let (K, P) be an ordered field and let A be a subring of K.

(a) The P-convex hull of A in K is a subring (and hence a valuation ring) of K.
(b) A is P-convex in K if and only if [0, 1]P ⊆ A.
(c) If A is P-convex in K then so is every A-submodule of K (in particular, every

ideal of A and every overring of A in K).

Proof. (a) Let A ⊆ K be an additive subgroup, let B be its P-convex hull. Then
B =

⋃
0≤a∈A[−a, a]P, which is again an additive subgroup of K. If A is a subring

of K then so is B. To prove (b) and (c) assume [0, 1]P ⊆ A, and let M be an A-
submodule of K. If x ∈ M and x ≥P 0, then [−x, x]P = {ax : a ∈ K, a ∈ [−1, 1]P} is
contained in Ax ⊆ M, which shows that M is P-convex. �

3.5.5 Proposition. Let (K, P) be an ordered field and let B be a valuation ring of K.
The following are equivalent:

(i) B is P-convex in K;
(ii) the maximal ideal m = mB is P-convex in B;

(iii) −1 <P a <P 1 for every a ∈ m.

If these conditions hold, B and P are said to be compatible with each other.

Proof. (i)⇒ (ii) holds by 3.5.4(c), and (ii)⇒ (iii) is trivial. Assuming (iii), it suffices
to show [0, 1]P ⊆ B to get (i) (3.5.4(b)). So let x ∈ K with 0 <P x <P 1. If x < B we
would get 1

x ∈ m, contradicting (iii) since 1
x >P 1. �
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3.5.6 Construction. Let (K, P) be an ordered field. Let B be a P-convex subring of
K, let m = mB and k = B/m, and write a = a +m for a ∈ B. The subset

P :=
{
a : a ∈ B, a ≥P 0

}
of k is a positive cone of k. Indeed, P + P ⊆ P, P · P ⊆ P and P ∪ (−P) = k are
immediate. Assuming −1 ∈ P, there would be an element a ∈ B with a ≥P 0 and
1 + a ∈ m, contradicting 3.5.5. The positive cone P, or the corresponding ordering
of k, is called the residue ordering of k induced by P. Note that, by construction,

signP(u) = signP(u)

holds for every unit u of B. We see in particular:

3.5.7 Corollary. Every convex subring of an ordered field K is a valuation ring of
K, and its residue field is real. ut

3.5.8 Example. For any ordered field (K, P), the P-convex hull O(P) = {a ∈ K:
∃ n ∈ N −n ≤P a ≤P n} of Z in K is a valuation ring of K, with maximal ideal
I(P) = {a ∈ K : ∀ n ∈ N −1 ≤P na ≤P 1}. The ordering P induced by P on the
residue field k of O(P) is an Archimedean ordering of k. In particular, there exists
a natural field embedding k → R. The elements of I(P) are called the infinitesimal
elements of K with respect to P.

3.5.9 Example. Let R be a real closed field and let S = R((t1/∞)), the field of formal
Puiseux series over R (see 1.4.10). The field S has a natural Krull valuation v with
value group Q, given by

v

 ∞∑
k=m

aktk/d

 =
m
d

if d ≥ 1, ak ∈ R and am , 0. The valuation ring B = Ov of v is the convex hull of R
in S .

The following result on convex subrings of real closed fields will be useful in the
next chapter.

3.5.10 Proposition. Let R be a real closed field. For every convex subring B of R,
the following are true:

(a) The residue field k = B/mB of B is real closed.
(b) The natural homomorphism π : B → k has a section, i.e. there is a homomor-

phism s : k → B such that π ◦ s = idk.

Proof. (a) Let f ∈ B[t] be a monic polynomial of odd degree. Then f has a root
α in R, and α ∈ B since B is integrally closed. Therefore k has no proper field
extensions of odd degree. Moreover, the set of squares in k is a positive cone of k,
corresponding to the residue ordering induced by the ordering of R (3.5.6). So k is
real closed by Proposition 1.2.7.
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(b) By Zorn’s lemma there exists a subfield F of R that is contained in B and that
is maximal with respect to this property. Since B is integrally closed, F is relatively
algebraically closed in R, and so F is real closed itself. To prove (b) it suffices to
show that π(F) = k. Assume to the contrary that there is b ∈ B with π(b) < π(F).
Since π(F), being real closed, is relatively algebraically closed in k, it follows that
π(b) is transcendental over π(F). This means F[b]∩mB = {0}. But then the subfield
F(b) of R is contained in B, contradicting the maximal choice of F. �

The next theorem provides a strong converse to Corollary 3.5.7:

3.5.11 Theorem. (Baer–Krull) Let B be a valuation ring of a field K and let Q be a
positive cone of the residue field k = B/m. Then there is a natural bijection between
the following two sets:

(1) The set of all positive cones P of K that are compatible with B and satisfy
P = Q;

(2) the set of all group homomorphisms χ : K∗ → {±1} with χ(u) = signQ(u) for all
u ∈ B∗.

If Γ = K∗/B∗ denotes the value group of B, both sets (1), (2) are in non-canonical
bijection with the group Hom(Γ, {±1}). In particular, they are non-empty.

Proof. If P is a positive cone as in (1) then χP(a) := signP(a) (a ∈ K∗) is a character
as in (2) (see 3.5.6), and it is obvious that P is determined by χP. Conversely let χ
be as in (2), we show that P := {0} ∪ ker(χ) is a positive cone of K. Clearly PP ⊆ P
and P ∪ (−P) = K hold, and also −1 < P since χ(−1) = −1. Let a, b ∈ K∗ with
χ(a) = χ(b) = 1. After switching a and b if necessary we may assume b

a ∈ B.
Note that χ( b

a ) = 1. Therefore, if b
a = u is a unit of B then u >Q 0 in k, hence also

1 + u >Q 0. This implies χ(1 + u) = 1, and so χ(a + b) = χ(a(1 + u)) = 1. On the
other hand, if b

a ∈ m then v = 1 + b
a is a unit of B with v >Q 0, and so again χ(v) = 1

and χ(a + b) = χ(av) = 1. So we have proved that P is a positive cone of K. In fact,
P is compatible with B. Indeed, for a ∈ m we have χ(1 ± a) = 1, hence 1 ± a >P 0,
which showsm ⊆ ]−1, 1[P, and an application of Proposition 3.5.5 shows that P and
B are compatible. By construction we have P = Q.

To prove the last assertion, consider the exact sequence of abelian groups 1 →

B∗
i
−→ K∗

v
−→ Γ → 0, together with the homomorphism B∗

π
−→ k∗. Tensorizing

the sequence with Z/2Z leaves it exact since the value group Γ has no torsion. So
we get the exact sequence

1→ B∗/B∗2 → K∗/K∗2 → Γ/2Γ → 0. (3.3)

Dualizing both sequence (3.3) and the homomorphism π, we get the exact sequence

1→ Hom(Γ, {±1})→ Hom(K∗, {±1})
i∗
−→ Hom(B∗, {±1})→ 1 (3.4)

plus the inclusion π∗ : Hom(k∗, {±1}) ⊆ Hom(B∗, {±1}). The characters χ in (2) are
precisely the preimages of π∗(signQ) under i∗. Since i∗ is surjective, the set (2) is
non-empty and the last assertion follows. �
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3.5.12 Remark. By fixing a basis of the Z/2Z-vector space Γ/2Γ = K∗/B∗K∗2, we
find a family xi (i ∈ I) of elements of K∗ with the property that every x ∈ K∗

has a representation x = uy2 ∏
j∈J x j with u ∈ B∗ and y ∈ K∗, where J ⊆ I is a

finite set that is uniquely determined by x. In these terms we may state the Baer–
Krull theorem as follows: For any given family of signs εi ∈ {±1} (i ∈ I) there
exists a unique ordering P of K that is compatible with B and satisfies P = Q and
signP(xi) = εi for every i ∈ I. In particular, signP(x) = signQ(u)

∏
j∈J ε j for x as

above.

3.5.13 Example. Let B be a discrete valuation ring with prime element t ∈ m. The
value group Γ = K∗/B∗ is infinite cyclic, generated by v(t) = tB∗. Let Q be an or-
dering of k = B/m. According to Theorem 3.5.11, there are precisely two orderings
P1, P2 of K that are compatible with B and induce Q on k. Note that P1, P2 are
distinguished by the sign of t. In the case of a formal power series ring B = k[[x]],
we have already seen this in 3.1.14.4 by a direct argument.

3.5.14 Example. Let n ≥ 1 and x = (x1, . . . , xn), let Γ = Zn
lex denote the additive

group Zn, ordered lexicographically. Let k be a field, let v : k(x)∗ → Γ be the valua-
tion defined by v(xα) = α for α ∈ Γ and v(c) = 0 for c ∈ k∗. If f =

∑
α cαxα is a non-

zero polynomial with support supp( f ) = {α : cα , 0}, then v( f ) = minlex supp( f ),
the lex-smallest multi-index α with cα , 0. Given an ordering Q of k, there are
exactly 2n orderings Pε of k(x), parametrized by ε = (ε1, . . . , εn) ∈ {±1}n, that are
compatible with the valuation v and induce the residue ordering Q on k. The order-
ing Pε is characterized by signPε (xi) = εi (i = 1, . . . , n) and by c|xα| <Pε |x

β| for
every c ∈ k whenever the first non-zero entry of α − β is positive. For 0 , f ∈ k[x]
as above, the sign of f with respect to Pε is therefore

signPε ( f ) = εv( f ) signQ
(
cv( f )

)
(3.5)

using multinomial notation εα =
∏

i ε
αi
i . Note that v extends to a valuation of k((x)),

the quotient field of the ring of formal power series k[[x]], with the same value
group Γ. Similarly, the orderings Pε extend to orderings of k((x)), with the same
characterization (3.5) for non-zero power series f =

∑
α cαxα ∈ k[[x]].

Exercises

3.5.1 Let K be a field, let v be a valuation of K and let f1, . . . , fr ∈ K. Assume that there exists an
ordering ≤ of K that is compatible with v and such that fi ≥ 0 for i = 1, . . . , r. Show that

v( f1 + · · · + fr) = min{v( f1), . . . , v( fr)}.

This generalizes Exercise 1.1.10. (A “geometric” version of this fact will be stated in Exer-
cise 4.6.3.)

3.5.2 Let K be a field. Show that K has a proper valuation ring B , K with real residue field if,
and only if, K admits a non-Archimedean ordering.
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3.5.3 Let B be a valuation ring of a field K, with value group ΓB, and let C be a subring of K that
contains B.

(a) Show that mC ⊆ mB and that B := B/mC is a valuation ring of C/mC = kC .

(b) There is a natural exact sequence 0 → ΓB
i
−→ ΓB → ΓC → 0 of the value groups.

Moreover i(ΓB) is a convex subgroup of ΓB, and the maps are order-preserving in the
sense that they send non-negative elements to non-negative elements.

(c) Conclude that the overrings of B in K are in natural bijective correspondence with the
convex subgroups of ΓB, and also with the prime ideals of B. Make these correspon-
dences explicit.

3.5.4 Let B be a convex subring of a real closed field. Show that the support map Sper(B) →
Spec(B) is a homeomorphism.

3.6 Specialization in the real spectrum

We now relate specializations in the real spectrum of a ring A to convex subrings of
ordered residue fields of A, and also to prime ideals of A that are convex in a suitable
sense. We start by setting up a general framework of convexity in rings or abelian
groups. With an eye on later applications (Chapter 5), this will be done in greater
generality than needed at this moment.

3.6.1 Let G be an abelian group, written additively, and let M ⊆ G be a subsemi-
group (always containing 0). For a, b ∈ G write

a ≤M b :⇔ b − a ∈ M.

The relation ≤M on G is transitive and reflexive, and is compatible with addition, i.e.
a ≤M b and c ∈ G imply a+c ≤M b+c. The subgroup supp(M) := M∩ (−M) of G is
called the support of M. Note that M induces a partial ordering (again denoted ≤M)
on the quotient group G := G/ supp(M), again compatible with addition. The latter
is a total ordering, i.e. makes G an ordered abelian group, if and only if M∪ (−M) =

G.

3.6.2 Lemma. Let M ⊆ G be a semigroup. For any subgroup H ⊆ G, the following
are equivalent:

(i) ∀ a, b ∈ H ∀ c ∈ G
(
a ≤M c ≤M b⇒ c ∈ H

)
;

(ii) ∀ a, b ∈ M
(
a + b ∈ H ⇒ a, b ∈ H

)
;

(iii) supp(M + H) = H.

If these conditions hold, the subgroup H of G is said to be M-convex.

Proof. The proofs are straightforward: Suppose that (i) holds, and let a, b ∈ M with
a + b ∈ H. Since 0 ≤M a, b ≤M a + b, (i) implies a, b ∈ H, proving (ii). Assuming
(ii) let a ∈ supp(M + H), which means a = x1 + h1 = −(x2 + h2) where xi ∈ M and
hi ∈ H (i = 1, 2). Since x1 + x2 ∈ H, (ii) implies that x1, x2 ∈ H, and hence a ∈ H.
This proves supp(M + H) ⊆ H, and the opposite inclusion is trivial. Now assume
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(iii), let a, b ∈ H and c ∈ G such that a ≤M c ≤M b, which means c − a ∈ M and
b − c ∈ M. Then c = (c − a) + a ∈ M + H and −c = (b − c) − b ∈ M + H, and so
c ∈ supp(M + H) = H by (iii). �

3.6.3 Example. Let (G,≤) be a totally ordered abelian group, and let M = {a ∈
G : a ≥ 0}, the semigroup of non-negative elements in G. Then the M-convex sub-
groups of G are just the convex subgroups of M in the usual sense.

3.6.4 Lemma. Let M ⊆ G be a semigroup.

(a) Every M-convex subgroup of G contains S = supp(M) = M ∩ (−M). The map
H 7→ H/S defines a bijective correspondence between the M-convex subgroups
H of G and the M/S -convex subgroups of G/S .

(b) Assume that M∪ (−M) = G. Then the M-convex subgroups H of G form a chain
under inclusion (i.e., any two of them are comparable with respect to inclusion),
and M + H = M ∪ H holds for each of them.

Proof. (a) Let H ⊆ G be a M-convex subgroup. Then H = supp(M + H) by 3.6.2,
from which supp(M) ⊆ H is clear. If H is any subgroup of G with S ⊆ H, then
condition 3.6.2(ii) holds for G, H and M if and only if it holds for G/S , H/S and
M/S , respectively.

(b) Assume that M ∪ (−M) = G. The first assertion follows from the general
fact that, in any (totally) ordered abelian group, the convex subgroups form a chain
under inclusion. In more detail, let H1, H2 ⊆ G be M-convex subgroups and assume
H1 * H2. So there is h1 ∈ H1 r H2, and we may assume h1 ∈ M. For every h2 ∈ H2
it follows that −h1 ≤M h2 ≤M h1 (otherwise get a contradiction to H2 being M-
convex), and therefore h2 ∈ H1 since H1 is M-convex, showing that H2 ⊆ H1. To
prove the last assertion, let x = p + h with p ∈ M, h ∈ H and assume x < M. Then
−x ∈ M, and so −h = (−x) + p ∈ H implies −x ∈ H by 3.6.2(ii)). Hence also x ∈ H,
which shows M + H = M ∪ H. �

Now we return to real spectra of rings. If A is a ring and α ∈ Sper(A) has associ-
ated positive cone Pα ⊆ A, the notion of Pα-convex ideals I of A is defined by 3.6.2.
Such an ideal I will simply be called α-convex, so an ideal I ⊆ A is α-convex iff
a, b ≥α 0 and a + b ∈ I implies a, b ∈ I. By Lemma 3.6.4, the α-convex ideals I of
A form a chain under inclusion, and supp(α) ⊆ I holds for each of them.

3.6.5 Corollary. Let α ∈ Sper(A). The support map

supp: {α} → Spec(A), β 7→ supp(β)

defines a bijective correspondence between the specializations β of α in Sper(A) and
the α-convex prime ideals q of A. The inverse map is given by

q 7→ Pα + q = Pα ∪ q.

Proof. Let β ∈ {α} and q = supp(β). Then Pβ = Pα + q by 3.1.12(b), and so q =

supp(Pα+q), which means that q is α-convex (3.6.2). Conversely, if q is an α-convex
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prime ideal of A, then supp(Pα + q) = q, again by 3.6.2. Therefore the preordering
Pα + q is a positive cone, see 3.2.2.1. �

Note that, in view of Corollary 3.6.5, the key properties 3.1.12(b) and (c) of the
real spectrum can be seen as particular cases of Lemma 3.6.4(b).

3.6.6 Remark. Let (B,m, k) be a local domain with quotient field K = qf(B). If
α, β ∈ Sper(B) satisfy supp(α) = {0} and supp(β) = m, the following are equivalent:

(i) α β in Sper(B);
(ii) signα(u) = signβ(u) holds for every unit u ∈ B∗.

This is nothing but the definition of specialization. Now let B be a valuation ring.
Observing that α (resp. β) is naturally identified with an ordering of K (resp. k),
another equivalent condition is:

(iii) α is compatible (cf. 3.5.5) with the valuation ring B, and β = α, the residue
ordering induced by α.

Indeed, (ii) implies 1 + b >α 0 for all b ∈ m, which means that B is α-convex in K
(Proposition 3.5.5). Conversely, if α and B are compatible then (ii) holds for β = α,
see 3.5.6.

3.6.7 Remark. In particular, the valuation ring B of K is compatible with the order-
ing α of K if, and only if, α has a specialization β in Sper(B) with supp(β) = m. If
so, then β = α is the residue ordering of α. Hence we may rephrase the statement
of the Baer–Krull theorem as follows: Let B be a valuation ring with value group Γ,
and let β ∈ Sper(B) with supp(β) = mB. Then the set of generalizations α of β in
Sper(B) with supp(α) = {0} is in bijection with Hom(Γ, {±1}).

By inductively applying the Baer–Krull theorem for discrete valuation rings, we
deduce an important consequence:

3.6.8 Theorem. Let (A,m) be a regular local ring of dimension d. Then for any
β ∈ Sper(A) with supp(β) = m, there exists a sequence α0  α1  · · · αd = β
of length d of proper specializations in Sper(A), that ends with β.

Proof. If d = 0 there is nothing to be shown. If d = 1 then A is a discrete valuation
ring, and the assertion is a consequence of the Baer–Krull theorem, cf. Remark
3.6.7. For d > 1 we proceed by induction on d. Let a ∈ m r m2, then the principal
ideal p = Aa of A is prime, and the quotient ring A/p is regular of dimension d − 1
(see A.4.5). The localized ring Ap is a local domain, not a field, and its maximal
ideal is generated by a. Therefore Ap is a discrete valuation ring, with residue field
Ap/pAp = qf(A/p).

By the inductive hypothesis, applied to A/p, there exists a chain α1  · · ·  
αd = β in Sper(A) of length d − 1 such that supp(α1) = p. In particular, α1 is
an ordering of the residue field of Ap. Therefore, by the first step (case of discrete
valuation rings), there exists α0 ∈ Sper(A) with supp(α0) = {0} and with α0  α1.
This completes the proof. �
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The localization of a regular local ring at an arbitrary prime ideal is again regular,
see A.4.5. So we conclude:

3.6.9 Corollary. If A is a regular local ring with quotient field K, any point in
Sper(A) has a generalization that lies in Sper(K), i.e. has support {0}. ut

3.6.10 Remark. When we proved the Artin–Lang theorem (Theorem 1.7.8), we
used an ad hoc argument to settle the implication (iii) ⇒ (ii) there. Using Theo-
rem 3.6.8, this step becomes immediate. Indeed, in the situation at hand, X is an
irreducible variety over a real closed field R, with a non-singular R-point ξ ∈ X(R).
The local ring OX,ξ = Oξ of X at ξ is a regular local domain of dimension dim(X),
with residue field R. The ordering of the residue field, considered as an element of
Sper(Oξ), has a generalization α in Sper(Oξ) with support {0}, as a consequence of
Theorem 3.6.8. This means that α is an ordering of qf(Oξ) = R(X) that satisfies
signα( f ) = sign f (ξ) for every f ∈ Oξ with f (ξ) , 0. The existence of an ordering α
with this property is exactly what had to be proved.

3.6.11 Example. Let R be a real closed field, let n ≥ 1 and x = (x1, . . . , xn). For
every point ξ ∈ Rn there is a specialization chain αn  αn−1  · · · α1  α0 = ξ
in Sper R[x] of length n, that ends in ξ. This follows from Theorem 3.6.8 since the
local ring Oξ = R[x]mξ at ξ is regular of dimension n. It is easy to construct such
chains explicitly. After a coordinate translation assume that ξ is the origin in Rn.
Then take any of the orderings Pε of R(x) that were discussed in 3.5.14, and consider
it as a positive cone of R[x] with support {0}. If we do this for ε = (1, . . . , 1), we get
the positive cone

P = {0} ∪
{

f =
∑
α

cαxα : f , 0, cv( f ) > 0
}

of R[x] (with v( f ) = minlex(supp( f )) as in 3.5.14). The closure of the singleton {P}
in Sper R[x] is a chain of length n as above, namely

P  P + 〈x1〉  P + 〈x1, x2〉  · · ·  P + 〈x1, . . . , xn〉,

cf. 3.1.12(b). The support of the i-th ordering Pi = P + 〈x1, . . . , xi〉 is 〈x1, . . . , xi〉,
and Pn is identified with the point ξ under the embedding ι (3.3.1).

3.6.12 Remark. Conversely, if we start from an arbitrary ordering α ∈ Sper R[x]
with supp(α) = {0}, then α has at most n proper specializations. In fact there may
be less, for two different reasons. First, the closed specialization α of α need not be
an R-rational point. For example, α may lie “at infinity”, meaning that |xi| >α c for
some index i and every c ∈ R. If R , R, it may also happen that |xi| <α c for some
c ∈ R and all i, but still the prime ideal supp(α) of R[x] is not maximal. Both cases
occur for n = 1 already (Example 3.1.14.3). If α < Rn then α will have less than n
proper specializations since the prime ideal supp(α) has height < n.

Second, gaps may occur in the specialization chain, or rather, in the chain of their
supports: If α = α0  α1  · · · αm = α is the full chain of specializations of α,
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and if pi = supp(αi), it may happen that dim R[x]/pi−1 > 1 + dim R[x]/pi for one or
several indices i. Examples are given in Exercise 3.6.15.

3.6.13 Example. The explicit construction of specialization chains of maximal
length in 3.6.11 extends from polynomial rings over R to polynomial rings over
any field k, after fixing an ordering of k. It also extends to the rings k[[x]] of formal
power series, essentially without change (cf. 3.5.14). In fact, we may even go one
step further and extend the construction to any regular local ring with a real residue
field. This is carried out in Exercise 3.6.8.

Back to specializations in general real spectra. For their study it is convenient to
represent orderings of rings by homomorphisms into real closed fields, as we did in
3.1.15. First consider a particular situation:

3.6.14 Lemma. Let A be a subring of a real closed field R, let α ∈ Sper(A) be the
point with positive cone Pα = A ∩ R+.

(a) If B is a convex subring of R with A ⊆ B, then mB ∩ A is an α-convex prime
ideal of A.

(b) Conversely, for every α-convex prime ideal q of A, there exists a convex subring
B of R that contains A such that q = mB ∩ A.

Proof. (a) is clear since mB is convex in R (3.5.5). Conversely let q be an α-convex
prime ideal of A, let B be the convex hull of Aq in R, a (convex) subring of R
(3.5.4(a)). We show mB ∩ A = q, with “⊆” being clear. Let a ∈ q, and assume
a < mB, which means 1

a ∈ B. By definition of B there exists b
s ∈ Aq with

∣∣∣ 1
a

∣∣∣ < ∣∣∣ b
s

∣∣∣,
hence 0 < s2 < (ab)2. Since b ∈ q and s < q, this contradicts the assumption that q
is α-convex in A. �

In (b) of the previous lemma, there will in general exist several convex overrings
B that dominate Aq. The ring constructed in the proof above is the smallest among
them, see Exercise 3.6.9 for more details.

Now consider the general case. If α ∈ Sper(A), recall that rα : A→ R(α) denotes
the canonical homomorphism into the real closed field associated with α (3.1.2).

3.6.15 Proposition. Let A be a ring, let α ∈ Sper(A). If B is a convex subring of
R(α) with rα(A) ⊆ B, the composite homomorphism

A
rα
−→ B → B/mB = kB (3.6)

represents a specialization β of α in Sper(A). Conversely, for every β ∈ {α} there
exists a convex subring B ⊆ R(α) with rα(A) ⊆ B such that β is represented by (3.6).

Proof. Recall that the residue field of B is real closed (Proposition 3.5.10). If f ∈ A
satisfies rα( f ) ≥ 0 in R(α), the residue class of rα( f ) in kB is ≥ 0, so the first
statement is clear. For the converse let p = supp(α). Replacing A by A/p we may
assume p = {0} and identify A with the subring rα(A) of R(α). Then we are in the
situation of Lemma 3.6.14. Let β ∈ {α}, then q := supp(β) is an α-convex prime ideal
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of A (Corollary 3.6.5). Therefore Lemma 3.6.14(b) gives a convex overring B of A
in R(α) with q = mB∩A, and so the composite homomorphism A ⊆ B→ B/mB = kB

represents a specialization β′ of α with supp(β′) = q = supp(β). This implies β′ = β
by 3.6.5. �

Altogether we have natural maps{
convex overrings
of rα(A) in R(α)

}
�

{
α-convex

prime ideals of A

}
∼
→

{
specializations
of α in Sper(A)

}
The left hand map B 7→ r−1

α (mB) is surjective by Lemma 3.6.14, the right hand map
is bijective by Corollary 3.6.5.

3.6.16 Corollary. Let ϕ : A → R be a homomorphism into a real closed field R, let
B be the convex hull of ϕ(A) in R and let ϕ0 : A → B be the induced homomor-
phism. Then the image of the map ϕ∗0 : Sper(B) → Sper(A) consists precisely of all
specializations of α := [ϕ] in Sper(A).

Proof. This follows directly from Lemma 3.6.14. ut

Finally we give a direct characterization of the closed points in the real spectrum.
We use the following terminology: If (K, P) is an ordered field and A is a subring
of K, we say that K is relatively Archimedean over A with respect to P if, for every
b ∈ K, there exists a ∈ A with b ≤P a. It is equivalent that K is the P-convex hull of
A in K.

3.6.17 Proposition. Let A be a ring, let α ∈ Sper(A) and p = supp(α). The following
are equivalent:

(i) α is a closed point of Sper(A);
(ii) the residue field κ(α) = qf(A/p) is relatively Archimedean over its subring A/p

with respect to α;
(iii) the real closed field R(α) is relatively Archimedean over its subring rα(A).

Proof. (i) ⇒ (ii): Let α be a closed point. By Proposition 3.6.5, {0} is the only α-
convex prime ideal of A/p. Let B denote the α-convex hull of A/p in its quotient
field κ = κ(p). The maximal ideal mB is α-convex in B (Proposition 3.5.5), and so
mB ∩ (A/p) is an α-convex prime ideal of A/p. It follows that mB ∩ (A/p) = {0},
which means that every non-zero element of A/p is a unit in B. Therefore B = κ,
which is condition (ii).

The implication (ii) ⇒ (iii) follows from Exercise 1.2.4, and (iii) ⇒ (ii) is triv-
ial. Suppose that (ii) holds, and assume that α admits a proper specialization β in
Sper(A). Then q := supp(β) is an α-convex prime ideal of A that strictly contains p
(3.6.5), so there exists a ∈ q r p. By (ii) there is b ∈ A with 1

a2 <α b in κ, hence
a2b >α 1. But a2b ∈ q, which contradicts the fact that q is an α-convex prime ideal
of A/p. �
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Exercises

3.6.1 Let G be an abelian group and H a subgroup of G, and let M be a semigroup in G.

(a) Show that supp(M + H) = {x ∈ G : ∃ h, h′ ∈ H with h ≤M x ≤M h′}, and that
supp(M + H) is the smallest M-convex subgroup of G that contains H. We write
OM(H) := supp(M + H) and call OM(H) the M-convex hull of H.

(b) The set O′M(H) = {x ∈ G : ∃ h ∈ H ∩ M with h ± x ∈ M} is an M-convex subgroup of
G, and is contained in OM(H).

(c) Show that O′M(H) = OM(H) if and only if the group H is generated by M ∩ H.

3.6.2 Let A be a ring, let α ∈ Sper(A) with associated positive cone Pα.

(a) If I is an ideal of A, show that the Pα-convex hull of I (Exercise 3.6.1) is { f ∈ A : ∃ g ∈ I
with | f (α)| ≤ g(α)}, and that this is an ideal of A.

(b) Arbitrary sums and intersections of α-convex ideals of A are again α-convex.
(c) Let I , 〈1〉 be an α-convex ideal of A. Show that

√
I is a prime ideal of A.

(d) Let I, J be α-convex ideals of A. Is the product ideal IJ again α-convex? Same question
for the radical

√
I of I.

3.6.3 Let R be a real closed field, let V be an affine R-variety in which V(R) is Zariski dense.
Show that the topological spaces Sper R[V] and Spec R[V] have the same Krull dimension.
(In Section 4.6, a much more general result will be proved.)

3.6.4 Prove the real analogue of going-up: If ϕ : A → B is an integral ring homomorphism, the
induced map ϕ∗ : Sper B→ Sper A sends closed sets to closed sets. (Hint: Use Proposition
3.6.15)

3.6.5 The going-down theorem does not hold in real algebra: Find a finite flat homomorphism
ϕ : A → B of integrally closed domains such that there are β ∈ Sper(B) and α ∈ Sper(A)
with α ϕ∗(β), but α , ϕ∗(β′) for every generalization β′ of β in Sper(B). (There exist very
easy examples.)

3.6.6 Let ϕ : A → B be a ring homomorphism and let α ∈ Sper(A). Show that the preimage of α
under ϕ∗ : Sper(B)→ Sper(A) is naturally homeomorphic to the real spectrum of B⊗A R(α).
(Hint: Start by reducing to the case where A is a field.)

3.6.7 Let R0 be the field of real algebraic numbers. As an application of Exercise 3.6.6, show that
the real spectra of Z[x1, . . . , xn] and of R0[x1, . . . , xn] are homeomorphic.

3.6.8 Prove the following refinements of Theorem 3.6.8 and Proposition A.5.5. Let (A,m) be a
regular local ring with field of fractions K, let a1, . . . , an be a regular system of parameters
in A, and let pi = 〈a1, . . . , ai〉 for i = 0, . . . , n, a prime ideal in A. By following the proof
of A.5.5 and using Exercise 3.5.3, show that there exists a valuation ring B of K with the
following properties:

(a) B dominates A, and the map kA → kB of the residue fields is an isomorphism;
(b) the value group ΓB is isomorphic to Zn

lex (as an ordered abelian group);
(c) if {0} = q0 ⊆ q1 ⊆ · · · ⊆ qn = mB are the prime ideals of B, then qi ∩ A = pi for

i = 0, . . . , n;
(d) if P ⊆ Sper(A) is a positive cone with supp(P) = {0}, and if P (considered as an ordering

of K) is compatible with B, show that P has exactly n + 1 different specializations in
Sper(A), namely the positive cones P + pi for i = 0, . . . , n.

3.6.9 In the situation of Lemma 3.6.14, this exercise provides more detailed information. Let A
be a subring of a real closed field R, let α ∈ Sper(A) be the point with support {0} and with
positive cone Pα = A ∩ R+, and let p be an α-convex prime ideal of A. Prove:

(a) There exist convex overrings B ⊆ C of A in R such that, for every convex overring D of
A in R, one has mD ∩ A = p if and only if B ⊆ D ⊆ C.
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(b) B is the convex hull of Ap in R, and the field extension κ(p) ⊆ kB is relatively Archime-
dean.

(c) C = Bq where q =
√

I and I is the convex hull of p in B.

Hint: Note that the residue field kB of B is real closed, and that every radical ideal , 〈1〉 in a
valuation ring is prime.

3.6.10 Let A be a ring and let α, β ∈ Sper(A). Show that α and β have no common specialization in
Sper(A) if, and only if, there exists f ∈ A with f (α) > 1 and f (β) < −1.

3.6.11 Let A be a semilocal ring (that is, A has only finitely many maximal ideals). Show that the
(compact) topological space Sper(A)max is totally disconnected.

3.6.12 Let A be a semilocal ring, and let α, β ∈ Sper(A) be such that signα(u) = signβ(u) holds for
every unit u of A. Then α and β have a common specialization in Sper(A). (Hint: Give an
indirect proof using Exercise 3.6.10)

3.6.13 Let ϕ : A → B be a ring homomorphism, let X ⊆ Sper(A) be the image set of the induced
map ϕ∗ : Sper(B)→ Sper(A).

(a) X is a pro-constructible subset of Sper(A).
(b) X is specialization-convex in Sper(A), i.e. given β0  β1 in Sper(B) and α ∈ Sper(A)

with ϕ∗(β0) α ϕ∗(β1), there exists β ∈ Sper(B) with β0  β β1 and ϕ∗(β) = α.
(c) Does the analogue of assertion (b) hold for Zariski spectra as well?

3.6.14 Let A be a ring. For every subset X of Sper(A), let the specialization-convex hull c(X) of X
be defined by

c(X) :=
{
α ∈ Sper(A) : ∃ β, γ ∈ X with β α γ

}
.

If X is pro-constructible, show that c(X) = X ∩ Gen(X), and that c(X) is again pro-
constructible.

3.6.15 Let A = R[x, y]. In both (a) and (b) below, an ordering α ∈ Sper(A) with supp(α) = {0} is
given. Show in either case that the only specialization of α in Sper(A) is the origin:

(a) Let β ∈ Sper(A) be defined by supp(β) = {0} and 0 < x � y � 1 (see Example 3.5.14
for the� notation), let ϕ : A→ A be the homomorphism with ϕ(x) = x, ϕ(y) = xy, and
let α = ϕ∗(β).

(b) Let α correspond to the positive cone P of R(x, y) from Exercise 1.2.3.

3.6.16 Every compact topological space X is homeomorphic to the maximal real spectrum of some
ring. In fact, let A = C(X,R) be the ring of continuous R-valued functions on X. Prove that
the natural map X → Sper(A)max is a homeomorphism.

3.7 Notes

The real spectrum of a ring was constructed and investigated by Coste and Roy,
beginning around 1979 [46], [47], [45]. Originally its introduction was motivated
by topos-theoretic considerations, but soon the usefulness for real algebraic geome-
try became apparent. Before, preorderings of general rings, and the set of maximal
(proper) preorderings, were introduced as early as 1964 by Krivine [113]. Note that
maximal preorderings in A are just the closed points in the real spectrum of A, by
Corollary 3.2.4. Krivine deduced the (abstract) positivstellensatz 3.2.7 and the real
nullstellensatz 3.2.10 in much the same way as we did, and also a version of the
geometric real nullstellensatz, using Tarski’s principle. However, Krivine’s paper
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went largely unnoticed at the time, and anyway, there didn’t yet exist anything like
a community in real algebraic geometry. The (geometric) real nullstellensatz was
reproved by Dubois and Risler [58], [169] in 1969–1970, the geometric positivstel-
lensatz was rediscovered by Stengle [202] in 1974. Neither of them was aware of
Krivine’s earlier work.

Spectral spaces were introduced in the 1930s by M. H. Stone. They appear natu-
rally in many fields of mathematics, like lattice theory, algebraic and real algebraic
geometry, valuation theory, logic and others. The term spectral space was coined by
Hochster [96], who proved that spectral spaces are precisely the topological spaces
homeomorphic to the Zariski spectrum of a commutative ring. The monograph [52]
by Dickmann, Schwartz and Tressl offers a comprehensive treatment of all aspects
of spectral spaces.

The Baer–Krull theorem goes back to work of Baer [9] and Krull [114] from 1927
and 1932, respectively. The relation between specializations in the real spectrum on
the one hand, and convex subrings of ordered residue fields on the other, is in [14].



Chapter 4
Semialgebraic Geometry

This chapter takes a closer look at semialgebraic sets. After introducing the ba-
sic correspondence between semialgebraic sets and constructible subsets of the real
spectrum, we use the real spectrum to prove the finiteness theorem (Section 4.2).
Next we discuss cylindrical algebraic decomposition (CAD), which is a key tech-
nique for the study of the geometry of semialgebraic sets. CAD is also important for
computational questions, since it can be obtained effectively. We only prove a basic
version, but much more refined approaches are possible. In the remaining chapter,
semialgebraic notions of dimension and connected components are introduced, and
semialgebraic paths are discussed as another useful technique. Throughout we are
trying to emphasize the usefulness of the real spectrum for semialgebraic geometry.

In the entire chapter, R denotes a real closed field.

4.1 Semialgebraic sets and real spectrum

Let V be an affine R-variety. We start by showing that the semialgebraic subsets of
V(R) are in natural bijective correspondence with the constructible sets in the real
spectrum of R[V], the affine coordinate ring of V . This correspondence, called the
operator tilda, is the key to making real spectrum techniques available for semial-
gebraic geometry. We’ll see many instances in the sequel where this principle is at
work.

From an algebraic geometry perspective, the restriction to affine varieties is arti-
ficial. In fact, the entire setup (semialgebraic sets, real spectrum and operator tilda)
can be generalized to arbitrary R-varieties. In 4.1.15–4.1.16 below we’ll sketch how
to achieve this, using the language of schemes (at a very modest level). The reader
who is not familiar with this background may safely skip these paragraphs without
any loss for the sequel. Starting with 4.1.18, we explain an alternative approach to
the real spectrum that works for all varieties (affine or not), and that doesn’t need
schemes. It is a particular instance of Stone duality between distributive lattices and
spectral spaces.

125
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As explained in Appendix A.6, the reader may assume that all varieties consid-
ered are quasi-projective.

4.1.1 Let V be an affine R-variety. Recall (3.3.3) that a set M ⊆ V(R) is semial-
gebraic if M is a finite Boolean combination of principal open sets UV ( f ) = {ξ ∈
V(R) : f (ξ) > 0}with f ∈ R[V]. The systemS(V) of all semialgebraic sets in V(R) is
closed under finite unions or intersections, and under taking complements. In other
words, it is a Boolean lattice of subsets of V(R).

For systematic reasons we introduce the alternative notation Vr := Sper R[V], and
call Vr the real spectrum of V . Recall (3.3.5) that ι : V(R) → Vr denotes the natural
inclusion map, and that the image of ι is dense in Vr with respect to the constructible
topology on Vr (Proposition 3.4.3). Let K(Vr) denote the system of all constructible
subsets of Vr. Again, K(Vr) is closed under finite unions and intersections and under
taking complements.

4.1.2 Proposition. For every affine R-variety V, the assignment K 7→ ι−1(K) defines
a bijective mapping K(Vr)→ S(V).

Proof. For K ∈ K(Vr) it is clear that ι−1(K) is a semialgebraic set in V(R). Con-
versely, every semialgebraic set in V(R) has the form ι−1(K) for some K ∈ K(Vr).
Let K1, K2 ⊆ Vr be constructible with ι−1(K1) = ι−1(K2). Then the symmetric differ-
ence K := (K1∪K2)r(K1∩K2) in Vr is constructible and satisfies ι−1(K) = ∅. Since
the image of ι is constructibly dense in Vr, this implies K = ∅, hence K1 = K2. �

4.1.3 Definition. Given an affine R-variety V and a semialgebraic set M in V(R), we
let M̃ denote the unique constructible subset of Vr with M = ι−1(M̃). The topological
space M̃, equipped with the (relative) Harrison topology, will be called the real
spectrum of M.

4.1.4 Corollary. The tilda operator M 7→ M̃ is a bijective map S(V)→ K(Vr) that
commutes with finite unions and intersections and with taking complements. For
M ∈ S(V), the set M̃ is the closure of ι(M) in Vr with respect to the constructible
topology.

Proof. It only remains to prove the last assertion. Let M ⊆ V(R) be a semialgebraic
set and let M′ be the closure of ι(M) in Vr with respect to the constructible topology.
Then M′ ⊆ M̃ since ι(M) ⊆ M̃ and M̃ is constructible. For the reverse inclusion we
need to show, for any α ∈ M̃ and any K ∈ K(Vr) with α ∈ K, that ι−1(M̃ ∩ K) , ∅.
But this is clear since M̃ ∩K is constructible and non-empty, and since the image of
ι is constructibly dense in Vr. �

For ease of notation, we will often identify M with a subset (or rather, topological
subspace) of M̃, via the map ι.

4.1.5 Remarks.

1. If V is affine and M ∈ S(V) is described by finitely many polynomial sign
conditions, say M =

⋃m
i=1

(
ZV ( fi) ∩ SV (gi1, . . . , giri )

)
with fi, gi j ∈ R[V], then M̃

is described by the same sign conditions in Vr, namely M̃ =
⋃m

i=1
(
ZR[V]( fi) ∩

XR[V](gi1, . . . , giri )
)
. This is true independently of the chosen description of M.
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2. Let x = (x1, . . . , xn). With every R-formula φ = φ(x) we associated the relation
SR(φ) ⊆ Rn, consisting of all points ξ ∈ Rn for which φ(ξ) is true (1.6.9). Assume that
φ contains no quantifiers, or more generally, that every occurrence of x1, . . . , xn in
φ is free. Then we may regard φ as an R[x]-sentence (no free variables). Associated
with φ we therefore have the constructible set KR[x](φ) in Sper R[x], see 3.4.4. Both
sets are related by

S̃R(φ) = KR[x](φ).

Indeed, KR[x](φ) is a constructible set in Sper R[x] that intersects Rn precisely in the
semialgebraic set SR(φ).

4.1.6 Remark. Let V be an affine R-variety, let M ⊆ V(R) be a semialgebraic set. If
M̃ is (Harrison) open in Vr = Sper R[V], then M = ι−1(M̃) is open in V(R) since ι is
continuous. In fact M̃, being quasi-compact, is a finite union of basic open sets in Vr

then. So it follows that M is a finite union of basic open semialgebraic sets in V(R).
Conversely let M be open in V(R). Does it follow that M̃ is open in Sper R[V]?

Equivalently, is M a union of finitely many basic open semialgebraic sets? The an-
swer is yes, but this is a non-trivial theorem. We’ll prove it in the next section.

We need to discuss another operation on semialgebraic sets. Let R ⊆ R′ be an
extension of real closed fields, and let V be an affine R-variety. Extending the base
field from R to R′ gives the affine R′-variety VR′ , with affine coordinate ring R[V]⊗R

R′. On VR′ , we have the notion of (R′-) semialgebraic subsets of VR′ (R′) = V(R′).
These sets form the Boolean lattice S(VR′ ).

4.1.7 Definition. Let V be an affine R-variety, let M ⊆ V(R) be a semialgebraic
set in V(R). We define MR′ , the base field extension of M from R to R′, to be the
subset of V(R′) that consists of all η ∈ V(R′) = HomR(R[V],R′) for which the point
[η] ∈ Sper R[V] represented by η : R[V]→ R′ (see 3.1.15) lies in M̃.

This definition, albeit of quite abstract nature, has the advantage of being free of
choices, so there is no question of well-definedness. The following formulation is
equivalent and is much more intuitive:

4.1.8 Proposition. Let M ⊆ Rn be a semialgebraic set and let φ(x) = φ(x1, . . . , xn)
be an R-formula with M = SR(φ). Then MR′ coincides with SR′ (φ), the relation de-
fined over R′ by the same formula. In particular, MR′ is an R′-semialgebraic subset
of (R′)n.

Proof. Let ψ(x) be a quantifier-free R-formula that is R-equivalent to φ (such ψ
exists by Theorem 1.6.15). Then φ and ψ define the same relation, both in Rn and in
(R′)n. So we may assume that the formula φ has no quantifiers. If η ∈ (R′)n then, by
definition of the constructible set KR[x](φ), the equivalences η ∈ SR′ (φ)⇔ (R′ |= φη)
⇔ [η] ∈ KR[x](φ) holds. Since KR[x](φ) = M̃ by Remark 4.1.5.2, if follows that
η ∈ SR′ (φ) if and only if η ∈ MR′ . �
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4.1.9 Remarks.

1. Still more concretely, if V is an affine R-variety and M ⊆ V(R) is described
by a fixed finite system of polynomial sign conditions on V , the base field extension
MR′ is the subset of V(R′) that is described by exactly the same sign conditions.

2. For any affine R-variety V , the operation M 7→ MR′ commutes with finite
Boolean set operations. It also commutes with taking closures. Indeed, it suffices to
prove this for a semialgebraic set M in Rn. If ϕ(x) = ϕ(x1, . . . , xn) is an R-formula
(quantifier-free, if we want) that describes M, the closure M of M in Rn is defined
by the R-formula

ψ(x) : ∀ ε > 0 ∃ y = (y1, . . . , yn)
(
|y − x|2 < ε ∧ ϕ(y)

)
By 4.1.8, the base field extension of this set is

(
M

)
R′ = SR′ (ψ), the relation defined by

ψ in (R′)n. But this set is the closure of SR′ (ϕ) = MR′ in (R′)n, showing that
(
M

)
R′ =

MR′ . In a completely similar way one sees that base field extension commutes with
taking interior, boundary or (R-) convex hull (cf. Corollary 1.6.18).

The following remark relates the operators tilda and base field extension. In spite
of its “abstractness”, it is very useful:

4.1.10 Proposition. Let M ⊆ Rn be a semialgebraic set, let x = (x1, . . . , xn). For
α ∈ R̃n = Sper R[x] let rα : R[x]→ R(α) be the ring homomorphism associated with
α (see 3.1.2). Then the equivalence

α ∈ M̃ ⇔ rα(x) =
(
rα(x1), . . . , rα(xn)

)
∈ MR(α)

holds.

Proof. Indeed, under the natural identification R(α)n = HomR(R[x],R(α)), the point
rα(x) ∈ R(α)n corresponds to the homomorphism rα : R[x] → R(α). Since the latter
represents the point α in Sper R[x], the claim follows directly from our definition of
MR(α) (Definition 4.1.7). �

4.1.11 Remark. Let M ⊆ Rn be a semialgebraic set and let α ∈ M̃. We may think
of the point

ξα :=
(
rα(x1), . . . , rα(xn)

)
∈ MR(α)

as the “canonical R(α)-rational point” of M that is associated with α. Tautologically
we have rα( f ) = f (ξα) for every polynomial f ∈ R[x].

We now extend the notion of semialgebraic sets to R-varieties that are not nec-
essarily affine. (See Section A.6 for conventions on algebraic varieties over a field.)
The following observation is obvious:

4.1.12 Lemma. Let V be an affine R-variety and let V =
⋃r

i=1 Ui be a covering of
V by Zariski open affine sets Ui. A subset M of V(R) is semialgebraic (with respect
to V) if, and only if, M ∩Ui(R) is semialgebraic (with respect to Ui) for i = 1, . . . , r.

ut
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4.1.13 Proposition. Let V be an arbitrary R-variety. For any subset M of V(R), the
following two conditions are equivalent:

(i) There exists a covering V =
⋃r

i=1 Ui of V by open affine subsets Ui such that
M ∩ Ui(R) is semialgebraic (with respect to Ui) for i = 1, . . . , r;

(ii) for every open affine subset U of V, the intersection M ∩U(R) is semialgebraic
(with respect to U).

M is said to be a semialgebraic subset of V(R) if either condition holds.

As for affine varieties, we write S(V) to denote the set of all semialgebraic sub-
sets of V(R). Of course, in the case of affine varieties, the definition just given agrees
with the one given before (see 3.3.3), by Lemma 4.1.12.

Proof. The implication (ii) ⇒ (i) is obvious. To prove the converse, recall that the
intersection of any two open affine subsets of V is again affine (A.6.12). If M satisfies
(i), and if U ⊆ V is an open affine subset, it follows that (U ∩ Ui)1≤i≤r is an open
affine covering of U. Since (M ∩U(R)) ∩Ui(R) = (M ∩Ui(R)) ∩U(R) is semialge-
braic with respect to Ui for each i, M ∩ U(R) is semialgebraic with respect to U by
Lemma 4.1.12. �

The system of all semialgebraic sets has the expected properties:

4.1.14 Proposition. Let V be an R-variety.

(a) S(V) is closed under the finite Boolean set operations (∩, ∪, complement in
V(R)).

(b) If M ∈ S(V) then closure, interior and boundary of M (relative to V(R)) are
again in S(V).

(c) If f : V → W is a morphism of R-varieties and M ∈ S(V), N ∈ S(W), then
f (M) ∈ S(W) and f −1(N) ∈ S(V).

Proof. All statements reduce to the case of affine varieties, in which they are clear
(cf. Corollary 1.6.18 for (b) and Proposition 3.3.4 for (c)). �

To extend the tilda correspondence M ↔ M̃ beyond the case of affine R-varieties,
there exist several equivalent ways. We will first achieve this by constructing the
real spectrum for an arbitrary R-variety, assuming familiarity with not more than the
definition of a scheme. Thereafter, an alternative and equivalent construction will
be presented that works for arbitrary R-varieties and does not rely on the notion of
schemes. If the reader feels uneasy with schemes, he or she may directly pass to
4.1.17 below.

4.1.15 Recall the notation Vr = Sper R[V] if V is an affine R-variety. For an arbitrary
R-variety V , we define the real spectrum Vr of V by glueing the real spectra of an
open affine covering of V . In more detail, let (Vi)i∈I be a family of (Zariski) open
affine subsets of V with V =

⋃
i∈I Vi. For each pair i, j of indices, the inclusion

Vi ∩ V j ⊆ Vi induces a natural open topological embedding ϕi j : (Vi ∩ V j)r → (Vi)r

whose image is constructible in (Vi)r. (Note that Vi ∩V j is again affine, see A.6.12.)
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The real spectrum Vr of V is defined as the topological space that results from
glueing the spaces (Vi)r along the maps ϕi j (i, j ∈ I). As a set, therefore, Vr consists
of equivalence classes of pairs (i, α) with i ∈ I and α ∈ (Vi)r, where two pairs (i, α)
and ( j, β) are considered equivalent iff there exists γ ∈ (Vi ∩ V j)r with ϕi j(γ) = α
and ϕ ji(γ) = β. By definition, a subset U ⊆ Vr is open in Vr if and only ϕ−1

i (U) is
open in (Vi)r for every i ∈ I, where ϕi : (Vi)r → Vr denotes the natural map.

The topological space Vr so defined is again a spectral space (3.4.11) and does
not depend on the choice of the covering (Vi)i∈I , up to natural homeomorphism.
Each of the inclusion maps ϕi : (Vi)r → Vr (i ∈ I) is a homeomorphism onto its
image, and this image is an open constructible subset of Vr. A subset Y of Vr is
constructible in Vr if and only if ϕ−1

i (Y) is constructible in (Vi)r for every i ∈ I. The
real spectrum Vr is functorial in the expected sense: Every morphism f : V → W
of R-varieties induces a spectral map fr : Vr → Wr. Moreover, there is a natural
support map Vr → V that generalizes the support map in the affine case. (Note that
we consider V as a scheme.) For the proofs of these assertions we refer to Exercise
4.1.7; this only needs easy standard arguments.

In fact, most of the above generalizes from R-varieties to arbitrary schemes X:
By glueing the real spectra SperOX(Ui), for (Ui) an open-affine covering of X, one
defines the topological space Xr, the real spectrum of the scheme X. This space
depends functorially on X and comes with a natural support map Xr → X. In general
however, Xr may fail to be quasi-compact (and in particular, to be a spectral space).

4.1.16 Remarks.

1. The natural inclusion map ι : V(R) → Vr, previously discussed for affine V ,
extends naturally to arbitrary R-varieties. Propositions 3.3.5 and 3.4.3 carry over
immediately from the affine case: The map ι is a topological embedding, and the
image ι(V(R)) is dense in Vr with respect to the constructible topology.

The tilda correspondence continues to hold, and the proof reduces directly to the
affine case. So, for each M ∈ S(V) there exists a unique constructible set M̃ ⊆ Vr

with ι−1(M̃) = M, and M̃ is the closure of ι(M) in the constructible topology of Vr.
2. The operation of extending the real closed base field (4.1.7) passes naturally

to semialgebraic subsets on arbitrary R-varieties. We skip over the details.
3. When V is quasi-projective, there exists an open affine subset V ′ of V with

V ′(R) = V(R) (Proposition 1.7.6). Both for semialgebraic sets and real spectrum, as
well as for the tilda correspondence and for base field extension of semialgebraic
sets, the variety V may be replaced by the affine variety V ′.

Finally, we’ll sketch an alternative way of constructing real spectrum and tilda
correspondence for arbitrary R-varieties. The construction is a particular case of
Stone duality, see the remarks in 4.1.20 below. It will come in handy in Section 4.6.

4.1.17 Recall that a (bounded) lattice is a triple (L,∨,∧) consisting of a set L and
two binary operations ∨ and ∧ on L (called join and meet, respectively) that are
associative and commutative and satisfy the absorption laws x ∨ (x ∧ y) = x and
x ∧ (x ∨ y) = x for all x, y ∈ L. Moreover it is required that there exist elements
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0, 1 ∈ L with x∨ 0 = x and x∧ 1 = x for all x ∈ L. The lattice L is distributive if the
distributive laws x∨ (y∧ z) = (x∨ y)∧ (x∨ z) and x∧ (y∨ z) = (x∧ y)∨ (x∧ z) hold.
A distributive lattice L in which every x ∈ L has a complement x′ (i.e., an element
satisfying x∧ x′ = 0 and x∨ x′ = 1) is called a Boolean lattice. In a Boolean lattice,
the complement x′ of x is uniquely determined.

4.1.18 Let V be an R-variety and let M be a semialgebraic subset of V(R). We
consider S(M), the set of all semialgebraic subsets of M, and also S̊(M), the set of
all U ∈ S(M) that are (relatively) open in M. Both S(M) and S̊(M) are (bounded)
distributive lattices, with meet (∧) and join (∨) operations corresponding to ∩ and
∪, respectively. Moreover, both have a smallest (∅) and a largest (M) element. The
lattice S(M) is even Boolean. In the following let L denote either S(M) or S̊(M).
We write ∪ and ∩ instead of ∨ and ∧, respectively.

A filter in L is a non-empty subset F of L that is stable under ∩ and is upward
closed, i.e. satisfies (A ∈ F, B ∈ L, A ⊆ B⇒ B ∈ F). The filter F is a prime filter of
L if ∅ < F, and if A, B ∈ L and A ∪ B ∈ F imply A ∈ F or B ∈ F. Let St(L) denote
the set of all prime filters of L. For any A ∈ L let UL(A) := {F ∈ St(L) : A ∈ F}. We
make St(L) a topological space by declaring the family of all subsets UL(A) (with
A ∈ L) to be a basis of open sets for St(L). The topological space St(L) is called the
Stone space of L.

For every α ∈ M̃, the set FL
α := {A ∈ L : α ∈ Ã} is a prime filter in L. Conversely

let F be a prime filter in L. We’ll show that F = FL
α for a unique α ∈ M̃. Given

A, B ∈ L with A ∈ F and B < F, the set-theoretic difference A r B is non-empty.
Therefore, the intersection

ZF :=
⋂
A∈F

⋂
B∈LrF

Ã r B (4.1)

in M̃ is non-empty, by compactness of (M̃)con and since every finite partial intersec-
tion is non-empty. Let α be an element in ZF , and let β ∈ M̃ be any point different
from α. Then either β 6 α, in which case there is A ∈ S̊(M) with α ∈ Ã (hence
A ∈ F) and β < Ã. Or else α 6 β, and then there is B ∈ S̊(M) with β ∈ B̃ and α < B̃
(hence B ∈ L r F). In either case, we see that β < ZF . Therefore the set ZF = {α} is
a singleton, and hence F = FL

α as asserted. In the following we’ll write αF for α.

4.1.19 Theorem. Let V be an arbitrary R-variety and let M ⊆ V(R) be a semialge-
braic subset.

(a) For L = S̊(M), the map M̃ → St(L), α 7→ FL
α is a homeomorphism with respect

to the Harrison topology on M̃.
(b) For L = S(M), the map M̃ → St(L), α 7→ FL

α is a homeomorphism with respect
to the constructible topology on M̃.

In either case, the inverse map is F 7→ αF with αF defined as above.

Proof. In both cases let φ and ψ denote the maps α 7→ FL
α and F 7→ αF , respectively.

For α ∈ Vr it is clear that α ∈ ZFL
α
, and therefore α = αFL

α
, which means ψ ◦ φ = id.

Conversely let F be a prime filter in L and let α := αF . Then α ∈ Ã for every A ∈ F,
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which means F ⊆ FL
α . This inclusion is an equality, because otherwise there would

exist B ∈ FL
α r F, meaning that α ∈ B̃ but ZF ∩ B̃ = ∅, contradicting α ∈ ZF .

Therefore φ ◦ ψ = id, which shows that both maps are bijective and are inverses of
each other. Moreover both maps are continuous, since for A ∈ L the subsets Ã of M̃
and UL(A) of St(L) correspond to each other under φ and ψ. ut

4.1.20 Remarks.

1. A maximal prime filter F in L is called an ultrafilter. By Zorn’s lemma,
every prime filter is contained in some ultrafilter. In case (b) of Theorem 4.1.19
(L = S(M)), the lattice L = S(M) is Boolean, which means that it contains the
complement Ac = M r A of each A ∈ L. Hence, for every prime filter F and every
A ∈ L, exactly one of A ∈ L and Ac ∈ L holds. So every prime filter is an ultrafilter
in this case.

2. If L = (L,∨,∧) is any distributive lattice, the Stone space St(L) of L is defined
in a way completely analogous to 4.1.18 (with ⊆, ∪, ∩ replaced by ≤, ∨, ∧). It is
a general fact that the topological space St(L) is always spectral (Remark 3.4.11).
In addition, the lattice L can be recovered from St(L), up to isomorphism, as the
lattice of open quasi-compact subsets of St(L). These facts extend to a full-fledged
duality, i.e., an anti-equivalence between the category of distributive lattices (and
maps preserving finite infs and sups) and the category of spectral spaces (and spec-
tral maps). This is the famous Stone duality. The ultrafilters of L are precisely the
specialization-minimal points in St(L), cf. Exercise 4.1.9.

3. The distributive lattice L is Boolean (i.e., has complements) if and only if
the spectral space St(L) is Hausdorff (i.e., a Boolean space), if and only if every
prime filter is maximal (i.e., an ultrafilter). Therefore, Stone duality restricts to a
duality between Boolean lattices and Boolean topological spaces. For proofs of the
assertions just made, and for full details on Stone duality, we refer to [52], Chap. 3.

4. Theorem 4.1.19 may thus be phrased as follows. For every semialgebraic set
M on an R-variety V , the real spectrum M̃ of M (with its Harrison topology) is
the Stone dual of the lattice of all open semialgebraic subsets of M. With its con-
structible topology, M̃ is the Stone dual of the Boolean lattice of all semialgebraic
subsets of M. In particular, any point in M̃ may be identified either with a prime
filter of open semialgebraic subsets of M, or with an ultrafilter of arbitrary semial-
gebraic subsets of M. The case M = V(R) recovers the full real spectrum Vr of the
variety V .

4.1.21 Example. Let α2  α1  α0 be the specialization chain in Sper R[x, y] =

R̃2 that was described in Example 3.6.11 (with n = 2 and ξ = 0 there). The (ultra)
filters corresponding to the αi have the following description. Given a semialgebraic
set M ⊆ R2, we have

(1) α2 ∈ M̃ ⇔ (0, 0) ∈ M,
(2) α1 ∈ M̃ ⇔ ∃ 0 < ε ∈ R such that (t, 0) ∈ M for all 0 < t < ε,
(3) α0 ∈ M̃ ⇔ ∃ 0 < ε ∈ R, ∃ n ∈ N with{

(a, b) ∈ R2 : 0 < a < ε, 0 < b < an} ⊆ M.
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For the proof see Exercise 4.1.3. Can you generalize to Rn for n = 3? for arbitrary
n?

Exercises

Let R always be a real closed field.

4.1.1 Let V be an irreducible R-variety and let M ⊆ V(R) be a semialgebraic set. The following
are equivalent:

(i) M is Zariski dense in V;
(ii) M contains a non-empty open subset of Vreg(R).

4.1.2 Let V be an affine R-variety and let M be a semialgebraic set in V(R). Show that M is Zariski
dense in V if, and only if, every minimal prime ideal of R[V] is the support of some point in
M̃.

4.1.3 Prove the assertions made in Example 4.1.21.
4.1.4 Let α ∈ SperR[x, y] be the ordering with positive cone

Pα =
{
f ∈ R[x, y] : ∃ ε ≥ 0 f (t, et) > 0 for 0 < t < ε

}
,

cf. Exercise 1.2.3. Given a semialgebraic set M ⊆ R2, show that M̃ contains α if and only if
(t, et) ∈ M for all sufficiently small real numbers t > 0.

4.1.5 Generalize the remarks in 4.1.9.2 as follows: Let V be an R-variety, let N ⊆ M be semialge-
braic subsets of V(R), and let R′ be a real closed field extension of R. Show that N is open (or
closed, or dense) in M if, and only if, MR′ is open (or closed, or dense) in NR′ , respectively.

4.1.6 Let V be an R-variety, let (Mi)i∈I be a family of semialgebraic sets in V(R). Prove that the
following are equivalent:

(i) There is a finite subset J ⊆ I with
⋂

j∈J M j = ∅;
(ii)

⋂
i∈I(Mi)R′ = ∅ for every real closed field extension R′ of R;

(iii)
⋂

i∈I M̃i = ∅.

Here (Mi)R′ denotes the base field extension of Mi from R to R′.
4.1.7 Assuming that you are familiar with the notion of schemes, prove the claims made in 4.1.15.

4.1.8 Let A be a ring and let K̊(A) denote the distributive lattice of all open quasi-compact sub-
sets of Sper(A). Prove that the Stone space of K̊(A) is naturally homeomorphic to the real
spectrum Sper(A) (cf. Remark 4.1.20.2).

4.1.9 Let M be a semialgebraic set, F, F′ be two prime filters in the lattice S̊(M) and let α = αF ,
α′ = αF′ be the corresponding points in M̃ (Theorem 4.1.19). Show that F′ ⊆ F if and only
if α  α′. Conclude that the ultrafilters in S̊(M) correspond to the specialization-minimal
points in M̃.

4.2 The finiteness theorem

R is always a real closed field. We are going to prove the finiteness theorem, men-
tioned already in 4.1.6, using the real spectrum. As a consequence we’ll see that the
operator tilda commutes with taking closures and (relative) interiors.
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4.2.1 Theorem. (Finiteness Theorem) Let V be an affine R-variety. Every open
semialgebraic set in V(R) is a union of finitely many basic open semialgebraic sets.

Taking complements, we get the following equivalent version:

4.2.2 Corollary. If V is an affine R-variety, every closed semialgebraic set in V(R)
is a union of finitely many basic closed semialgebraic sets.

Proof. Let M ⊆ V(R) be closed and semialgebraic. Assuming 4.2.1 we have
V(R) r M =

⋃m
i=1

⋂si
j=1 UV ( fi j) for suitable m, si ≥ 0 and fi j ∈ R[V]. Passing to

the complement gives M =
⋂m

i=1
⋃si

j=1 SV (− fi j). Using the distributive law we can
rearrange and get M =

⋃s1
j1=1 · · ·

⋃sm
jm=1

⋂m
i=1 SV (− fi ji ). �

The following statement concerns arbitrary R-varieties V . For affine V , it is equiv-
alent to Theorem 4.2.1, as was noticed in Remark 4.1.6:

4.2.3 Theorem. Let V be an R-variety and let M ⊆ V(R) be an open semialgebraic
set. Then the constructible subset M̃ of Vr is open as well.

Proof. We prove Theorem 4.2.3, which will also imply Theorem 4.2.1. Passing to
the complement, we show that when M ∈ S(V) is closed, the set M̃ in Vr is closed
as well. The proof reduces immediately to the case where V is affine, and after
choosing a closed embedding of V into affine space we may replace V by An. So let
M ⊆ Rn be a closed semialgebraic set and let x = (x1, . . . , xn). We have to show that
the constructible set M̃ is closed in Sper R[x]. By Proposition 3.4.14(a), it suffices
to prove that M̃ is stable under specialization, see Remark 3.4.15.1.

Let α ∈ M̃, let β ∈ Sper R[x] be a specialization of α. By Proposition 3.6.15 there
exists a convex subring B of the real closed field R(α) with im(rα) ⊆ B, such that β
is represented by the composite homomorphism

R[x]
rα
−→ B

π
−→ k,

with π : B→ k := B/mB the residue homomorphism. Since the field k is real closed
(Proposition 3.5.10), this means (see Lemma 3.1.16) that there is a field embedding
R(β)→ k such that the diagram (solid arrows)

R[x] B R(α)

R(β) k

rβ

rα

π s

commutes. By Proposition 3.5.10, π : B→ k has a homomorphic section s : k → B.
Let ξ :=

(
rα(x1), . . . , rα(xn)

)
. Then ξ ∈ Bn. Seen as an element of R(α)n, the point

ξ lies in MR(α) since α ∈ M̃ (Proposition 4.1.10). Assume that β < M̃. By the same
token, this means that the point ξ := π(ξ) ∈ kn does not lie in Mk. The semialge-
braic set Mk is closed in kn since extension of the base field commutes with taking
closures (Remark 4.1.9.2). Therefore there exists δ > 0 in k such that



4.2 The finiteness theorem 135

∀ η ∈ kn
(
|η − ξ| < δ ⇒ η < Mk

)
.

We may formulate this as a k-sentence φ that holds in k. By Tarski’s transfer
principle (Corollary 1.6.17), φ remains true if we extend the real closed field via
s : k → R(α). Therefore, writing ε := s(δ) ∈ B ⊆ R(α) and ξ′ := s(ξ) ∈ Bn ⊆ R(α)n,
the following R(α)-sentence holds:

∀ η ∈ R(α)n
(
|η − ξ′| < ε ⇒ η < MR(α)

)
. (4.2)

If we now take η := ξ we get a contradiction. Indeed, on one hand we have ξ ∈ MR(α).
On the other, ξ − ξ′ ∈ mn

B since π(ξ′) = π(ξ). Hence |ξ − ξ′| < ε since ε < mB, and
therefore ξ < MR(α) according to (4.2). This contradiction completes the proof of the
finiteness theorem. �

We record a few direct consequences. Let V be an R-variety.

4.2.4 Corollary. Let N ⊆ M be semialgebraic subsets of V(R). Then N is relatively
open (or relatively closed) in M if, and only if, Ñ is relatively open (or relatively
closed) in M̃, respectively.

Proof. Assume that N is relatively closed in M. There exists a closed semialgebraic
set A in V(R) with N = A ∩ M, for example the closure of N. By Theorem 4.2.3, Ã
is closed in Vr, and so Ñ = Ã ∩ M̃ is relatively closed in M̃. The converse is clear
anyway, using ι. �

4.2.5 Corollary. The operator tilda commutes with taking closure, interior and
boundary.

Proof. Let M be a semialgebraic subset of V(R), let M be the closure of M in V(R)

and M̃ the closure of M̃ in Vr. From ι(M) ⊆ M̃ it follows that ι(M) ⊆ M̃. On the
other hand, the constructible set M̃ is the closure of ι(M) in Vr with respect to the

constructible topology (Corollary 4.1.4). This implies M̃ ⊆ M̃. Conversely, the set

M̃ is closed in Vr by Theorem 4.2.3. Since it contains M̃, it follows that M̃ ⊆ M̃,

and altogether that M̃ = M̃. Since interior or boundary can be expressed in terms of
closures, this implies all statements of the corollary. �

4.2.6 Remark. We digress to mention a few important results on the complexity of
semialgebraic sets, that otherwise are outside the scope of this book. By the finite-
ness theorem, every open semialgebraic set U in Rn can be written as a finite union

U =

t⋃
i=1

U( fi1, . . . , fisi )

of basic open semialgebraic sets, with polynomials fi j ∈ R[x] and suitably chosen
numbers si, t ≥ 1. Surprisingly, the numbers si and t can be bounded uniformly, only
in terms of n. In fact, the following more precise and more general results hold:
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4.2.7 Theorem. (Bröcker) For every integer n ≥ 1 there exist integers sn, tn ≥ 1
such that the following are true, for every n-dimensional affine R-variety V:

(a) Every basic open semialgebraic set in V(R) has the form UV ( f1, . . . , fr) with
r ≤ sn and f1, . . . , fr ∈ R[V];

(b) every open semialgebraic set in V(R) is a union of at most tn many basic open
semialgebraic sets.

4.2.8 Theorem. Let s(n) and t(n) denote the smallest integers sn and tn, respectively,
for which the previous theorem holds.

(a) (Bröcker–Scheiderer) s(n) = n.
(b) t(1) = 1, t(2) = 2, t(3) ≤ 1719, t(4) < 1.51 · 1016, . . .

There exists an explicit recursive upper bound for t(n) and all n, but very likely
this bound is way too large for n ≥ 3.

The same questions may be asked for closed instead of open semialgebraic sets.
Every closed semialgebraic set can be expressed as a finite union of basic closed
sets (Corollary 4.2.2). And again, there exist universal upper bounds for the number
of polynomials necessary for such a representation:

4.2.9 Theorem. For every n ≥ 1 there exist integers s̄n, t̄n ≥ 1 such that the follow-
ing hold for every n-dimensional affine R-variety V:

(a) Every basic closed semialgebraic set in V(R) has the form SV ( f1, . . . , fr) with
r ≤ s̄n and f1, . . . , fr ∈ R[V];

(b) every closed semialgebraic set in V(R) is a union of at most t̄n many basic closed
semialgebraic sets;

(c) the smallest number s̄(n) satisfying (a) is s̄(n) = n
2 (n + 1).

There also exists an explicit recursive upper bound for t̄(n), which is even larger
than the above mentioned bound for t(n).

4.2.10 Remarks.

1. A typical basic open set in Rn that requires s(n) = n strict inequalities is the
open orthant U(x1, . . . , xn), or an open hypercube, see Exercise 4.2.4. A typical basic
closed set that requires at least s̄(n) = n

2 (n + 1) non-strict inequalities is

S =

n⋃
i=1

{
ξ ∈ Rn : ξ1 ≥ i − 1, ξ2 ≥ i − 2, . . . , ξi ≥ 0, ξi+1 = · · · = ξn = 0

}
The reader may check that S is indeed basic closed and can be described by n

2 (n+1)
simultaneous non-strict inequalities.

Similar examples exist in V(R), for every affine R-variety V of dimension n in
which V(R) is Zariski dense.



4.2 The finiteness theorem 137

2. The theoretical background for these results is the reduced theory of quadratic
forms over fields. Unfortunately we don’t have the space here to go into details. This
theory was given a very powerful extension by Marshall, in his theory of spaces of
orderings. Theorems 4.2.8 and 4.2.9 were later generalized from affine R-algebras to
arbitrary excellent rings and constructible sets in their real spectrum. In particular,
this allows for theorems similar to the above ones, in the context of global semian-
alytic sets. For fully detailed accounts we refer to the books [138] by Marshall and
[3] by Andradas, Bröcker and Ruiz.

3. It seems that basic closed sets of dimension n that need the full number n
2 (n +

1) of non-strict inequalities, tend to be somewhat pathological, as in the previous
example. In contrast, Averkov and Bröcker [8] proved that n non-strict inequalities
suffice for every polyhedron in n-space.

Exercises

Let R always be a real closed field.

4.2.1 Let N, N′ ⊆ M be semialgebraic sets in Rn.

(a) Show that N is dense in M if and only the set M̃min (of specialization-minimal points
of M̃) is contained in Ñ.

(b) Conclude that if N and N′ are dense in M, then so is N ∩ N′.

4.2.2 Show that Proposition 3.3.14 (the Łojasiewicz inequality) remains true for arbitrary closed
semialgebraic sets M ⊆ Rn (not necessarily basic closed).

4.2.3 Let φ = φ(x1, . . . , xn) be a Z-formula and let R be a real closed field. Assume that SR(ϕ), the
relation in Rn defined by ϕ (1.6.9), is open in Rn. For any ring A and any tuple a ∈ An, show
that the constructible set KA(ϕ(a)) in Sper(A) (3.4.4) is open in Sper(A). (Hint: Show that
the hypothesis does not depend on the real closed field R. Then use the finiteness theorem.)

4.2.4 This exercise outlines the reasoning for why the positive orthant in Rn cannot be described
by less than n polynomial inequalities. If K is a field, we use the shorthand notation XK :=
Sper(K) in this exercise. Identify XK with the set of all characters χ : K∗ → {±1} of the mul-
tiplicative group that come from an ordering of K, i.e. for which ker(χ) = {a ∈ K∗ : χ(a) = 1}
is additively closed.

(a) A non-empty subset F ⊆ XK is a fan if there exists a subgroup H of K∗ with a2 ∈ H for
every a ∈ K∗, and such that

F =
{
χ ∈ Hom(K∗, {±1}) : χ|H = 1, χ(−1) = −1

}
.

The cardinality |F| is called the order of the fan F. Show that every subset F ⊆ XK with
|F| = 1 or |F| = 2 is a fan. These are the trivial fans.

(b) Show that every fan has a natural structure of affine space over the field with two ele-
ments. In particular, the order of every finite fan is a power of 2.

(c) Let F ⊆ XK be a fan, and let Y ⊆ XK be a basic closed set that is described by r
inequalities, say Y = XK( f1, . . . , fr) with fi ∈ K∗ (notation as in 3.1.6). Show that F∩Y
is an affine subspace of F of index at most 2r.

(d) Let B be a valuation ring of K, with residue field k. If G is a fan in Xk, show that the
full pull-back
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F := {χ ∈ XK : ∃ η ∈ G with χ(u) = η(u) for all u ∈ B∗}

of G is a fan in XK , of order |F| = |G| · |Γ/2Γ| where Γ is the value group of B. (Use the
Baer–Krull theorem)

(e) Show that the positive open orthant Q in Rn cannot be expressed with less than n simul-
taneous strict inequalities. Find other examples of basic open sets in Rn with the same
property. (Hint: Use (d) to construct a fan of size 2n in R(x1, . . . , xn) that meets Q̃ in a
single point. Then apply (c).)

4.3 Cylindrical algebraic decomposition

R is always a real closed field, as before. We start by introducing the concepts of
definable and semialgebraic maps, before we turn to the question of decomposing
semialgebraic sets into elementary pieces.

4.3.1 Definition. Let V, W be R-varieties, let M ⊆ V(R), N ⊆ W(R) be semialge-
braic sets. A map f : M → N is definable if graph( f ) = {(ξ, f (ξ)) : ξ ∈ M} is a
semialgebraic subset of V(R)×W(R) = (V ×W)(R). If f is definable and in addition
continuous, we say that f is a semialgebraic map. Definable or semialgebraic maps
M → R are also called definable or semialgebraic functions on M, respectively.1

The set of all semialgebraic functions on M will be denoted by A(M).

4.3.2 Remarks. Let M ⊆ V(R), N ⊆ W(R) be semialgebraic sets.

1. For every morphism f : V → W of R-varieties, the induced map f : V(R) →
W(R) is semialgebraic.

2. Given R-varieties W1, W2, a map f = ( f1, f2) : M → W1(R) ×W2(R) is defin-
able (or semialgebraic) if and only if each component fi : M → Wi(R) is definable
(or semialgebraic, respectively).

3. Given a definable map f : M → N between semialgebraic sets, and given a
real closed overfield R′ ⊇ R, the base field extension of graph( f ) ⊆ M × N from R
to R′ is the graph of a map MR′ → NR′ . This map is definable (over R′) and is called
the base field extension of f to R′, denoted fR′ . Note that f is continuous if and only
if fR′ is continuous.

4. Semialgebraic functions Rn → R need not be piecewise polynomial, as the
square root [0,∞[ → R, x 7→

√
x shows. In fact, a semialgebraic function need not

be expressible by iterated (higher) roots, not even piecewise. This follows from the
well-known fact that the solutions of a general equation of degree ≥ 5 cannot be
expressed by iterated roots. A concrete example is given by the equation

1 What we call definable functions is called semialgebraic functions in [25].
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y5 + x2y + x3 = 0 (∗)
x

y

For every x ∈ R, (∗) has a unique solution y = f (x) in R. The function f : R → R
defined in this way is semialgebraic, but a small Galois-theoretic argument shows
that f (x) is not expressible by iterated roots.

4.3.3 Convention: In the sequel, when we say that M, N . . . are semialgebraic sets,
it is always understood that M ⊆ V(R), N ⊆ W(R) . . . are semialgebraic subsets of
suitable R-varieties V, W . . .

4.3.4 Lemma.

(a) If f : M → N and g : N → L are semialgebraic maps (between semialgebraic
sets on R-varieties), the composite map g ◦ f : M → L is semialgebraic as well.

(b) If f : M → K and g : N → L are semialgebraic maps, the map f × g : M ×N →
K × L, (ξ, η) 7→

(
f (ξ), g(η)

)
is semialgebraic as well.

(c) Images and preimages of semialgebraic sets under semialgebraic maps are
again semialgebraic sets.

(d) The set A(M) of all semialgebraic functions on a semialgebraic set M is a
commutative ring under pointwise addition and multiplication.

The same are true with semialgebraic maps replaced by definable maps.

Proof. Proofs are straightforward using Proposition 4.1.14(c). For instance, (a) fol-
lows from graph(g ◦ f ) = pr13

(
(graph( f )× L)∩ (M × graph(g))

)
, where pr13 denotes

projection to the first and third component of M × N × L. The other cases are left to
the reader. �

4.3.5 Definition. A map f : M → N between semialgebraic sets is called a

(a) semialgebraic (s.a.) homeomorphism if f is semialgebraic and bijective and the
inverse map f −1 : N → M is continuous (hence semialgebraic);

(b) semialgebraic (s.a.) embedding if f is a semialgebraic homeomorphism from
M onto f (M); if in addition f (M) is (relatively) open or closed in N, then f is
an open or closed embedding, respectively.

Semialgebraic sets M and N are semialgebraically (s.a.) homeomorphic, denoted
M ≈ N, if there exists a s.a. homeomorphism M → N.

4.3.6 Examples. Let M be a semialgebraic set.

1. If f , g are semialgebraic functions on M then so are | f |, max( f , g), min( f , g),
and also 1/ f (if f , 0 on M) and n

√
f (if n is odd or f ≥ 0 on M). (If n ≥ 0 is even

and 0 ≤ a ∈ R, the notation n
√

a always stands for the non-negative n-th root of a
in R.)
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2. Let M ⊆ Rn be a non-empty semialgebraic set. The infimum

dM(ξ) := dist(ξ,M) = inf
{
|η − ξ| : η ∈ M

}
exists in R for every ξ ∈ Rn, even though bounded infima won’t exist in R in general.
Indeed, the set {|η − ξ| : η ∈ M} is semialgebraic in R, hence it is a finite union
of intervals and has an infimum in R. It is easy to see that the distance function
dM : Rn → R is semialgebraic, and that d−1

M (0) = M (Exercise 4.3.3).
3. For n ≥ 1, the sets Rn, ]0,∞[n, ]0, 1[n and Bn := {x ∈ Rn : |x| < 1} are all

s.a. homeomorphic to each other (Exercise 4.3.3). A semialgebraic set that is s.a.
homeomorphic to any of the above is called an open n-cell. Note in particular that
every semialgebraic set in Rn is s.a. homeomorphic to a bounded semialgebraic set.

To state the main result of this section, we introduce the following terminology:

4.3.7 Notation. Let M be a set. For any two maps f , g : M → R ∪ {±∞}, the set

band( f , g) :=
{
(ξ, t) ∈ M × R : f (ξ) < t < g(ξ)

}
⊆ M × R

will be called the (open) band between f and g.

4.3.8 Lemma. Let M be a semialgebraic set.

(a) For any semialgebraic function f : M → R, the first projection pr1 : graph( f )→
M, (ξ, f (ξ)) 7→ ξ is a s.a. homeomorphism.

(b) If f , g : M → R are semialgebraic maps that satisfy f < g on M, there exists a
s.a. homeomorphism φ : band( f , g)

≈
−→ M × ]0, 1[ over M. The same is true if

f ≡ −∞ or g ≡ +∞.

By saying that φ is a homeomorphism over M we mean that the triangle

band( f , g) M × ]0, 1[

M

pr1

φ

≈

pr1

commutes.

Proof. (a) The inverse map is ξ 7→ (ξ, f (ξ)). (b) If f < g are R-valued functions,
define φ to be the map that is inverse to

M × ]0, 1[
≈
−→ band( f , g), (ξ, t) 7→

(
ξ, (1 − t) f (ξ) + tg(ξ)

)
.

If f ≡ −∞ and g < +∞ then

M × ]−∞, 0[→ band(−∞, g), (ξ, t) 7→
(
ξ, g(ξ) + t

)
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is a s.a. homeomorphism over M that can be combined with a s.a. homeomorphism
]0, 1[

≈
−→ ]−∞, 0[ (see 4.3.6.3). Similarly if f > −∞ and g ≡ +∞. If f ≡ −∞ and

g ≡ +∞, (b) follows from R ≈ ]0, 1[. �

Given any semialgebraic set M ⊆ Rn+1, the following theorem gives an effec-
tive way of decomposing M into a finite disjoint union of open cells (of varying
dimensions):

4.3.9 Theorem. (Cylindrical algebraic decomposition, CAD) Let finitely many poly-
nomials f1, . . . , fr ∈ R[x1, . . . , xn, t] be given. There exists a finite decomposition

Rn = K1 ∪ · · · ∪ Ks

of Rn into pairwise disjoint semialgebraic sets Ki, together with finitely many semi-
algebraic functions

zi j : Ki → R

( j = 1, . . . ,mi, where mi ≥ 0) for every i = 1, . . . , s, such that the following hold for
every i = 1, . . . , s:

(1) zi1 < zi2 < · · · < zimi (pointwise on Ki);
(2) for every ξ ∈ Ki one has{

zi j(ξ) : 1 ≤ j ≤ mi

}
=

⋃
ν=1,...,r
fν (ξ,t).0

{
t ∈ R : fν(ξ, t) = 0

}
;

(3) each polynomial fν (ν = 1, . . . , r) has constant sign on each of the sets graph(zi j)
(1 ≤ j ≤ mi) and band(zi j, zi, j+1) (0 ≤ j ≤ mi). Here we put zi0 := −∞ and
zi,mi+1 := +∞.

4.3.10 Remark. Over each piece Ki ⊆ Rn, the “cylinder” Ki ×R is decomposed into
the graphs Gi j := graph(zi j) ( j = 1, . . . ,mi) and the bands Bi j := band(zi j, zi, j+1)
( j = 0, . . . ,mi) between them:

Ki

Gi1

Gi2

Gi3

Bi0

Bi1

Bi2

Bi3

This explains the name CAD. Every semialgebraic set M ⊆ Rn+1 that can be de-
scribed by a Boolean combination of sign conditions on the given polynomials
f1, . . . , fr, is the union of some of the graphs Gi j and some of the bands Bi j, by prop-
erty (3). In this way, the set M has been decomposed into simpler pieces Gi j ≈ Ki
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and Bi j ≈ Ki × ]0, 1[ ≈ Ki × R (Lemma 4.3.8). In a next step one can proceed in the
same way with the sets Ki ⊆ Rn, using a projection Rn → Rn−1, and then iterate. In
this way we see:

4.3.11 Corollary. If V is an R-variety, every semialgebraic set M ⊆ V(R) can be
expressed as a finite disjoint union M = M1 ∪· · · · ∪· Mr of semialgebraic cells
Mi ≈ Rni (with suitable ni ≥ 0).

Proof. Indeed, for V affine this is explained in the previous remark. The general
case ensues immediately. �

If M ⊆ Rn is semialgebraic then ni ≤ n holds for all i in 4.3.11. A refined analysis
of dimensions will be made shortly (Section 4.6).

4.3.12 We now give the proof of Theorem 4.3.9. To the given list f1, . . . , fr of poly-
nomials we may add an arbitrary finite number of further polynomials. If the theo-
rem has been proved for the extended list, simply drop all those zi j for which none
of f1, . . . , fr vanishes on graph(zi j) without vanishing identically on Ki × R. By the
intermediate value theorem 1.3.3, property (3) will remain true for f1, . . . , fr and
the remaining zi j. In this way we can assume that the set { f1, . . . , fr} is stable un-
der forming the partial derivative ∂/∂t. (The proof will show that it suffices to add
∂ f1/∂t, . . . , ∂ fr/∂t to the initial list.)

For ν = 1, . . . , r and ξ ∈ Rn put Zν(ξ) = {b ∈ R : fν(ξ, b) = 0}, and let

m(ξ) =
∣∣∣∣ ⋃
ν=1,...,r with
|Zν (ξ)|<∞

Zν(ξ)
∣∣∣∣.

Then 0 ≤ m(ξ) ≤ d :=
∑r
ν=1 degt fν(x, t) for all ξ. On the other hand, put

K(m) = {ξ ∈ Rn : m(ξ) = m}

for m = 0, . . . , d. The sets K(m) are semialgebraic: There exists a formula in the
coefficients of a univariate polynomial p(t) of degree ≤ d, that expresses that p has
exactly m distinct zeros in R. So Rn = K(0)∪· · ·∪K(d) is a (disjoint) decomposition
of Rn in semialgebraic sets.

Fix a number m ∈ {0, . . . , d} with K(m) , ∅ and put K := K(m). For ξ ∈ K let
z1(ξ) < · · · < zm(ξ) be the distinct zeros of all those univariate polynomials fν(ξ, t)
(ν = 1, . . . , r) that do not vanish identically. We further write z0(ξ) := −∞ and
zm+1(ξ) := +∞. For ν = 1, . . . , r and ξ ∈ K let

ενj(ξ) := sign fν(ξ, b) for z j(ξ) < b < z j+1(ξ)

( j = 0, 1, . . . ,m) and
δνj(ξ) := sign fν(ξ, z j(ξ))

( j = 1, . . . ,m). Note that the ενj(ξ) are well-defined by the intermediate value theo-
rem 1.3.3. Let further
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sν(ξ) :=
(
εν0(ξ), δν1(ξ), εν1(ξ), . . . , δνm(ξ), ενm(ξ)

)
∈ {−1, 0, 1}2m+1

(ν = 1, . . . , r). We call sν(ξ) the sign pattern of fν at ξ. If sign patterns s1, . . . , sr ∈

{−1, 0, 1}2m+1 are given, let

K(s1, . . . , sr) :=
{
ξ ∈ K : s1(ξ) = s1, . . . , sr(ξ) = sr

}
.

This is the set of points in K at which fν has sign pattern sν, for ν = 1, . . . , r. The set
K(s1, . . . , sr) is semialgebraic: The property that a polynomial p(t) has prescribed
signs both in the m real roots of another polynomial q(t) and in the intervals between
them, can be expressed by a formula in the coefficients of p and q. The set K is the
disjoint union of all the sets K(s1, . . . , sr). We fix a sign pattern (s1, . . . , sr) and
replace K by K(s1, . . . , sr). Then we have:

There exist functions z1, . . . , zm : K → R satisfying z1 < · · · < zm on K, such
that the following are true:

(1) For every ξ ∈ K, the set {z1(ξ), . . . , zm(ξ)} consists precisely of all real
zeros of those fν(ξ, t) that are not identically zero;

(2) each fν has constant sign on each of the sets graph(z j) ( j = 1, . . . ,m) and
band(z j, z j+1) ( j = 0, . . . ,m).

The functions z1, . . . , zm are definable since they can be described by R-formulas.
We show that they are continuous, which will complete the proof of Theorem 4.3.9.

For this fix ξ0 ∈ K and put b j := z j(ξ0) for j = 1, . . . ,m. Let δ > 0 in R with
2δ < b j+1 − b j for 1 ≤ j < m, and fix j ∈ {1, . . . ,m}. By hypothesis, the family
f1, . . . , fr is stable under ∂/∂t. Therefore there exists an index ν = ν( j) ∈ {1, . . . , r}
such that t = b j is a zero of fν(ξ0, t) of odd multiplicity. For this index ν we have

fν(ξ0, b j − δ) · fν(ξ0, b j + δ) < 0.

Let Uν j be a neighborhood of ξ0 in K such that

fν(ξ, b j − δ) · fν(ξ, b j + δ) < 0

for every ξ ∈ Uν j:

b j+1

b j+δ

b j

b j−δ

b j−1

K
ξ0 ξ Uν j

z j+1

z j

z j−1
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For every ξ ∈ Uν j, therefore, fν(ξ, t) . 0, and fν(ξ, t) has a zero between b j − δ and
b j + δ (intermediate value theorem 1.3.3). So there exists an index k = k j(ξ) with

zk(ξ) ∈
]
b j − δ, b j + δ

[
.

Let U :=
⋂m

j=1 Uν( j), j, a neighborhood of ξ0 in K. Since the intervals ]b j − δ, b j + δ[
( j = 1, . . . ,m) do not overlap, it follows that k j(ξ) = j for j = 1, . . . ,m and ξ ∈ U.
This means

∣∣∣z j(ξ) − z j(ξ0)
∣∣∣ < δ for all j = 1, . . . ,m and all ξ ∈ U, so the functions z j

are continuous in ξ0. Since ξ0 ∈ K was arbitrary, the z j are continuous on K. ut

4.3.13 Definition. Let π : Rn+1 → Rn, π(ξ, t) = ξ denote projection to the first n
components, and write x = (x1, . . . , xn).

(a) A cylindrical algebraic decomposition (with respect to π), or CAD for short, is
a finite decomposition Rn = K1 ∪ · · · ∪ Ks into pairwise disjoint semialgebraic
sets Ki, together with finitely many semialgebraic functions zi1 < · · · < zimi on
Ki for every i = 1, . . . , s (with mi ≥ 0).

(b) Let f1, . . . , fr ∈ R[x, t]. The CAD is said to be adapted to f1, . . . , fr if, for every
ν = 1, . . . , r and i = 1, . . . , s, the polynomial fν has constant sign on each of the
sets graph(zi j) (1 ≤ j ≤ mi) and band(zi j, zi, j+1) (0 ≤ j ≤ mi).

(c) Let M1, . . . ,Mr ⊆ Rn × R be semialgebraic sets. The CAD is said to be adapted
to M1, . . . ,Mr if every Mν is the union of some of the sets graph(zi j) (1 ≤ j ≤ mi)
and band(zi j, zi, j+1) (0 ≤ j ≤ mi, 1 ≤ i ≤ s).

(Here again we put zi,0 = −∞ and zi,mi+1 = +∞ in (b) and (c).)

Theorem 4.3.9 implies:

4.3.14 Corollary. For any finite number of polynomials in R[x, t], or of semialge-
braic sets in Rn+1, there exists an adapted CAD. ut

The CAD theorem has the following consequence (see Exercise 4.3.2 for the
proof):

4.3.15 Corollary. Let M be a semialgebraic set on an R-variety V, let f : M → Rk

be a definable map. There is a finite covering M = M1 ∪ · · · ∪ Ms of M by semial-
gebraic sets Mi, such that the restriction f |Mi is continuous for every i = 1, . . . , s.

ut

In particular:

4.3.16 Corollary. Let I ⊆ R be an interval, let f : I → Rk be a definable map. Then
f is continuous in all but a finite number of points. ut

4.3.17 Example. We use an explicit example to illustrate the construction in the
proof of Theorem 4.3.9. Let

f = f (x, t) = (t2 − x)(xt − 1)2 = x2t4 − 2xt3 + (1 − x3)t2 + 2x2t − x.

Let f1 = f and put
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f2 =
∂ f1
∂t

= 4x2t3 − 6xt2 + 2(1 − x3)t + 2x2 = (xt − 1)(4xt2 − 2t − 2x2)

Fixing x ∈ R, the real zeros of f2(x,−) are 1
x (if x , 0) and

h1(x) :=
1
4x

(
1 −
√

1 + 8x3), h2(x) :=
1
4x

(
1 +
√

1 + 8x3)
(if x ≥ − 1

2 , x , 0), together with 0 if x = 0. Proceeding as in the proof of Theorem
4.3.9, the x-axis gets subdivided by the points x = − 1

2 , x = 0 and x = 1. So we get
the picture below (with the curves f1 and f2 drawn in blue and red, respectively, and
the black hyperbola belonging to both):

− 1
2 1 x

t

Note that it is necessary to add the partial derivative f2 = ∂ f /∂t, in order to get a
CAD that is adapted to f . Otherwise the subdivision constructed in the proof would
be too coarse. Note also that some of the functions zi j : Ki → R extend continuously
to the closure of Ki, while others do not.

4.3.18 Remarks.

1. Theorem 4.3.9 decomposes the space into open semialgebraic cells, subject to
refining a given finite semialgebraic partition. This is still a very coarse first version
of CAD, that can be refined in several ways. One problem with this version is that
it doesn’t give any information on the closures of the cells. This can be fixed by
choosing the direction of the projection Rn+1 → Rn properly. An important role for
such a refinement is played by Thom’s lemma below.

2. Implementations of CAD have been written for major software packages, both
commercial and free ones.

As a key step for establishing an improved version of CAD, we mention Thom’s
lemma. Write Σ := {−1, 0, 1} in the following. For every tuple e = (e1, . . . , er) ∈ Σr

let
e =

{
ε ∈ Σr : εi ∈ {0, ei} for i = 1, . . . , r

}
.



146 Semialgebraic Geometry

Let f1, . . . , fr ∈ R[t] be a finite sequence of univariate polynomials satisfying f ′i =

d fi/dt ∈ { f1, . . . , fr} ∪ R for i = 1, . . . , r. For e ∈ Σr let

S (e) :=
{
x ∈ R : sign fi(x) = ei for i = 1, . . . , r

}
,

and put S (E) :=
⋃

e∈E S (e) for every subset E ⊆ Σr. Then the following hold:

4.3.19 Proposition. (Thom’s Lemma) Let f1, . . . , fr ∈ R[t] be as above.

(a) If |S (e)| > 1 then S (e) is an open interval;
(b) if S (e) , ∅ then S (e) = S (e);
(c) if S (e) = ∅ then |S (e)| ≤ 1.

If S (e) is non-empty, the remarkable point is that the closure of S (e) is obtained
by simply relaxing all defining inequalities. When S (e) is empty this may fail (take
f1 = t2, f2 = 2t and e = (−1, 0), for example), but according to (c), the relaxed
system of inequalities describes at most a singleton set in this case.

4.3.20 Corollary. Let f ∈ R[t] be of degree n ≥ 1. If α, β ∈ R are roots of f such
that sign f (i)(α) = sign f (i)(β) for i = 1, . . . , n − 1, then α = β.

Thus a real root α of f may be uniquely encoded by giving the signs of all the
iterated derivatives of f at α. The corollary is an immediate consequence of Thom’s
lemma.

4.3.21 Remark. Thom’s lemma in general, and Corollary 4.3.20 in particular, is
heavily used in algorithmic real algebraic geometry (see [12] for much more details).
For one example, a real algebraic number α can be represented by the string of
coefficients of an integer polynomial f (t) with f (α) = 0, together with the sequence
sign f (i)(α) (i = 1, . . . , deg( f ) − 1) of signs (this is the so-called Thom encoding
of α). There exist implementations of an exact arithmetic of real algebraic numbers
that are based on this fact.

Proof of Proposition 4.3.19. We’ll show parts (a) and (b) by induction on r, and
refer to Exercise 4.3.12 for (c).

If r = 1 then deg( f1) ≤ 1, and the assertion is obvious. Therefore let r > 1.
We may assume that deg( fr) ≥ deg( fi) for every i, and that deg( fr) ≥ 1. Let e =

(e1, . . . , er) ∈ Σr be given and put e′ := (e1, . . . , er−1). By the inductive hypothesis
applied to f1, . . . , fr−1, the set

S (e′) :=
r−1⋂
i=1

{
x ∈ R : sign fi(x) = ei

}
is either an open interval or contains at most one point. In addition, the closure of
S (e′) is S (e′) if S (e′) , ∅.

Case 1:
∣∣∣S (e′)

∣∣∣ ≤ 1. Then clearly |S (e)| ≤ 1 as well. Therefore, if S (e) is non-
empty then S (e) = S (e′), and so
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S (e) = S (e′) ⊇ S (e) ⊇ S (e).

Here the first equality holds by the inductive hypothesis, while the last one is trivial.
This proves S (e) = S (e).

Case 2: S (e′) is a non-empty open-interval. By hypothesis we have f ′r ∈ R ∪
{ f1, . . . , fr−1}. Therefore f ′r has constant sign ±1 on S (e′), which means that fr is
strictly monotonic on S (e′) (Corollary 1.3.10). Clearly, this implies that

S (e) = S (e′) ∩ {x : sign fr(x) = er}

is either an open interval, or |S (e)| ≤ 1. We may assume that S (e) , ∅. Using the
inductive we have to show that

S (e) = S (e′) ∩ {x : sign fr(x) ∈ {0, er}}.

Only the inclusion
S (e) ⊇ {x ∈ S (e′) : fr(x) = 0}.

is not clear a priori. But it follows immediately from the fact that fr is strictly mono-
tonic on S (e′). ut

Exercises

Let R always be a real closed field.

4.3.1 Show that each of the following properties of a definable map is preserved under extension
of the base field (cf. Remark 4.3.2.3): Being injective, surjective, bijective, continuous, a
semialgebraic homeomorphism, an open map, a map that sends closed semialgebraic sets to
closed sets.

4.3.2 Give the proof of Corollary 4.3.15.
4.3.3 Prove the claims made in Examples 2 and 3 of 4.3.6.
4.3.4 Let B = {ξ ∈ Rn : |x| ≤ 1} be the closed unit ball. Then

f : B→ Pn(R), f (ξ) =
(
1 −

∑
i

ξ2
i : ξ1 : · · · : ξn

)
defines a semialgebraic map. The restriction of f to ∂B = S n−1 is a two-to-one covering
of the hyperplane H = {u : u0 = 0} in Pn(R), while f restricted to the interior of B is a
homeomorphism onto the complement of H in Pn(R).

4.3.5 Let S = {ξ ∈ Rn+1 : |ξ| = 1}, the n-dimensional sphere over R, let ∞ = (1, 0, . . . , 0) be the
north pole.

(a) The stereographic projection p : S n r {∞} → Rn is a s.a. homeomorphism.
(b) A subset M ⊆ Rn is unbounded if and only if∞ lies in the closure of p−1(M).

4.3.6 Let π : V → An be the blowing-up of affine n-space in the origin. Show that V(R) is s.a.
homeomorphic to Pn(R) r {(1 : 0 : · · · : 0)}.

4.3.7 Let f : M → N be a definable map between semialgebraic sets. Show that the points of M
where f fails to be continuous form a semialgebraic subset of M.
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4.3.8 Let f : M → R be a definable function where M ⊆ Rn is a semialgebraic set. Show that there
are semialgebraic sets M1, . . . ,Mr with M =

⋃r
i=1 Mi, together with polynomials p1, . . . , pr

in R[x1, . . . , xn, t] such that, for every index i and every ξ ∈ Mi, the univariate polynomial
pi(ξ, t) is not identically zero and pi(ξ, f (ξ)) = 0.

4.3.9 Construct a CAD for the projection π : R3 → R2, π(x, y, z) = (x, y) that is adapted to f =

x2z − y2, and use it to find a decomposition of the Whitney umbrella

W =
{
(u, v,w) ∈ R3 : v2 = u2w

}
into finitely many disjoint semialgebraic cells.

4.3.10 Let f : ]0, 1[ → R be a definable function. Show that there exists an integer n ≥ 1 such that
| f (t)| < t−n for all sufficiently small t > 0. If f doesn’t vanish identically on ]0, c[ for any
0 < c < 1, there also exists an integer m ≥ 1 with | f (t)| > tm for all sufficiently small t > 0.
(Hint: f satisfies an algebraic identity.)

4.3.11 With a refined reasoning, the statement of Exercise 4.3.10 can be made more precise. Let
f : ]0, 1[→ R be a definable function, and assume that f does not vanish identically on ]0, δ[
for any 0 < δ < 1. Show that there exist q ∈ Q and 0 , c ∈ R such that limt→0 t−q f (t) = c.
Moreover, prove that both q and c are uniquely determined. (Hint: Remark 1.4.10)

4.3.12 Prove statement (c) in Thom’s lemma 4.3.19.

4.4 Connected components

R is always a real closed field. Following the convention in 4.3.3, every semialge-
braic set is assumed to be a semialgebraic subset of V(R) for some R-variety V .

With its order topology, the field R is totally disconnected unless R = R (Exercise
1.2.2). Therefore the same is true for every semialgebraic set. Still there exists a
reasonable concept of connectedness for semialgebraic sets:

4.4.1 Definition. Let V be an R-variety. A set M ⊆ V(R) is called semialgebraically
(s.a.) connected if M is a semialgebraic subset of V(R) and the following holds:
Whenever M1, M2 are two disjoint semialgebraic subsets of M that are (relatively)
open in M and satisfy M = M1 ∪ M2, either M1 = ∅ or M2 = ∅.

This is almost the usual definition for connectedness, except that only decompo-
sitions M = M1 ∪· M2 into semialgebraic sets are considered.

4.4.2 Remark. It is immediately clear that s.a. connectedness is invariant under s.a.
homeomorphism. It is also true that M is s.a. connected if and only if the topological
space M̃ is connected in the usual sense, Exercise 4.4.2.

Recall (1.6.18) that a subset K ⊆ Rn is R-convex if u, v ∈ K implies (1− t)u+ tv ∈
K for every 0 ≤ t ≤ 1 in R.

4.4.3 Lemma. Every semialgebraic and R-convex subset of Rn is s.a. connected. In
particular, Rn is s.a. connected.
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Proof. The interval [0, 1] in R is s.a. connected, hence so is every closed line seg-
ment [u, v] between two points in Rn. From this, the general case follows immedi-
ately. �

4.4.4 Proposition. Let M, N ⊆ V(R) be s.a. connected sets.

(a) The closure M is s.a. connected.
(b) If M ∩ N , ∅ then M ∪ N is s.a. connected.
(c) If L ⊆ W(R) is s.a. connected, then so is M × L ⊆ V(R) ×W(R).
(d) If f : M → Rk is a semialgebraic map then f (M) is s.a. connected.

It suffices to remark that the usual proofs carry over to the semialgebraic setting.

4.4.5 Proposition. Let M be a non-empty semialgebraic set. There exists a decom-
position M = M1 ∪· · · · ∪· Mr into finitely many semialgebraic sets Mi that are rel-
atively open in M, s.a. connected and pairwise disjoint. The sets M1, . . . ,Mr are
uniquely determined up to permutation, and are called the semialgebraic connected
components of M.

Proof. We first prove the existence of such a decomposition. Let M = N1 ∪· · · · ∪·

Ns be a disjoint decomposition into non-empty and s.a. connected sets Ni. Such
a decomposition exists (with the Ni being open semialgebraic cells) by Corollary
4.3.11. By induction on s, we show that such a decomposition can be found for
which the Ni are relatively closed in M. The start s = 1 is trivial, let s > 1. If
N1 is open and closed in M, the inductive hypothesis can be applied to M r N1 =

N2 ∪· · · · ∪· Ns. Otherwise there is an index i ∈ {2, . . . , s} with N1 ∩ Ni , ∅ (if N1
fails to be relatively closed) or with N1 ∩ Ni , ∅ (if N1 fails to be relatively open).
In either case, N1 ∪ Ni is s.a. connected by Proposition 4.4.4(b). Therefore, M is a
disjoint union of s − 1 s.a. connected sets, and we are done by induction.

To prove uniqueness, let M = M1 ∪ · · · ∪Mr = M′1 ∪ · · · ∪M′s be two decomposi-
tions as in the proposition. Each set Mi is contained in M′j for precisely one index j,
and vice versa. Therefore r = s and M′i = Mi after relabelling. �

4.4.6 Corollary. Every semialgebraic set M is locally s.a. connected: Every point
ξ ∈ M has arbitrarily small neighborhoods in M that are s.a. connected.

Proof. Let U be a semialgebraic neighborhood of ξ in M, and let U0 be the s.a.
connected component of U that contains ξ. By Proposition 4.4.5, U0 is relatively
open in U, and so U0 is a semialgebraic connected neighborhood of ξ in M. �

4.4.7 Remark. The proof of Proposition 4.4.5 shows the following. Let M =

M1 ∪ · · · ∪ Mr with s.a. connected sets Mi, not necessarily disjoint. Let ∼ be the
equivalence relation on the set {1, . . . , r} that is generated by

i ∼ j if Mi ∩ M j , ∅.

Then the s.a. connected components of M are the unions Mα =
⋃

i∈α Mi where α
ranges over the equivalence classes with respect to ∼.
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4.4.8 Corollary. (R = R) A semialgebraic set M over the real numbers R is s.a.
connected if and only if it is connected in the usual topological sense.

Proof. Topological connectedness implies s.a. connectedness. Conversely assume
that M is s.a. connected. We can write M = N1 ∪ · · · ∪Nr with semialgebraic sets Ni

that are topologically connected (homeomorphic to Rni ). By Remark 4.4.7 we have
i ∼ j for all 1 ≤ i, j ≤ r. Since 4.4.4(b) holds for topological connectedness as well,
it follows that M is topologically connected. �

In the next section we will see that every s.a. connected set is semialgebraically
path-connected.

Exercises

4.4.1 Let f : M → N be a surjective semialgebraic map between semialgebraic sets. Assume that
N is s.a. connected and that f −1(η) is s.a. connected for every η ∈ N.

(a) If f maps open semialgebraic subsets of M to open subsets of N, then M is s.a. con-
nected. The same is true if one replaces “open” by “closed”.

(b) Give an example to show that (a) becomes usually false without further assumptions
on f .

4.4.2 A semialgebraic set M is s.a. connected if and only if the topological space M̃ is connected.

4.5 Semialgebraic paths

We start by extending the elementary concepts of differentiability to semialgebraic
functions over an arbitrary real closed field R.

4.5.1 Let U ⊆ Rn be an open semialgebraic set, let f = ( f1, . . . , fp) : U → Rp be
a definable map. The notion of differentiability carries over from R to R without
change. So f is differentiable in ξ ∈ U if there exists an R-linear map L : Rn → Rp

such that
lim
u→0

1
|u|

(
f (ξ + u) − f (ξ) − L(u)

)
= 0.

If this holds then f is continuous in ξ and the linear map L is uniquely determined.
As usual, L is called the derivative of f at ξ, denoted D f (ξ). Viewing this linear map
as a matrix, we have D f (ξ) = ( ∂ fi

∂x j
(ξ)), the p × n matrix of partial derivatives of the

fi in ξ. As usual, f is called differentiable (on U) if f is differentiable in every point
ξ ∈ U.

4.5.2 Lemma. The set U′ := {ξ ∈ U : f is differentiable in ξ} is semialgebraic, and
the map ξ 7→ D f (ξ), U′ → Hom(Rn,Rp) = Mp×n(R) is definable.
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Proof. We may assume p = 1. Then U′ can be described by the following R-formula
ϕ(x) = ϕ(x1, . . . , xn):

∃ z1 · · · ∃ zn ∀ ε > 0 ∃ δ > 0 ∀ y1 · · · ∀ yn

(
|y| < δ→

∣∣∣ f (x + y) − f (x) −
∑
i

yizi

∣∣∣ ≤ ε|y|).
Similarly, graph(∂ f /∂x j) is characterized by the following R-formula ψ(x, t):

∀ ε > 0 ∃ δ > 0 ∀ s
(
|s| < δ →

∣∣∣ f (x + se j) − f (x) − st
∣∣∣ ≤ ε|s|).

(You may have observed that we have slightly cheated here, since in general these
are not formulas unless f is a polynomial. Rather, one has to express the relation
f (x) = u by using a formula ω(x, u) that describes the graph of f . Also, one has to
intersect the descriptions above with the condition x ∈ U.) �

4.5.3 Remarks.

1. k-fold differentiability is defined inductively for k ≥ 1, as well as the higher
derivatives Dk f = D(Dk−1 f ). If f is k-times continuously differentiable, f is called
a semialgebraic Ck-function.

2. All formal rules for derivatives (linearity, product rule, chain rule) hold in the
semialgebraic context as well. However there is no general semialgebraic analogue
of integration! Already the function

∫ x
1

dt
t = log(x) over R = R fails to be semialge-

braic.
3. A semialgebraic map f : U → Rp is said to be Nash (or a Nash map, or a semi-

algebraic C∞-map) if f is Ck for every k ≥ 1. So f is Nash if and only if all iterated
partial derivatives exist on U. A Nash map f : U → R is called a Nash function
on U.

4.5.4 Proposition. (Inverse functions) Let U ⊆ Rn be an open semialgebraic set and
let f : U → Rn be a semialgebraic Ck-map (with 1 ≤ k ≤ ∞). Let ξ ∈ U be such that
det D f (ξ) , 0. Then there exists an open semialgebraic neighborhood V ⊆ U of ξ
such that f (V) is open, the restriction f |V : V → Rn of f is injective and the inverse
map f (V)→ V of f is again a semialgebraic Ck-map.

Proof. For R = R this is known from first year calculus. In the semialgebraic setting,
the result can be proved over arbitrary R in the same way as over R, see for example
[25], Section 2.9. To save time and space we use Tarski instead, to derive the result
over R from the case R = R. Fixing f , the graph of f has a semialgebraic description
by a certain number of polynomial inequalities of certain degrees. Replace each
coefficient of each of these polynomials by a separate variable. Then there exists a
formula that expresses that the set so described is the graph of a Ck-map f (for fixed
k < ∞), that det D f (ξ) , 0, and that the assertion of the proposition holds. The
Z-sentence constructed in this way holds over R, and therefore it holds over every
real closed field R. The case k = ∞ follows from the cases k < ∞. �

4.5.5 Proposition. (Implicit functions) Let W ⊆ Rn × Rp be an open semialgebraic
set, let f : W → Rp be a semialgebraic Ck-map (1 ≤ k ≤ ∞). Let (ξ0, η0) ∈ W with
f (ξ0, η0) = 0, and assume that the matrix
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(Dy f )(ξ0, η0) =

(
∂ fi
∂y j

(ξ0, η0)
)

1≤i, j≤p

is invertible. Then there are open semialgebraic neighborhoods U ⊆ Rn of ξ0 and
V ⊆ Rp of η0 satisfying U × V ⊆ W, together with a semialgebraic Ck-map g : U →
V, such that for all (ξ, η) ∈ U × V one has

η = g(ξ) ⇔ f (ξ, η) = 0.

Moreover, g is uniquely determined by this condition, locally around ξ0.

Proof. Same as in calculus: Apply Proposition 4.5.4 to the semialgebraic Ck-map
F : W → Rn × Rp, F(ξ, η) = (ξ, f (ξ, η)). Since F(ξ0, η0) = (ξ0, 0) and

DF =

(
I 0

Dx f Dy f

)
is invertible in (ξ0, η0), there exist neighborhoods U of ξ0 and V of η0 such that F|U×V

is a semialgebraic open embedding with Ck-inverse map G : F(U × V) → U × V .
Define g : U → V by (ξ, g(ξ)) = G(ξ, 0) (ξ ∈ U). �

4.5.6 Example. Let p ∈ R[x1, . . . , xn, t], let ξ0 ∈ Rn, and let a ∈ R be a simple root of
the polynomial p(ξ0, t) ∈ R[t]. Then there are an open semialgebraic neighborhood
U ⊆ Rn of ξ0 and a Nash function f : U → R, unique locally around ξ0, such that
f (ξ0) = a and p(ξ, f (ξ)) = 0 for all ξ ∈ U:

p(x, t) = 0 (ξ0, b)

(ξ0, a)

ξ0

A simple root a and a
non-simple root b of p(ξ0, t)

Indeed, ∂p
∂t (ξ0, a) , 0 since a is a simple root, so the assertion follows from Propo-

sition 4.5.5.

4.5.7 Theorem. Let U ⊆ Rn be an open semialgebraic set, let f : U → Rp be a
definable map. Then there is an open dense semialgebraic subset V of U such that
f |V is Nash.

Proof. Let x = (x1, . . . , xn). We may assume p = 1. The graph of f can be written
as a union graph( f ) = G1∪· · ·∪Gr, where Gi = Z(pi)∩U(qi1, . . . , qisi ) with polyno-
mials pi, qi j ∈ R[x, t]. Let π : Rn × R → Rn be projection to the first n components.
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Since U is the union of the semialgebraic sets pr1(Gi), the union of their interiors is
open and dense in U (Exercise 4.5.3). So we may assume r = 1, which means

graph( f ) =
{
(ξ, t) : p(ξ, t) = 0, q1(ξ, t) > 0, . . . , qs(ξ, t) > 0

}
with p, q1, . . . , qs ∈ R[x, t]. We can also assume that p(x, t) does not have multiple
factors. Therefore the discriminant ∆(x) ∈ R[x] of p(x, t) with respect to t is a non-
zero polynomial, and the set V := {ξ ∈ U : ∆(ξ) , 0} is open and dense in U. Let
d = degt(p) and put

Vr := {ξ ∈ V : p(ξ, t) has exactly r zeros in R}

for 1 ≤ r ≤ d. Then V =
⋃d

r=1 Vr. Again
⋃d

r=1 int(Vr) is open dense in V , hence
in U, and we may replace U by int(Vr) for some fixed r ≥ 1. This means:

For every ξ ∈ U, the polynomial p(ξ, t) has exactly r real zeros, and they are
all simple roots.

Let z1(ξ) < · · · < zr(ξ) be the real zeros of p(ξ, t), for ξ ∈ U. Then z1, . . . , zr

are Nash functions on U, by the implicit function theorem (Example 4.5.6). Let
finally Ui := {ξ ∈ U : f (ξ) = zi(ξ)} for i = 1, . . . , r. Then U =

⋃
i=1 Ui, the set

U′ :=
⋃r

i=1 int(Ui) is open dense in U, and f |U′ is Nash. �

4.5.8 Remarks.

1. Let F ∈ R[x1, . . . , xn, t]. If U ⊆ Rn is an open semialgebraic set and f : U → R
is a continuous map such that f (ξ) is a simple root of F(ξ, t) for every ξ ∈ U, then f
is a Nash function (Example 4.5.6).

2. The converse is usually false: Given a Nash function f : U → R, there need
not exist a polynomial p(x, t) with p(ξ, f (ξ)) = 0 for all ξ ∈ U, and such that
t = f (ξ) is a simple root of p(ξ, t) for every ξ ∈ U. An example is given by the
Nash function f : ]−1, 1[ → R, f (x) = x

√
1 + x (non-negative square root). The

minimal polynomial that vanishes on graph( f ) is q(x, t) = t2 − x2 − x3, and has a
singularity at the origin. Accordingly, t = 0 is a two-fold root (at least) of p(0, t), for
any polynomial p(x, t) that vanishes on the graph of f :

x

f (x)

Graph of the Nash function f (x)
and its Zariski closure

3. In the exercises it will be shown that every Nash function is locally determined
by its Taylor series (see Exercise 4.5.14). When R = R, every Nash function is in
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fact real analytic, not just C∞. More precisely, a function f : U → R defined on an
open semialgebraic set U ⊆ Rn is a semialgebraic C∞-function if, and only if, f is
definable and analytic. The proof can be found in [25] Proposition 8.1.8.

4.5.9 Proposition. (Existence of definable sections) Let f : M → N be a definable
and surjective map between semialgebraic sets. Then f has a definable section:
There exists a definable map s : N → M such that f (s(η)) = η for every η ∈ N.

Proof. We may assume that M ⊆ Rm and N ⊆ Rn are semialgebraic sets. The map f
is the composition M

γ
−→ graph( f )

π
−→ N of definable maps, where γ(ξ) = (ξ, f (ξ))

and π(ξ, η) = η. Since γ is bijective, it suffices to find a definable section for π. So we
may assume that M ⊆ Rm ×Rn is a semialgebraic set, and f is the second projection
f (ξ, η) = η. By an induction argument one reduces to the case m = 1, and this case
is settled in Exercise 4.5.1. �

Proposition 4.5.9 is remarkable in that it has no counterpart in classical topology
or analysis. The proof itself is very easy.

To prepare for the discussion of semialgebraic paths, we start with a few simple
lemmas:

4.5.10 Lemma. Let f : I → R be a semialgebraic (continuous) function defined on
an interval I ⊆ R. If f is injective then f is strictly monotonic.

The proof is obvious using Proposition 4.4.4(d).

4.5.11 Lemma. Let f : ]0, 1[ → R be a definable function. For some a ∈ R with
0 < a ≤ 1, the restriction of f to ]0, a[ is continuous, and either strictly monotonic
or constant.

Proof. There is 0 < b ≤ 1 such that f is C1 on ]0, b[ (Theorem 4.5.7). If f ′ ≡ 0 on
]0, a[ for some 0 < a ≤ b then f is constant on ]0, a[. Otherwise there is 0 < a ≤ b
such that either f ′ > 0 or f ′ < 0 on ]0, a[. Accordingly, f is strictly increasing or
strictly decreasing on ]0, a[, respectively. �

4.5.12 Corollary. Let f : ]0, 1[ → Rn be a bounded definable function. Then the
limit limt→0 f (t) exists in Rn.

Proof. We may assume n = 1. Then the assertion is immediate from Lemma
4.5.11. For example, if f is strictly increasing on ]0, a[ (where 0 < a ≤ 1), then
limt→0 f (t) = inf f

(
]0, a[

)
. The infimum exists in R since f

(
]0, a[

)
is a union of

finitely many bounded intervals in R. �

4.5.13 Definition. Let M be a semialgebraic set. A semialgebraic path in M is a
(continuous) semialgebraic map α : I → M where I is a non-degenerate interval
in R. Frequently we’ll write αt, rather than α(t), for t ∈ I.

4.5.14 Lemma. Let f : M → N be a definable map between semialgebraic sets that
is surjective, and let β : ]0, 1[ → N be a semialgebraic path in N. Then, for some
0 < c ≤ 1, there exists a semialgebraic path α : ]0, c[→ M such that βt = f (αt) for
0 < t < c.
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Speaking informally, the lemma says that “open” semialgebraic path germs can
be lifted under definable maps.

Proof. There exists a definable map γ : ]0, 1[ → M with f ◦ γ = β (Proposition
4.5.9). Then there is 0 < c ≤ 1 such that γ is continuous on ]0, c[ (Corollary
4.3.16). �

4.5.15 Proposition. (Curve selection lemma) Let M ⊆ Rn be a semialgebraic set
and let ξ ∈ M. Then there is a semialgebraic path α : [0, 1[ → M such that αt ∈ M
for 0 < t < 1 and α0 = ξ.

Proof. We may assume ξ < M, otherwise we can take the constant path ξ. For
η ∈ Rn let dξ(η) := |η − ξ|. The set dξ(M) ⊆ ]0,∞[ is semialgebraic and contains
]0, a[ for some a > 0, since ξ ∈ M. By Lemma 4.5.14, applied to dξ : M → R+, there
are 0 < c ≤ a and a semialgebraic path β : ]0, c[ → M such that dξ(βt) = t for all
0 < t < c. Let α : [0, 1[ → M be defined by αt := βtc for 0 < t < 1 and by α0 := ξ.
Then α is continuous and has the desired properties. �

4.5.16 Corollary. If M ⊆ Rn is an unbounded semialgebraic set, there exists a semi-
algebraic path α : ]0, 1[→ M satisfying limt→0 |αt | = ∞.

Proof. See Exercise 4.5.4. �

The curve selection lemma is a very useful tool. In the context of semialgebraic
maps over arbitrary real closed fields, it can replace the traditional use of convergent
sequences in analysis or topology. In the following we present a selection of various
applications, starting with a path criterion for continuous maps:

4.5.17 Proposition. A definable map f : M → N between semialgebraic sets is con-
tinuous if, and only if, f (α0) = limt→0, t>0 f (αt) holds for every semialgebraic path
α : [0, 1[→ M.

Proof. We only need to prove the “if” part. Let K ⊆ N be a semialgebraic subset
that is (relatively) closed in N, and let ξ ∈ f −1(K), we need to show ξ ∈ f −1(K).
By curve selection 4.5.15 there is a semialgebraic path α : [0, 1[→ M that satisfies
α0 = ξ and αt ∈ f −1(K) for 0 < t ≤ 1. By hypothesis, f (ξ) is the limit of f (αt) for
t → 0, t > 0, and so f (ξ) ∈ K since K is closed in N. �

4.5.18 In general topology, the notion of path-connected spaces is stronger than
that of connected spaces. For semialgebraic sets we show that both agree. A semi-
algebraic set M is said to be semialgebraically (s.a.) path connected if, for any two
points ξ, η ∈ M, there exists a semialgebraic path α : [0, 1] → M with α0 = ξ and
α1 = η. Such α will be called a semialgebraic path from ξ to η.

4.5.19 Corollary. A semialgebraic set is s.a. connected if and only if it is s.a. path
connected.
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Proof. Let M be s.a. connected, write M as a union M = M1 ∪ · · · ∪ Mr of semial-
gebraic subsets that are s.a. path connected (for example open semialgebraic cells,
4.3.11). Curve selection 4.5.15 implies that the relative closure Mi of Mi in M is
s.a. path connected for each i. So we may assume that the Mi are relatively closed
in M. If ∼ denotes the equivalence relation on {1, . . . , r} generated by i ∼ j if Mi ∩

M j , ∅, we have i ∼ j for all i, j since M is s.a. connected (Remark 4.4.7). Being
connectible by a s.a. path in M is an equivalence relation on M. Therefore M is s.a.
path connected. �

If the real closed field R is different from R, a semialgebraic set will never be
locally compact, except when it is finite (Exercise 1.2.2). Still there is a reasonable
semialgebraic analogue of the notion of compactness:

4.5.20 Definition. A semialgebraic set M is semialgebraically (s.a.) compact if, for
any semialgebraic path α : ]0, 1[→ M, the limit limt→0 αt exists in M.

The definition can be regarded as analogous to the notion of sequential com-
pactness from general topology. The next few results show that it is the correct
generalization of usual compactness to the semialgebraic context:

4.5.21 Proposition. A semialgebraic subset M of Rn is s.a. compact if, and only if,
M is closed and bounded in Rn.

Proof. If M is s.a. compact then M is closed in Rn by curve selection 4.5.15, and M
is bounded by Corollary 4.5.16. Conversely, if M is closed and bounded then M is
s.a. compact by Corollary 4.5.12. �

In particular, over R = R, a semialgebraic set is s.a. compact if and only if it is
compact.

4.5.22 Proposition. Let f : M → N be a semialgebraic map between semialgebraic
sets, and assume that M is s.a. compact. Then f (M) is s.a. compact as well. In
particular, every semialgebraic function defined on M takes its minimum and its
maximum on M.

Proof. Let β : ]0, 1[ → f (M) be a semialgebraic path. By Lemma 4.5.14 there is
0 < a ≤ 1 together with a semialgebraic path α : ]0, a[ → M such that βt = f (αt)
for 0 < t ≤ a. The limit ξ := limt→0 αt exists in M since M is s.a. compact, and so
limt→0 βt = f (ξ) exists in f (M). �

For a characterization of semialgebraic compactness via the real spectrum, see
Exercise 4.5.12. Further applications of the curve selection lemma are contained in
some of the other exercises.

We end this section with an improved version of the Łojasiewicz inequality. It
refines and generalizes Theorem 3.3.14 at the same time.

4.5.23 Proposition. Let M ⊆ Rn be a semialgebraic set that is locally closed in Rn,
and let g : M → R be a semialgebraic function. If f : MrZ(g)→ R is another semi-
algebraic function, there exists an integer m ≥ 1 such that the function hm : M → R,
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hm(ξ) =

g(ξ)m f (ξ) if g(ξ) , 0,
0 if g(ξ) = 0,

is continuous (hence semialgebraic).

Proof. Write U = M r Z(g). Note that each function hm is definable. We first show
that, for any given ξ ∈ Z(g), there exists m ≥ 1 such that hm is continuous in ξ. For
this we may assume ξ ∈ U. It is easy to see that ξ has a neighborhood K in M that is
s.a. compact (Exercise 4.5.10). For any t > 0 in R, the subset Kt = {η ∈ K : |g(η)| = t}
of K∩U is semialgebraic and s.a. compact, and Kt , ∅ for small t, say for 0 < t < c.
Let the function ϕ : ]0, c[→ R be defined by

ϕ(t) := sup
{
| f (η)| : η ∈ Kt

}
,

and note that the supremum is finite by Corollary 4.5.22. Since the function ϕ is
definable, there exists an integer m ≥ 1 such that ϕ(t) ≤ t−m for 0 < t < ε and
some ε ∈ R, 0 < ε ≤ c (Exercise 4.3.10). It follows that the function hm+1 is
continuous in ξ: If η ∈ K is such that t := |g(η)| satisfies 0 < t < ε, we have
|hm+1(η)| = tm+1 · | f (η)| ≤ tm+1 · ϕ(t) ≤ t = |g(η)|.

Given any integer m ≥ 1, write Mm = {ξ ∈ M : hm is continuous in ξ}. We have
U ⊆ M1 ⊆ M2 ⊆ · · · , and M =

⋃
m≥0 Mm holds by the first part of the proof.

In fact, the same is true after arbitrary extension of the real closed base field, i.e.,
MS =

⋃
m≥0(Mm)S for every real closed field S ⊇ R. Therefore it follows from

Exercise 4.1.6 that there exists m ≥ 1 with Mm = M. This proves the proposition. �

We get the following consequence. Together with the next corollary, it is a
stronger version of Proposition 3.3.14:

4.5.24 Theorem. (Łojasiewicz inequality, second version) Let M ⊆ Rn be a semial-
gebraic set that is locally closed. If f , g are semialgebraic functions defined on M
that satisfy Z( f ) ⊆ Z(g), there exists m ≥ 1 together with a semialgebraic function
h : M → R such that gm = f h.

Proof. By Proposition 4.5.23, applied to g : M → R and 1/ f : M r Z(g)→ R, there
is m ≥ 1 such that gm/ f : MrZ(g)→ R can be extended to a semialgebraic function
h on all of M. �

4.5.25 Corollary. Let M ⊆ Rn be a closed semialgebraic set. If f , g : M → R are
semialgebraic functions with Z( f ) ⊆ Z(g), there are c > 0 in R and integers m, p ≥
1 such that

|g(ξ)|m ≤ c · | f (ξ)| · (1 + |ξ|)p

holds for all ξ ∈ M. If in addition M is bounded, one can get p = 0.

Proof. Follows immediately from Theorem 4.5.24 combined with Exercise 4.5.13.�
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Exercises

Let R always be a real closed field.

4.5.1 Let M be a semialgebraic subset of Rn+1 = Rn × R, let π : Rn+1 → Rn, π(x, t) = x (for
x ∈ Rn, t ∈ R) be the projection. Complete the proof of Proposition 4.5.9 by showing: There
exists a definable map s : π(M) → R such that

(
η, s(η)

)
∈ M for every η ∈ π(M). (Hint:

This can be proved using the CAD theorem 4.3.9. For an even easier proof define, for every
semialgebraic set J , ∅ in R, a “canonical point” θJ ∈ J in a suitable way.)

4.5.2 Let M be a semialgebraic set, let U ⊆ M be a semialgebraic subset. State and prove a path
criterion for U to be relatively open in M.

4.5.3 Let V be a semialgebraic set.

(a) If α ∈ M̃min, and if N ⊆ M is a semialgebraic subset with α ∈ Ñ, show that there is a
semialgebraic subset U of N, relatively open in M, with α ∈ Ũ.

(b) If M1, . . . ,Mr are semialgebraic subsets of M whose union is dense in M, conclude that
int(M1)∪ · · · ∪ int(Mr) is dense in M as well. (Here int(Mi) denotes the relative interior
of Mi with respect to M.)

(c) Show that, for any definable map f : M → N into a semialgebraic set N, there exists a
dense and relatively open semialgebraic set M′ ⊆ M for which f |M′ is continuous.

4.5.4 Prove Corollary 4.5.16.

4.5.5 “The complex roots of a non-zero univariate polynomial f depend continuously on the co-
efficients of f ”. Use the curve selection lemma to prove the following precise version of this
statement. Let C = R(

√
−1), the algebraic closure of R. Fix d ≥ 1 and let [0, 1] → C[x]≤d ,

t 7→ ft be a (continuous) semialgebraic path in the R-vector space C[x]≤d , satisfying
deg( ft) = d for 0 < t ≤ 1 and f0 , 0. If m = deg( f0), show that the complex roots of
ft can be labelled in such a way that the following holds, for some 0 < c ≤ 1 and all
0 < t < c:

(1) The j-th root of ft depends continuously and semialgebraically on t ( j = 1, . . . , d);
(2) for t → 0, the first m roots of ft converge against the roots of f0, whereas the last d −m

roots diverge to∞.

4.5.6 As an application of Exercise 4.5.5, do the following: If 1 ≤ m ≤ d and U ⊆ C is an open
subset, show that the set of all polynomials f , 0 in C[x]≤d that have at least m roots in U
(counting with multiplicities) is open in C[x]≤d .

4.5.7 Another application of Exercise 4.5.5: Let d ≥ 1, let Wd be the set of all univariate polyno-
mials f ∈ R[x]≤d all of whose real roots are simple.

(a) Show that Wd is a semialgebraic subset of R[x]≤d , and decide whether Wd is open or
closed in R[x]≤d .

(b) For m ≥ 0 let Wd,m = { f ∈ Wd : f has precisely m real roots}. Show that Wd,m is a semi-
algebraic set, and decide whether Wd,m is open and/or closed in Wd . Same question for
Wd,≥m :=

⋃
k≥m Wd,m.

4.5.8 Let V be a projective R-variety. Show that the semialgebraic set V(R) is s.a. compact.

4.5.9 For m ≥ 0 consider the rational function fm(x, y) = xm

x2+y2 defined on R2 r {(0, 0)}. For which
values of m does fm extend to a continuous (semialgebraic) function gm : R2 → R? For which
values of k is gm a semialgebraic Ck-function?

4.5.10 Let M ⊆ Rn be a semialgebraic set. Show that the following conditions are equivalent:

(i) M is locally closed in Rn (i.e. M is the intersection of an open and a closed semialge-
braic set in Rn);
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(ii) every ξ ∈ M has a semialgebraic neighborhood in M that is s.a. compact (and hence ξ
has arbitrarily small such neighborhoods);

(iii) M is s.a. homeomorphic to a closed semialgebraic set in some Rm;
(iv) M is s.a. homeomorphic to K r {ξ} where K is a s.a. compact set and ξ ∈ K is a point;
(v) M̃ is specialization-convex in R̃n, i.e., α γ β in R̃n and α, β ∈ M̃ imply γ ∈ M̃.

Hint: (v) implies that M̃ is stable under generalization inside its closure (why?). This can be
used to prove (v)⇒ (i).

4.5.11 Let M be a subset of Rn that is s.a. compact, and let f : M → M be a definable map that
satisfies | f (ξ) − f (η)| < |ξ − η| for all ξ , η in M. Show that f has a fixed point.

4.5.12 Let M be a semialgebraic set. Prove the following characterizations of semialgebraic com-
pactness via the real spectrum:

(a) M is s.a. compact if and only if, for every closed point α of M̃, the extension R ⊆ R(α)
of real closed fields is relatively Archimedean.

(b) If R = R, it is also equivalent that every element of M̃ specializes to a point in ι(M).

4.5.13 Let M ⊆ Rn be a closed semialgebraic set, let f : M → Rm be a semialgebraic map. Gener-
alizing the statement in the proof of Proposition 3.3.14, show that there exist c > 0 in R and
an integer N ≥ 1 satisfying

| f (x)| ≤ c ·
(
1 + |x|

)N

for all x ∈ M.
4.5.14 Let U ⊆ Rn be a semialgebraic open neighborhood of the origin, and let f : U → R be a

Nash function. Assume that the formal Taylor series of f at the origin vanishes identically,
i.e. that ∂α f

∂xα (0) = 0 for all multi-indices α ∈ Zn
+. Prove that f ≡ 0 in a neighborhood of 0.

Informally speaking, this says that there does not exist any non-zero semialgebraic bump
function. (Hint: Łojasiewicz inequality)

4.6 Dimension of semialgebraic sets

We start by showing that every definable map between semialgebraic sets induces a
map between the real spectra in a natural way. Given a semialgebraic set M, recall
that we may identify the topological space M with the subset ι(M) of M̃.

4.6.1 Proposition. Let f : M → N be a definable map between semialgebraic sets.
There exists a unique map f̃ : M̃ → Ñ that extends f and that is continuous in the
constructible topologies. For every semialgebraic subset T of N one has f̃ −1(T̃ ) =
˜f −1(T ).

Proof. Since M is dense in M̃ and Ñ is Hausdorff, both with respect to the con-
structible topologies, there can be at most one such map f̃ . To construct it we iden-
tify M̃ (with its constructible topology) with StS(M), the Stone space of the dis-
tributive lattice S(M) (Theorem 4.1.19(b)), and similarly for Ñ. Consider the map
f̃ : StS(M)→ StS(N) defined by

F 7→ f̃ (F) := {T ∈ S(N) : f −1(T ) ∈ F}

and note that the right hand set f̃ (F) is indeed an ultrafilter in S(N). For T ∈ S(N)
we have
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f̃ −1(T̃ ) = {F ∈ StS(M) : f −1(T ) ∈ F} = ˜f −1(T )

by construction, which implies that f̃ is continuous. If ξ ∈ M, the map f̃ sends the
principal ultrafilter Fξ ∈ StS(M) to F f (ξ) ∈ StS(N), and so f̃ extends f . �

4.6.2 Example. Let f : V → W be a morphism of affine R-varieties, and let f also
denote the induced map f : V(R) → W(R). Then f̃ : Ṽ(R) → W̃(R) is the map
ϕ∗ : Sper R[V]→ Sper R[W] induced by the ring homomorphism ϕ = f ∗ : R[W]→
R[V] associated with f . More generally, if f is a morphism of arbitrary R-varieties,
then f̃ = fr : Vr → Wr, the map between the real spectra induced by f (see 4.1.15).

4.6.3 Proposition. Let f : M → N be a definable map between semialgebraic sets,
let f̃ : M̃ → Ñ be the map between the real spectra constructed in 4.6.1.

(a) For every semialgebraic set S ⊆ M we have f̃ (S ) = f̃ (S̃ ).
(b) If g : N → N′ is another definable map then g̃ ◦ f = g̃ ◦ f̃ .
(c) f is continuous if and only if f̃ is continuous (with respect to the Harrison

topologies).
(d) f is injective (or surjective, or bijective) if and only if f̃ is injective (or surjec-

tive, or bijective, respectively).

Proof. We use notation introduced in the proof of Proposition 4.6.1. For (a) let
α ∈ S̃ . Then S ∈ Uα and hence f −1( f (S )) ∈ Uα, which implies Yα = { f̃ (α)} ⊆ f̃ (S )
by step (1) of the previous proof. For the converse note that f (S ) ⊆ f̃ (S̃ ) and that
f̃ (S̃ ) is constructibly closed in Ñ. Since f̃ (S ) is the constructible closure of f (S ) in
Ñ, this implies f̃ (S ) ⊆ f̃ (S̃ ). (b) is clear from the uniqueness part of 4.6.1, since
g̃ ◦ f̃ is continuous in the constructible topologies and extends g ◦ f . In (c) it is
clear that f̃ continuous implies f continuous. Conversely, if f is continuous and
W ⊆ N is an open semialgebraic set, then f̃ −1(W̃) = ˜f −1(W) is open in M̃ by the
finiteness theorem 4.2.3. This implies that f̃ is continuous. For the proof of (d) let
f be injective and M , ∅. Then there exists a definable map g : N → M with
g ◦ f = idM , and so (b) implies that f̃ is injective. It is trivial that f̃ injective implies
f injective. The equivalence of f or f̃ being surjective follows from (a). �

4.6.4 Definition. Let V be an R-variety, let M ⊆ V(R) be a semialgebraic set. We
define the (semialgebraic) dimension of M to be the (Krull) dimension of the Zariski
closure clzar(M) of M in V:

dim(M) := dim clzar(M).

The local (semialgebraic) dimension dimξ(M) of M at a point ξ ∈ V(R) is defined
to be the minimal value of dim(M ∩ U), where U is ranging over the open semial-
gebraic neighborhoods of ξ in V(R).

Since semialgebraic dimension applies to semialgebraic sets, while Krull dimen-
sion applies to algebraic varieties, there should be no danger of confusion.
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4.6.5 Remarks. Here is a number of immediate observations.

1. Let M ⊆ V(R) be a semialgebraic set, let M be its closure in V(R). Then
dim(M) = dim(M).

2. If M′ ⊆ M is a semialgebraic subset then dim(M′) ≤ dim(M).
3. If M1, M2 ⊆ V(R) are semialgebraic sets then

dim(M1 ∪ M2) = max
{
dim(M1), dim(M2)

}
.

4. If Mi ⊆ Vi(R) (i = 1, 2) are non-empty semialgebraic sets then

dim(M1 × M2) = dim(M1) + dim(M2).

Indeed, the Zariski closure of M1×M2 in V1×V2 satisfies clzar(M1×M2) = clzar(M1)×
clzar(M2) (prove this).

5. dim(Rn) = n. More generally, if M ⊆ Rn is any semialgebraic set, then
dim(M) = n if and only if the interior of M is non-empty. This follows from Exercise
4.1.1.

6. The function field of an irreducible R-variety V can be ordered if, and only
if, dim V(R) = dim(V). Indeed, by the definition of dim V(R), this is an immediate
consequence of the Artin–Lang theorem 1.7.9.

From Definition 4.6.4 it is not directly clear that semialgebraic dimension is in-
variant under semialgebraic homeomorphisms. We use the real spectrum to prove
that this is true.

4.6.6 Proposition. dim(M) = dim(M̃) holds for every semialgebraic set M.

Here, of course, dim(M) is the (semialgebraic) dimension of M as defined in
4.6.4, while dim(M̃) is the Krull dimension of the spectral space M̃ (see 3.4.16).

Proof. We can assume that M is a Zariski dense semialgebraic set in the R-variety V .
Let n = dim(M) = dim(V). Every specialization chain in M̃ has length at most
dim(M̃) ≤ dim(Vr) ≤ dim(V) (3.4.17), which shows dim(M) ≥ dim(M̃). On the
other hand we may write M as a union of finitely many open semialgebraic cells
Mi (Corollary 4.3.11), i.e. semialgebraic sets Mi ≈ Rni . In particular, M contains
a semialgebraic subset M′ for which there is a s.a. homeomorphism f : Rn → M′.
Since f̃ : R̃n → M̃′ is a homeomorphism (Proposition 4.6.3), the space M̃′ contains
a specialization chain of length n (Example 3.6.11). Therefore dim(M̃) ≥ n. �

As a direct consequence of Proposition 4.6.6, we record:

4.6.7 Corollary. If two semialgebraic sets are s.a. homeomorphic, they have the
same semialgebraic dimension.

Proof. If f : M → N is a s.a. homeomorphism then f̃ : M̃ → Ñ is a homeomor-
phism, by 4.6.3. So the corollary follows from Proposition 4.6.6. �
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Surprisingly, semialgebraic dimension is invariant even under definable bijective
maps that need not be continuous:

4.6.8 Proposition. Let f : M → N be a definable map between semialgebraic sets.

(a) If f is injective then dim(M) ≤ dim(N).
(b) If f is surjective then dim(M) ≥ dim(N).
(c) If f is bijective then dim(M) = dim(N).

Proof. (a) Choose a finite covering M = M1∪· · ·∪Mr by semialgebraic subsets such
that f |Mi is continuous for i = 1, . . . , r (Corollary 4.3.15). Choose an index i with
dim(Mi) = dim(M) =: d (Remark 4.6.5.3). By 4.6.6 there is a specialization chain of
length d in M̃i. Since f̃ |M̃i

is continuous and injective (using Proposition 4.6.3), there
is a specialization chain of length d in f̃ (M̃i) ⊆ Ñ. Therefore dim(N) = dim(Ñ) ≥ d.

(b) Proposition 4.5.9 gives a definable section s : N → M of f , and so (b) follows
from (a) applied to s. �

In particular, there exists nothing like a definable space-filling (Peano) curve. We
conclude by showing that the boundary of any open semialgebraic set in Rn has local
dimension n − 1 everywhere.

4.6.9 Theorem. Let U be an open subset of Rn that is s.a. connected, and let S ⊆ U
be a semialgebraic subset with dim(S ) ≤ n− 2. Then U r S is again s.a. connected.

An equivalent formulation is:

4.6.10 Corollary. Let U ⊆ Rn be an open set that is s.a. connected. If V1, V2 are
non-empty open semialgebraic subsets of U with V1 ∩ V2 = ∅, then dim(U r (V1 ∪

V2)) ≥ n − 1.

4.6.11 We first prove equivalence between the theorem and the corollary. In the
situation of 4.6.10 let S := Ur(V1∪V2). Since UrS = V1∪V2 is s.a. disconnected,
Theorem 4.6.9 implies dim(S ) ≥ n − 1. Conversely let S ⊆ U with dim(S ) ≤ n − 2.
The relative closure S ′ := S ∩ U of S has dim(S ′) = dim(S ) (Remark 4.6.5.1).
Moreover UrS ′ is dense in U, and hence in UrS , since otherwise S would contain
a non-empty open ball. It therefore suffices to show that U r S ′ is s.a. connected.
Assume this is false, then there exist open semialgebraic subsets V1, V2 , ∅ of U
with V1 ∩ V2 = ∅ and V1 ∪ V2 = U r S ′. Assuming Corollary 4.6.10 it follows that
dim(S ′) ≥ n − 1, a contradiction.

Proof of Corollary 4.6.10. We may assume U ⊆ V1∪V2, since otherwise the dimen-
sion in question is n. Then U ∩ V1 ∩ V2 , ∅ since U is s.a. connected. Fix a point
ξ ∈ U ∩ V1 ∩ V2. There is an open ball B ⊆ U with ξ ∈ B, and we may replace U by
B and Vi by B∩Vi. The set A = Ur(V1∪V2) is relatively closed in U. Choose points
ηi ∈ Vi (i = 1, 2), let H1 ⊆ Rn be a hyperplane with η1 ∈ H1 and η2 < H1, and let H2
be the hyperplane through η2 that is parallel to H1. Finally let π : Rn r H2 → H1 be
the linear projection with centre η2:
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u

η1

η2

V1

V2

U

A
H1

H2

For every point u ∈ H1 ∩ V1, the line segment [u, η2] is s.a. connected, and so it
contains a point in A. Therefore H1 ∩V1 ⊆ π(A). Since H1 ∩V1 is a non-empty open
subset of H1 we have dim(H1 ∩ V1) = n − 1. It follows that dim(A) ≥ dim π(A) ≥
dim(H1 ∩ V1) = n − 1. ut

4.6.12 Corollary. Let U ⊆ Rn be an open semialgebraic set. Then the boundary
∂U = U r U of U has local dimension n − 1 at each of its points.

Proof. For ξ ∈ ∂U, the assertion says dim(W ∩ ∂U) = n − 1 for every sufficiently
small neighborhood W of ξ in Rn. The inequality ≤ is clear, cf. Remark 4.6.5.5. For
the converse we may assume that W is connected (e.g., a ball). Then W ∩ ∂U =

W r (W1 ∪W2) with W1 = W ∩U and W2 = W ∩ (Rn rU). Since W1, W2 are open,
disjoint and non-empty, Corollary 4.6.10 implies dim(W ∩ ∂U) ≥ n − 1. �

4.6.13 Corollary. Every R-convex semialgebraic set K ⊆ Rn with non-empty inte-
rior has purely (n − 1)-dimensional boundary.

Proof. Follows from 4.6.12 applied to U = int(K), since K is the closure of U.
(Over R = R, this is an elementary fact about convex sets, a proof of which is given
in 8.1.4 and Exercise 8.1.3. It extends to R-convex semialgebraic sets over any real
closed field R, for example by Tarski’s principle.) �

4.6.14 Remark. Let K ⊆ Rn, K , Rn, be a non-empty semialgebraic set which is
the closure of its interior. For example, K may be a proper R-convex semialgebraic
subset of Rn with non-empty interior. The algebraic boundary ∂aK := clzar(∂K) of
K is defined to be the Zariski closure of the ordinary boundary ∂K ⊆ Rn. Combined
with Exercise 4.6.6, Corollary 4.6.13 shows that ∂aK is a hypersurface, i.e. it is
the zero set of some non-constant polynomial g ∈ R[x]. We may require that g
has no multiple factors, then g is unique up to a scalar factor. Every irreducible
component of the hypersurface ∂aK = V(g) has Zariski dense R-points. Finding
this hypersurface explicitly, or just determining its degree, is often an interesting
and challenging question. Note also that K is the closure of a union of connected
components of {ξ ∈ Rn : g(ξ) , 0}.
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Exercises

Let R always be a real closed field.

4.6.1 Let N ⊆ M be non-empty semialgebraic sets with dim(N) = dim(M). Show that the relative
interior of N in M is non-empty.

4.6.2 Let M , ∅ be a semialgebraic set and let N be a dense semialgebraic subset of M. Prove
that dim(M r N) < dim(M). (Use the real spectrum.)

4.6.3 With the notion of semialgebraic dimension available, prove the following geometric version
of Exercise 3.5.1: Let polynomials p, f1, . . . , fr ∈ R[x] = R[x1, . . . , xn] be given such that
p is irreducible and pm divides

∑r
i=1 fi. Assume that there exists an open semialgebraic set

U ⊆ Rn with fi|U > 0 for every i such that dim(U ∩ Z(p)) = n − 1. Then pm divides each fi.
(Hint: Show that the field K = R(x) has an ordering P that satisfies the condition in Exercise
3.5.1.)

4.6.4 Let M be a semialgebraic set, let M̃ be the real spectrum of M. Show that the set (M̃)max of
closed points of M̃ is pro-constructible in M̃ (if and) only if M is a finite set.

4.6.5 Let f ∈ R[x] = R[x1, . . . , xn] be an irreducible polynomial that is indefinite, i.e. takes both
positive and negative values on Rn. Prove that the hypersurface f = 0 has a real function
field (cf. Theorem 1.7.14), as follows:

(a) Reduce to showing that Z( f ) = {ξ ∈ Rn : f (ξ) = 0} has (semialgebraic) dimension n−1;
(b) show dimZ( f ) = n − 1 by a topological argument.

4.6.6 Let M ⊆ Rn be a semialgebraic set, let ξ ∈ M, and assume that dimξ(M) = d for every
ξ ∈ M. Prove that every irreducible component of the Zariski closure clzar(M) (of M in An)
has dimension d.

4.6.7 Let M ⊆ Rn be a semialgebraic set. For any integer d ≥ 0 let M(d) := {ξ ∈ Rn : dimξ(M) = d}
and M(≥d) :=

⋃
e≥d M(e).

(a) The sets M(≥d) are closed and semialgebraic in Rn.
(b) The set M(d) is purely d-dimensional, i.e. dimξ M(d) = d holds for every ξ ∈ M(d).

4.6.8 Let V be an irreducible R-variety of dimension n. For ξ ∈ V(R), show that the following are
equivalent:

(i) ξ lies in the closure of Vreg(R);
(ii) the local dimension of V(R) at ξ is n.

ξ is called a central point of V if it satisfies conditions (i) and (ii).

4.6.9 Let M ⊆ Rn be a semialgebraic set, let ξ ∈ Rn and d ≥ 0. Show that dimξ(M) ≥ d if, and
only if, there is a specialization chain αd  · · · α0 = ι(ξ) of length d in R̃n (with proper
specializations) for which α0, . . . , αd−1 ∈ M̃.

4.6.10 (Marker–Steinhorn Theorem) Let R be a real closed field extension of R and let M ⊆ Rn be
an R-semialgebraic set. Then M ∩ Rn is an R-semialgebraic set. (Hint: It suffices to show
this for M = U( f ) with f ∈ R[x]. Use the canonical valuation ring of R over R and argue by
induction on n.)

4.6.11 Let V be an R-vector space of finite dimension and let f : V → R be an R-linear map into a
real closed overfield R of R. Use the Marker–Steinhorn theorem (Exercise 4.6.10) to show
that the subset H = {u ∈ V : f (u) ≥ 0} of V is semialgebraic. Find examples where H fails
to be closed in Rn. Show also that the set H need not be semialgebraic when R is replaced
by a different real closed field.

4.6.12 Let x = (x1, . . . , xn), and write R[x]≤d := { f ∈ R[x] : deg( f ) ≤ d} for d ≥ 0. Let P be a
positive cone of the ring R[x]. Prove for every d ≥ 0 that P ∩ R[x]≤d is a semialgebraic
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subset of R[x]≤d . Show that this becomes false in general when R is replaced by a different
real closed field. (Hint: Exercise 4.6.11)

4.6.13 Let M ⊆ Rn be a semialgebraic set with associated constructible set M̃ ⊆ Sper R[x1, . . . , xn],
and let A(M) denote the ring of (continuous) semialgebraic functions M → R. If M is
locally closed in Rn, show that the real spectrum of A(M) is naturally homeomorphic to M̃,
as follows:

(a) Every closed constructible subset of M̃ has the form Z̃( f ) for some f ∈ A(M).
(b) Prove a similar statement for the closed constructible subsets of SperA(M).
(c) If f , g ∈ A(M) satisfy Z( f ) ⊆ Z(g), and if M is locally closed, show that ZA(M)( f ) ⊆

ZA(M)(g) (as subsets of SperA(M)).
(d) When M is locally closed, conclude that SperA(M) is homeomorphic to M̃. More pre-

cisely, show that the map πM : SperA(M) → R̃n induced by the ring homomorphism
R[x1, . . . , xn]→ A(M) induces a homeomorphism SperA(M)→ M̃.

Hint: Use Theorems 4.1.19 and 4.5.24.

4.7 Notes

A profound systematic study of the geometry of semialgebraic and semianalytic sets
was initiated by Łojasiewicz around 1964. The tilda operator was introduced in [45].
Its interpretation in terms of ultrafilters of semialgebraic sets is due to Bröcker [32].
The finiteness theorem figures as “unproved proposition” in [34]. It was given sev-
eral different proofs later, first in [26]. Theorems 4.2.7 and 4.2.9 (parts (a) and (b))
are due to Bröcker [33]. The precise values of s(n) and of s̄(n) were found by Schei-
derer [177]. Easier proofs or more general versions were later given by Mahé [131]
and Marshall [134]. Cylindrical algebraic decomposition of semialgebraic sets is
originally due to Collins (1975). Collins’ algorithm is of fundamental importance in
computational real algebraic geometry, and also for applications like robot motion
planning, see [12]. Note that our text contains only a very basic version.

A considerable part of the results in this chapter extends to the much more general
setting of o-minimal sets (see [55]).





Chapter 5
The Archimedean Property

Let K ⊆ Rn be a basic closed set, described by finitely many polynomial inequalities
g1 ≥ 0, . . . , gr ≥ 0. We consider polynomials f = f (x) that are strictly positive on
K. The general Krivine–Stengle positivstellensatz 3.2.7 provides certificates for this
positivity in the form of identities involving f . These identities amount to represent-
ing f as a weighted sum of squares of rational functions, with products of the gi as
weights. Certainly, it would be even more desirable to have denominator-free such
certificates, representing f as a weighted sum of squares of polynomials, rather than
of rational functions.

The central notion in this chapter is the Archimedean property, the main result is
the Archimedean positivstellensatz 5.3.3. It implies the existence of denominator-
free certificates for strictly positive f under very general and weak assumptions.
This result has many prominent applications, and some of the most important ones
are discussed in Sections 5.4 and 5.5. Generally we are working in a framework
of “abstract” rings (rather than rings of polynomials), both for systematic reasons
and with the goal of being more flexible in applications. In the last two sections, an
elegant alternative approach to the main results is sketched that uses classical tools
from locally convex vector spaces. These sections are optional and are not needed
for the rest of the book.

5.1 Semirings and modules

Always let A be a ring, commutative and unital as usual. We always assume that A
contains 1

2 . For many of the general results this restriction could be removed, at the
cost of more technical statements and proofs. The most important applications are
to R-algebras anyway.

Given subsets X, Y of A, we write X + Y = {x + y : x ∈ X, y ∈ Y} and XY =

{xy : x ∈ X, y ∈ Y}.

167
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5.1.1 Definition. Let A be a ring.

(a) A semiring1 in A is a subset S ⊆ A that contains 0, 1 and is closed under
addition and multiplication, i.e. satisfies S + S ⊆ S and S S ⊆ S .

(b) Let S be a semiring in A. An S -module is a subset M of A for which 1 ∈ M,
M + M ⊆ M and S M ⊆ M.

(c) A quadratic module of A is a subset M ⊆ A such that 1 ∈ M, M + M ⊆ M and
a2M ⊆ M for every a ∈ A.

Note that every semiring in A is a module over itself.

5.1.2 Definition. Let M be a module over the semiring S ⊆ A.

(a) M is said to be proper if −1 < M, and improper otherwise.
(b) M is called generating if M − M = A.
(c) The support of M is supp(M) := M ∩ (−M). This is an additive subgroup of A.

5.1.3 Lemma. Let A be a ring and let S ⊆ A be a semiring that is generating.

(a) The only improper S -module is M = A.
(b) The support supp(M) of any S -module M is an ideal of A.

Proof. Let M be an S -module, then clearly S · supp(M) ⊆ supp(M). Therefore
S − S = A implies that supp(M) is an ideal of A. If −1 ∈ M then 1 ∈ supp(M), and
so supp(M) = A, which means M = A. �

5.1.4 Remarks.

1. A preordering of A (Definition 3.2.1) is the same as a semiring in A that con-
tains all squares. Every preordering is generating, by our general assumption 1

2 ∈ A
and since x = ( x+1

2 )2 − ( x−1
2 )2. Quadratic modules of A are the same as modules over

S = ΣA2, the preordering of sums of squares. Every quadratic module is generating,
and so the support of every quadratic module is an ideal.

2. Every preordering is a quadratic module, but not vice versa. For an example
let A = R[x, y]. The quadratic module M := ΣA2 + xΣA2 + yΣA2 of A fails to be a
preordering since xy < M, which means that there is no identity xy = s0 + s1x + s2y
in A with si ∈ ΣA2. See Exercise 5.1.3 for this and other (non-) examples.

3. The smallest semiring in A is Z+ = {0, 1, 2, . . . }. Note that Z+-modules in A
are just additive subsemigroups M of A that contain 1. This already indicates that
arbitrary semirings (or their modules) are far too general to be of interest. Usually
only semirings will play a role that are generating.

4. Let R be a real closed field an A an R-algebra. Given any family (pi)i∈I of
elements of A, we may consider the semiring S ⊆ A that is generated by R+ and
by the pi (i ∈ I). So S is the R-convex cone in A that is generated by all products
of the form pe1

i1
· · · per

ir
with i1, . . . , ir ∈ I, where r ≥ 0 and e1, . . . , er are positive

integers. Clearly, S is generating as a semiring of A if, and only if, the R-algebra A
is generated by the pi (i ∈ I).
1 also called preprime in some of the older literature
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The next two examples of semirings are more interesting.

5.1.5 Example. Let A be a ring. For any integer n ≥ 1 let ΣAn denote the semiring of
all finite sums of n-th powers in A. If 2, 3, . . . , n are invertible in A then this semiring
is generating, by the identity

n! x =

n−1∑
j=0

(−1)n−1− j
(
n − 1

j

)
·
(
(x + j)n − jn

)
(5.1)

(see Exercise 5.1.5). If moreover n is odd, we see that every element of A is a sum
of n-th powers in A. Therefore only the case where n = 2m is even is of interest.
A semiring S in A with ΣA2m ⊆ S is called a preordering of level 2m, a module over
ΣA2m is called a module of level 2m. See [159] ch. 7 for much more information and
background.

5.1.6 Example. Let n ≥ 1 and let z = (z1, . . . , zn) be a tuple of variables. An expres-
sion of the form

f =

r∑
j=1

|p j(z)|2 =

r∑
j=1

p j(z) · p j(z) ∈ C[z, z]

with complex polynomials p1, . . . , pr ∈ C[z] is called a sum of Hermitian squares.
Note that f is a polynomial in the 2n independent variables z = (z1, . . . , zn) and
z = (z1, . . . , zn). Writing z j = x j + iy j and z j = x j − iy j for j = 1, . . . , n, every sum of
Hermitian squares is contained in the polynomial subring

A := R[x, y] = R[x1, y1, . . . , xn, yn]

of C[z, z]. The set Σh of all sums of Hermitian squares is a generating semiring in A.
It is strictly contained in the semiring ΣA2 of all sums of squares, see Exercise 5.1.6.

5.1.7 Remarks. Let A be a ring.

1. If A contains a proper quadratic module then the ring A is real (see 3.2.16), i.e.
A has an ordering. Indeed, A nonreal implies −1 ∈ ΣA2, and so −1 is contained in
every quadratic module in this case.

2. If S ⊆ A is a semiring, every proper S -module is contained in a maximal
proper S -module. This is a consequence of Zorn’s lemma, since an upward directed
union of proper S -modules is again a proper S -module.

3. Any intersection of semirings in A is again a semiring. If S is a given semiring
and (Mi)i∈I is a family of S -modules, both the intersection

⋂
i∈I Mi and the sum∑

i∈I

Mi =

{∑
i∈I

xi : xi ∈ Mi (i ∈ I), xi = 0 for almost all i ∈ I
}

are again S -modules. The S -module generated by a family (pi)i∈I in A is M =

S +
∑

i∈I S pi. The case when S = ΣA2 is the semiring of sums of squares will
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be used frequently in the sequel: The quadratic module generated by f1, . . . , fr ∈ A
is denoted

QM( f1, . . . , fr) := QMA( f1, . . . , fr) := ΣA2 + f1 ΣA2 + · · · + fr ΣA2.

Note that QM( f ) is a preordering for every f ∈ A.

Next we discuss a few generalities on quadratic modules.

5.1.8 Remark. Let ϕ : A → B be a ring homomorphism. For any quadratic module
N of B, the preimage ϕ−1(N) is a quadratic module of A. If N is a preordering then
so is ϕ−1(N). Conversely, if M is a quadratic module of A, we may consider the
quadratic module MB of B generated by ϕ(M), called the extension of M to B. It
consists of all finite sums

∑
i b2

i ϕ(xi) with xi ∈ M and bi ∈ B. If M is a preordering
in A then MB is a preordering in B. Even if M is proper, MB need not be. When ϕ is
surjective, we can be more precise:

5.1.9 Lemma. Let I be an ideal of A, let π : A→ A/I be the canonical map. There is
a natural bijection between quadratic modules M of A that satisfy I ⊆ supp(M), and
quadratic modules N of A/I, given by M 7→ π(M) and N 7→ π−1(N), respectively.
Moreover supp(π(M)) = π(supp(M)) and supp(π−1(N)) = π−1(supp(N)).

5.1.10 We skip the proof which is straightforward. Let M ⊆ A be a quadratic mod-
ule and S a multiplicative subset of A. The extension of M to the ring of fractions
AS (5.1.8) will be denoted MS (rather than MAS ). This is the quadratic module

MS =

{ x
s2 : x ∈ M, s ∈ S

}
of AS . Again, there is a natural bijection between quadratic modules of AS and
certain quadratic modules of A (Exercise 5.1.4). We just record:

5.1.11 Lemma. The quadratic module MS is proper if and only if S ∩supp(M) = ∅.

Proof. If −1 ∈ MS , say x
s2 = −1 with x ∈ M and s ∈ S , then there is t ∈ S with

t2(x+s2) = 0 in A, which implies s2t2 ∈ S ∩supp(M). If conversely s ∈ S ∩supp(M),
then −s2 ∈ supp(M) since supp(M) is an ideal (5.1.3), and so −1 ∈ MS . �

5.1.12 Remark. Let A be a ring, let S ⊆ A be a generating semiring in A and M an
S -module. For f , g ∈ A we write f ≤M g if g − f ∈ M, as in 3.6.1. This defines a
partial order relation ≤M on A modulo the ideal supp(M), that satisfies the following
properties:

(1) a ≤M b and a′ ≤M b′ ⇒ a + a′ ≤M b + b′;
(2) a ≤M b and s ∈ S ⇒ as ≤M bs.

An ideal I of A is M-convex if the following equivalent conditions hold (see 3.6.2):

(i) a ≤M c ≤M b and a, b ∈ I, c ∈ A implies c ∈ I;
(ii) a, b ∈ M and a + b ∈ I implies a, b ∈ I;
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(iii) supp(M + I) = I.

Essentially, these concepts will play a role only when M ∪ (−M) = A. Note that
≤M is a total ordering on the abelian group A/ supp(M) in this case. Let us issue a
warning here: Even though A/ supp(M) is a ring, the total ordering ≤M need not be
compatible with products. See Exercise 5.1.9 for an example.

5.1.13 Remark. Semirings, or modules over semirings, generalize preorderings. We
are going to explore to what extent one can expect analogues of the geometric stel-
lensätze from Section 3.3 in this greater generality. Usually this won’t work, not
even for generating semirings or modules. The reason is that, contrary to the case
of preorderings, a proper module M over a semiring need not be contained in any
positive cone (Exercises 5.1.2, 5.1.9). In this case even the “ur-stellensatz” 3.2.3
fails for S . The key concept that will allow us to avoid such phenomena will be the
Archimedean property, to be introduced in the next section.

Every proper S -module is contained in a maximal proper S -module, see Remark
5.1.7.2. Moreover we have:

5.1.14 Proposition. If S ⊆ A is a generating semiring and M is a maximal proper
S -module, then M ∪ (−M) = A. Hence, in this case, ≤M induces a total ordering on
the abelian group A/ supp(M).

Proof. Assume that there exists a ∈ A with ±a < M. By maximality of M we have
−1 ∈ (M + S a)∩ (M − S a). Hence there are x, y ∈ M and s, t ∈ S with −1 = x + sa
and −1 = y − ta. Multiplying the identities with t resp. s and adding them, we get
−s = t + sy + tx, which shows −s ∈ M and therefore s ∈ supp(M). Now supp(M)
is an ideal of A since S being generating (Lemma 5.1.3). Therefore −1 = x + sa
implies −1 ∈ M, contradiction. �

Conversely, the condition M ∪ (−M) = A does not imply that M is maximal
(think of positive cones in A). But it implies that the M-convex subgroups of A form
a chain (Lemma 3.6.4). In the context of modules over a semiring, this gives:

5.1.15 Proposition. Let M be a module over a generating semiring S , and assume
that M ∪ (−M) = A. Then there is an inclusion-preserving bijective correspondence
between

(1) the S -modules N in A with M ⊆ N, and
(2) the M-convex ideals I of A,

given by N 7→ supp(N) and I 7→ M + I = M ∪ I. Each of the sets (1) and (2) forms
a chain with respect to inclusion.

Note that the improper S -module N = A corresponds to the unit ideal I = A
under this correspondence.

Proof. If I is an M-convex ideal, the set M+I is an S -module and satisfies supp(M+

I) = I. Therefore M + I = M ∪ I by Lemma 3.6.4(b). Conversely, let N be an S -
module with M ⊆ N. Then I := supp(N) is an N-convex (and hence M-convex)
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ideal of A. Moreover, if a ∈ N and a < M, then a ∈ −M since M ∪ (−M) = A,
and therefore a ∈ −N, which means a ∈ supp(N) = I. This shows N ⊆ M ∪ I, and
therefore N = M ∪ I = M + I. Both sets (1) and (2) are totally ordered by inclusion,
see Lemma 3.6.4. ut

In the situation of Proposition 5.1.15 there exists a largest proper ideal of A that
is M-convex. Indeed, any two M-convex ideals are comparable with respect to in-
clusion, and so the union of all proper M-convex ideals is the largest such ideal.
This ideal can be described as follows:

5.1.16 Proposition. Let S be a generating semiring in A and let M be a proper
S -module for which M ∪ (−M) = A. The largest proper M-convex ideal of A is

I =
{
a ∈ A : ∀ b ∈ A ab ≤M 1

}
=

{
a ∈ A : ∀ s ∈ S − 1 ≤M as ≤M 1}.

The largest proper S -module that contains M is N = M + I, and supp(N) = I.

Proof. The second assertion follows from the first by Proposition 5.1.15. We first
note for a, b ∈ A that a ≤M b implies a

2 ≤M
b
2 . To see this it suffices to show that

x ∈ M implies x
2 ∈ M. Since M ∪ (−M) = A, we may assume x

2 ∈ −M, from which
we get x ∈ supp(M). Therefore x

2 ∈ supp(M) since supp(M) is an ideal.
Let a ∈ A. Since the semiring S is generating, −1 ≤M as ≤M 1 for all s ∈ S

implies the same statement for all s ∈ A, using the previous remark. So the two
sets in the statement of 5.1.16 are equal. To check that I is an ideal of A, one has
to show that a1, a2 ∈ I implies a1 + a2 ∈ I. This is true since, for b ∈ A, the
inequalities 2a1b ≤M 1 and 2a2b ≤M 1 imply 2(a1 + a2)b ≤M 2, from which we get
(a1 + a2)b ≤M 1 by the remark at the beginning. The ideal I is proper since −1 < M.

Every proper M-convex ideal J of A is contained in I. Indeed, given a ∈ J and
b ∈ A, then ab ≥M 1 ≥M 0 would imply 1 ∈ J, since ab ∈ J and J is M-convex.
On the other hand, I itself is M-convex. Indeed, given f , g ∈ M with f + g ∈ I, we
have to show f , g ∈ I. For any s ∈ S we see from 0 ≤M s( f + g) = s f + sg ≤M 1
and s f , sg ≥M 0 that 0 ≤M s f , sg ≤M 1, which shows f , g ∈ I. Altogether we have
proved that I is the largest proper M-convex ideal in A. �

In the following, it will be important to know whether the ideal I described in
Proposition 5.1.16 is prime. We are first going to show that this is true for quadratic
modules (Corollary 5.1.18). In the next section, such a statement will be proved in
general under Archimedean hypotheses (Theorem 5.2.11).

5.1.17 Proposition. Let M be a (proper) quadratic module in A, and let p ⊆ A be
a prime ideal that is minimal with respect to supp(M) ⊆ p. Then p is M-convex. In
particular, p is real and supp(M + p) = p, so M + p is again a proper quadratic
module.

Proof. It suffices to show that p is M-convex, since this means supp(M + p) = p

(see 5.1.12), and since every M-convex prime ideal is clearly real (
∑

i a2
i ∈ p implies

a2
i ∈ p for every i). Write I = supp(M). This is an ideal of A since the semiring
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S = ΣA2 is generating (5.1.3). Let f , g ∈ M with f + g ∈ p, we have to show
f , g ∈ p. The ring Ap/IAp has only one prime ideal, which is the ideal generated by
p. Therefore f + g is nilpotent in this ring. In particular, there exist n ≥ 1 and u ∈ A
with u < p such that u( f + g)n ∈ I. Expanding the power, we see in particular that

u2
n∑

i=0

(
n
i

)
f ign−i ∈ I.

Clearly we may assume that n is odd. Then every single summand lies in M since
for each index i, one of i or n − i will be even. Since the sum lies in I, the same is
true for each summand. In particular, u2 f n ∈ I ⊆ p, and so f ∈ p. �

We record a few consequences of 5.1.17:

5.1.18 Corollary. Let M ⊆ A be a proper quadratic module with M ∪ (−M) = A.
Then the largest proper M-convex ideal I (5.1.16) is prime.

Proof. We have I = supp(N) for some quadratic module N ⊇ M. Let p be a minimal
prime ideal containing I. Then p is N-convex by Proposition 5.1.17, hence also M-
convex, and so p = I by maximality of I. �

Directly from Proposition 5.1.17 we get:

5.1.19 Corollary. Every quadratic module M satisfies re
√

supp(M) =
√

supp(M). ut

5.1.20 Definition. A semiordering of A is a quadratic module M of A for which
M ∪ (−M) = A and supp(M) is a prime ideal of A.

5.1.21 Corollary. Let A be any ring. Every maximal proper quadratic module of A
is a semiordering of A.

Proof. Let M be a proper quadratic module of A that is maximal. Then M∪ (−M) =

A by Proposition 5.1.14. The support supp(M) is the only M-convex ideal in A
(Proposition 5.1.15), so it is a prime ideal by Corollary 5.1.18. �

5.1.22 Remarks.

1. Every positive cone of A is a semiordering of A. But in many real rings there
exist semiorderings that are not positive cones, which means, they are not closed
under products. See Exercise 5.1.9 for an example, and see Section 5.5 for more
results on semiorderings.

2. Real fields in which every semiordering is an ordering have been studied in
quadratic form theory, under the name SAP-fields (see [118]). There exists a long list
of equivalent characterizations of these fields. Every number field is an SAP-field,
and also the function field of every algebraic curve over real closed base field R.
In the case R = R, we will see this in Section 5.5. Every quadratic module in an
SAP-field is a preordering, by Exercise 5.1.8.
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Exercises

5.1.1 Let A be a ring and let I ⊆ A be the ideal generated by elements f1, . . . , fr ∈ A. If S is a
generating semiring in A, show that the S -module generated by ± f1, . . . ,± fr is M = S + I.

5.1.2 Find a proper generating semiring S in R[x, y] that is not contained in any positive cone of
R[x, y]. (Hint: Examples where S contains all squares are somewhat tricky to find, see for
instance Exercise 5.1.9. For easy examples, you may take a semiring that is generated by
suitable linear polynomials.)

5.1.3 Let A = R[x] for (a), (b) and A = R[x, y] for (c). Decide for each of the following quadratic
modules whether M is a preordering in A:

(a) M = QM(x, 1 − x),
(b) M = QM(x + 1, x2 − x),
(c) M = QM(x, y).

5.1.4 Let I ⊆ A be an ideal and S ⊆ A a multiplicative subset, let ϕ : A → AS , ϕ(a) = a
1 be the

canonical map.

(a) Prove Lemma 5.1.9.
(b) If M ⊆ A is a quadratic module, let MS =

{ x
s2 : x ∈ M, s ∈ S

}
. Show that supp(MS ) =

supp(M)S , the ideal generated in AS by supp(M).
(c) The quadratic module M of A is called S -saturated if x ∈ A, t ∈ S and t2 x ∈ M

imply x ∈ M. Show that M 7→ MS and N 7→ ϕ−1(N) define a bijective correspondence
between the S -saturated quadratic modules M of A and all quadratic modules N of AS .

(d) The bijection (c) restricts to a bijective correspondence between S -saturated semiorder-
ings of A and all semiorderings of AS (see Definition 5.1.20).

5.1.5 For each natural number n, prove the identity (of bivariate polynomials over Z)

n! xyn−1 =

n−1∑
j=0

(−1)n−1− j
(
n − 1

j

) (
(x + jy)n − jnyn

)
.

Hint: Use the difference operator ∆ f (x) = f (x + 1) − f (x) and show the identity

∆e f (x) =

e∑
j=0

(−1)e− j
(
e
j

)
f (x + j)

for e ≥ 0. Then show, for f a monic polynomial of degree n, that ∆e f (x) has degree n − e
and leading coefficient e!

(
n
e

)
for 0 ≤ e ≤ n.

5.1.6 Let z = (z1, . . . , zn) and w = (w1, . . . ,wn) be tuples of variables, and consider the involutive
ring automorphism f 7→ f ∗ of the polynomial ring C[z,w] defined by z∗j = w j ( j = 1, . . . , n)
and c∗ = c for c ∈ C (complex conjugate), see Example 5.1.6.

(a) The fixring of ∗ is A := R[x, y] where x = (x1, . . . , xn), y = (y1, . . . , yn) and x j =
1
2 (z j + w j), y j = 1

2i (z j − w j) ( j = 1, . . . , n).
(b) Given f ∈ C[z,w], let | f |2 := f f ∗. The set {

∑r
j=1 | f j(z,w)|2 : r ∈ N, f j ∈ C[z,w] for

j = 1, . . . , r} is equal to ΣA2.
(c) Let Σh := {

∑r
j=1 | f j(z)|2 : r ∈ N, f j ∈ C[z] ( j = 1, . . . , r)}. Prove that Σh is a generating

semiring in A.
(d) Show that Σh , ΣA2. (Hint: Consider polynomials of degree 2.)

5.1.7 With notation as in Exercise 5.1.6, let f ∈ C[z,w] with f = f ∗. Using multinomial notation,
write
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f =
∑
|α|, |β|≤d

cαβzαwβ

with complex coefficients cαβ = cβα, where d = degz( f ) = degz( f ). Show that f ∈ Σh if and
only if the Hermitian matrix H( f ) = (cαβ)|α|, |β|≤d is positive semidefinite.

5.1.8 If K is a field, prove that every quadratic module in K is an intersection of semiorderings in
K. Show that this usually fails in rings that are more general than fields, e.g. in the polyno-
mial ring R[t].

5.1.9 Let A = R[x, y] where R is a real closed field. Given a polynomial 0 , f ∈ A, write f =∑
i≥0 fi(x) yi where fi ∈ R[x] are univariate polynomials. Let n = degy( f ) and m = degx( fn),

let a , 0 be the coefficient of xmyn in f and write c( f ) := (−1)mna. Let M ⊆ A be the set of
all polynomials f , 0 for which c( f ) > 0, together with f = 0.

(a) M is a semiordering of R[x, y], and supp(M) = {0}.
(b) M is not contained in any positive cone of R[x, y].
(c) Let S = A r {0}. Show that the localization MS (see Lemma 5.1.11) is a semiordering

in the field of fractions AS = R(x, y) of A that is not an ordering.

5.2 Archimedean modules

The following definition is of central importance for all that follows. Recall that
every subsemigroup of an abelian group is required to contain the neutral element.

5.2.1 Definition. Let A be a ring. An additive subsemigroup M of A is Archimedean
if 1 ∈ M, and if for every f ∈ A there exists an integer n such that n − f ∈ M.

5.2.2 Remarks.

1. For a semigroup M ⊆ A with 1 ∈ M, the Archimedean property requires that
for every f ∈ A there exists an integer n ≥ 1 with f ≤M n (Notation as in Remark
5.1.12). This is the exact analogue of the classical Axiom of Archimedes, which
explains the terminology. Equivalently, M is Archimedean if and only if 1 ∈ M and
M + Z = A. Clearly, if M is Archimedean then M is generating, i.e. M − M = A.

2. Every semigroup in A that contains an Archimedean semigroup is itself Archi-
medean.

3. A generalization of Archimedean semigroups that doesn’t require 1 ∈ M are
semigroups with an order unit (Definition 5.6.1). They will be considered in Sec-
tions 5.6 and 5.7.

We discuss a few criteria for semirings or modules to be Archimedean.

5.2.3 Definition. If M ⊆ A is an additive semigroup with 1 ∈ M, write

O(M) = OA(M) = { f ∈ A : ∃ n ∈ N n ± f ∈ M}.

5.2.4 Remark. Note that OA(M) = { f ∈ A : ∃ n ∈ N −n ≤M f ≤M n}, with ≤M de-
fined as in Remark 5.1.12. Therefore the elements of OA(M) may be considered as
the M-bounded elements of A. Following the terminology of Exercise 3.6.1, OA(M)
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is the M-convex hull of Z in A and should be denoted OM(Z). However the nota-
tion O(M) = OA(M) will prove more convenient, which is why we deviate from
the general notation in Exercise 3.6.1. We will not use the (easy) results from this
exercise.

5.2.5 Lemma. If M ⊆ A is a semigroup with 1 ∈ M, then O(M) = supp(M + Z). In
particular, O(M) is an additive subgroup of A, and M is Archimedean if and only if
O(M) = A.

Proof. Since 1 ∈ M we have O(M) = { f ∈ A : ± f ∈ M + Z} = supp(M + Z). The
other assertions follow immediately. ut

5.2.6 Proposition. If M is a semiring or a quadratic module in A, then O(M) is a
subring of A.

Proof. First let M be a semiring. Let m, n ∈ N and f , g ∈ A such that m ± f ∈ M
and n ± g ∈ M. For ε = ±1 we have

(m + f )(n + εg) + n(m − f ) + m(n − εg) = 3mn + ε f g.

The left hand expression is obviously in M, and so f g ∈ O(M).
Now let M be a quadratic module in A. Let f ∈ O(M), so n ± f ∈ M for some

n ∈ N. For any m ∈ Z we have

(m − 4 f )2(n + f ) + (m + 4 f )2(n − f ) = 2nm2 − 16(m − 2n) f 2.

The left hand side is in M. This implies f 2 ∈ O(M) since we may choose m > 2n.
From f g =

( f +g
2

)2
−

( f−g
2

)2 we conclude that O(M) is a subring of A, since O(M) is
an additive subgroup and 1

2 M ⊆ M. ut

Recall that the ring A contains 1
2 by assumption. For any quadratic module M in

A, the subring O(M) of A contains 1
2 as well, since 1 ± 1

2 ∈ ΣA2 ⊆ M.

5.2.7 Proposition. Let A be an R-algebra, finitely generated by x1, . . . , xn.

(a) Let S ⊆ A be a semiring that contains R+. If there is a real number c with
c ± xi ∈ S (i = 1, . . . , n), then S is Archimedean.

(b) Let M ⊆ A be a quadratic module. If there is c ∈ R with c− (x2
1 + · · ·+ x2

n) ∈ M,
then M is Archimedean.

Clearly the converses hold as well.

Proof. (a) The set O(S ) is an R-subalgebra of A, by 5.2.6. Condition (a) implies
x1, . . . , xn ∈ O(S ), hence O(S ) = A.

(b) Again O(M) is an R-subalgebra of A. Let c ∈ R be as in (b), then also c− x2
i ∈

M for i = 1, . . . , n, and so (c − x2
i ) + (xi ± 1)2 = (c + 1) ± 2xi ∈ M. This shows

x1, . . . , xn ∈ O(M), and we conclude O(M) = A as before. �
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For later use we show that the subring O(M) is integrally closed in A whenever
M is a quadratic module. First a simple lemma:

5.2.8 Lemma. Let A be a ring, let f (t) ∈ A[t] be a monic polynomial of even degree.
Then there exists c ∈ A such that f (t) + c is a sum of squares in A[t].

Proof. Let deg( f ) = 2d, the proof is by induction on d. If 2d = 2 then

t2 + at + b =
(
t +

a
2

)2
+

(
b −

a2

4

)
,

and we may take c = a2

4 − b, for example. Let now f = t2d + at2d−1 + bt2d−2 + · · ·

where 2d ≥ 4, and assume that the lemma has been proved for all smaller degrees.
Put α := a

2 , and let β ∈ A be such that α2 + 2β = b − 1. Then

f (t) =
(
td + αtd−1 + βtd−2)2

+ g(t)

where g(t) is a monic polynomial of degree 2d−2. By the inductive hypothesis there
is c ∈ A with g(t) + c sos in A[t]. Hence f (t) + c is sos in A[t] as well. �

The proof has shown that if deg( f ) = 2d, the constant c ∈ A can be chosen such
that f + c = g2

d + · · · + g2
1, with gi monic of degree i for i = 1, . . . , d.

5.2.9 Proposition. Let M be any quadratic module in A. Then the subring O(M) of
A is integrally closed in A.

Proof. Let a ∈ A be integral over O(M), say f (a) = 0 with some monic polynomial
f (t) in O(M)[t]. We may assume that deg( f ) = n ≥ 2 is even. By Lemma 5.2.8,
applied to the ring O(M), and since 1

2 ∈ O(M), there are u, v ∈ O(M) and sums of
squares g, h in O(M)[t] such that f (t) + t = u + g(t) and f (t) − t = v + h(t) hold
(note that f (t) ± t are monic of degree n). By the definition of O(M), there exists an
integer N ≥ 1 with N +u, N +v ∈ M. Substitution t = a gives N +a = N + f (a)+a =

(N + u) + g(a) ∈ M and N − a = N + f (a) − a = (N + v) + h(a) ∈ M. Therefore
a ∈ O(M). ut

5.2.10 Corollary. Let A → B be an integral ring homomorphism and let M be an
Archimedean quadratic module in A. Then the quadratic module MB generated by
M in B is again Archimedean.

Proof. We have OA(M) = A since M is Archimedean. The subring OB(MB) of B
contains the image of OA(M) = A in B, and it is integrally closed in B by 5.2.9.
Hence OB(MB) = B. �

The next theorem will play a key role in the proof of the Archimedean positivstel-
lensatz (Section 5.3):

5.2.11 Theorem. Let M be a proper module over a generating semiring S in A. If
M is Archimedean then M is contained in a positive cone of A.
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Proof. M is contained in a maximal proper S -module M1 (see 5.1.7.2), and M1 is
again Archimedean. Replacing M by M1 we may assume that M itself is maximal
as a proper S -module, and have to show that M is a positive cone. By Proposition
5.1.14 we have M ∪ (−M) = A. Writing

I :=
{
a ∈ A : ∀ b ∈ A ab ≤M 1

}
=

{
a ∈ A : ∀ s ∈ S − 1 ≤M sa ≤M 1

}
(5.2)

we claim that I = supp(M). Indeed, I is the largest proper M-convex ideal of A, and
so M + I is a proper S -module itself, both by Proposition 5.1.16). From maximality
of M it follows that I ⊆ M, which means I = supp(M). The proof of the theorem is
now given in three steps:

(1) If a, b ∈ A satisfy a ≥M 1 and b ≥M 1, there is an integer n ≥ 1 with
nab ≥M 1.

Let s, t ∈ S with a = s − t. Since M is Archimedean, there is an integer n ≥ 1
with t ≤M n − 1, and then there is an integer N ≥ 1 with −N ≤M nb ≤M N. In
particular, there exists a largest positive integer m satisfying m ≤M nb. Since ≤M is a
total ordering modulo I, and since m+1 ≤M nb does not hold, we have nb ≤M m+1.
Moreover b ≥M 1 implies n ≤M nb, and so m ≥ n. Altogether we get

nab = nsb − ntb ≥M ms − (m + 1)t = ma − t ≥M m − t ≥M 1.

Here the last inequality holds since m − t ≥M n − t ≥M 1.

(2) M is a preordering in A.

It suffices to show that a, b ∈ M implies ab ∈ M. Indeed, since M ∪ (−M) = A,
this will imply that M contains all squares. So let a, b ∈ M. We can assume a, b <
supp(M) since supp(M) is an ideal. By the above description (5.2) of supp(M), there
exist s, t ∈ S such that sa ≥M 1 and tb ≥M 1. By (1) there is an integer n ≥ 1 with
nstab ≥M 1. Assuming ab < M we would have ab ≤M 0, hence also nstab ≤M 0, a
contradiction. Therefore ab ∈ M.

(3) M is a positive cone of A.

It remains to show that the ideal supp(M) is prime, so let a, b ∈ A satisfy ab ∈
supp(M). Assuming that neither a nor b lies in supp(M), there exist u, v ∈ A with
au ≥M 1 and bv ≥M 1, again by (5.2). By (1) we find n ≥ 1 with nabuv ≥M 1. On
the other hand nabuv lies in supp(M), which implies nabuv ≤M 0, a contradiction.
Alternatively we could first use Proposition 5.1.15 to see that M is maximal as a
proper quadratic module, and then apply Corollary 5.1.21 to conclude that supp(M)
is a prime ideal. ut

5.2.12 Corollary. Let S ⊆ A be a generating semiring. If M is a maximal proper
S -module, and if M is Archimedean, then M is a positive cone of A. In particular,
the support of M is supp(M) = {a ∈ A : 1 + aA ⊆ M}, and this is a prime ideal of A.

Proof. See the beginning of the last proof for the description of supp(M). �
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In Exercise 5.1.9 we saw an example of a proper semiordering M in R[x, y] that is
not contained in any positive cone of R[x, y]. According to Theorem 5.2.11, such M
cannot be Archimedean. The example also shows that the Archimedean hypothesis
in Theorem 5.2.11 is essential.

5.2.13 Corollary. Let M be a proper module over a generating semiring S in A. If
M is Archimedean, there exists a ring homomorphism ϕ : A → R with ϕ( f ) ≥ 0 for
every f ∈ M.

Proof. Let P be a maximal proper S -module with M ⊆ P. Then P is a positive
cone in A (Corollary 5.2.12), and is maximal as such. In other words, P is a closed
point of Sper(A). Write p = supp(P). By Proposition 3.6.17, the ring extension
A/p ⊆ κ(p) = qf(A/p) is relatively Archimedean with respect to the ordering ≤P.
For every b ∈ κ(p), this means that there is a ∈ A with b ≤P a in κ(p). On the other
hand, there is an integer N ≥ 1 with a ≤P N, since P is Archimedean. Together this
shows that the ordered field (κ(p),≤P) is Archimedean. By Hölder’s theorem 1.1.18
there is an order-preserving field embedding (κ(p),≤P) → R. Combine it with the
residue map A→ κ(p) to get ϕ as desired. �

5.2.14 Definition. Given a ring A and a subset M ⊆ A, let

XM := {ϕ ∈ Hom(A,R) : ϕ(M) ⊆ R+},

the set of all ring homomorphisms A → R that take non-negative values on M. We
equip XM with the relative topology that is induced from the inclusion

XM ⊆ Hom(A,R) ⊆ RA =
∏
f∈A

R, ϕ 7→
(
ϕ( f )

)
f∈A

and from the product topology on RA. If ϕ ∈ XM , let αϕ := [ϕ] denote the point in
Sper(A) that is represented by ϕ (3.1.15).

5.2.15 Remarks.

1. The only ring homomorphism R → R is the identity (1.1.21). If A is an R-
algebra, this means that Hom(A,R) = HomR(A,R). In particular, when A = R[V]
is the coordinate ring of an affine R-variety V , then Hom(A,R) = V(R), the set of
R-points of V . This identification is correct even as topological spaces, with V(R)
being given the order topology (1.7.5). Therefore

XM = SV (M) = {ξ ∈ V(R) : ∀ f ∈ M f (ξ) ≥ 0}

in this case, as topological spaces. In concrete applications, M will usually be a
finitely generated quadratic module in R[V], or just a finite subset of R[V]. Then
XM is a basic closed semialgebraic set in V(R). If A is an “abstract” ring, one should
think of the topological spaces Hom(A,R) and XM as “abstract” analogues of V(R)
and SV (M), respectively.
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2. Observe the notational difference between the set XM ⊆ Hom(A,R) just de-
fined, and the closed subset X(M) of Sper(A). The relation between both sets is ex-
hibited in 5.2.22 below. Corollary 5.2.13 above states that XM is non-empty, when-
ever M is a proper Archimedean module over a generating semiring.

5.2.16 Lemma. Let M ⊆ A be a subset. Then XM is a closed subset of RA, and is
compact if M is an Archimedean semigroup in A.

Proof. An argument similar to the proof of 3.4.7 (compactness of the constructible
topology) shows that Hom(A,R) is a closed subset of RA. On the other hand, it
is clear that XM is closed in Hom(A,R). Let M be an Archimedean semigroup.
Then for every f ∈ A there exists an integer N f ≥ 1 with N f ± f ∈ M. There-
fore ϕ( f ) ∈ [−N f , N f ] for every ϕ ∈ XM , from which we see that XM is contained
in

∏
f∈A[−N f , N f ]. This is a compact topological space by Tikhonov’s theorem. �

In the remainder of this section, we are going to relate the topological spaces
XM to the real spectrum. For this we will back up a little and work under assump-
tions that are more general than the Archimedean property. Being Archimedean is
a property of M that is strictly stronger than compactness of XM . In fact, there exist
(finitely generated) quadratic modules M in R[x1, . . . , xn] that fail to be Archime-
dean, but for which XM is compact. We’ll see examples a little later, in Section 5.5.

5.2.17 Definition. A subset Y of Sper(A) is absolutely bounded if for every f ∈ A
there exists an integer N ≥ 1 such that N± f > 0 on Y , i.e. with Y ⊆ U(N + f ,N− f ).

5.2.18 Remarks.

1. If R is a real closed field, recall (Exercise 1.6.4) that a subset of Rn is called
(semialgebraically) bounded if it is contained in [−c, c]n for some c ∈ R. Beware not
to confuse this notion with the property defined in 5.2.17: If R = R is the field of real
numbers and S ⊆ Rn is a semialgebraic set, then the constructible set S̃ ⊆ SperR[x]
is absolutely bounded if, and only if, S is semialgebraically bounded. But when
the real closed field R is non-Archimedean, no subset of Sper R[x] whatsoever will
be absolutely bounded, except for the empty set. As terminology indicates, absolute
boundedness is an absolute concept, meaning boundedness over Z, and not a relative
one.

2. For every Archimedean semigroup M in a ring A, the set X(M) ⊆ Sper(A) is
absolutely bounded. Conversely, a set Y ⊆ Sper(A) is absolutely bounded if and only
if the preordering { f ∈ A : f ≥ 0 on Y} is Archimedean. While absolute bounded-
ness of the set X(M) ⊆ Sper(A) is a “geometric” condition on M, the Archimedean
property of M is a stronger condition of “arithmetic” nature.

5.2.19 Proposition. Let Y ⊆ Sper(A) be a closed set. The set

Yarch := {α ∈ Y : R(α) is Archimedean}

of Archimedean orderings in Y is always contained in Ymax. If Y is absolutely
bounded then equality Yarch = Ymax holds. In particular, the topological space Yarch

is compact in this case.
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Proof. Recall that Ymax denotes the set of closed points of Y . This is a compact topo-
logical space, see Proposition 3.4.19. The inclusion Yarch ⊆ Ymax holds in general.
Indeed, if α ∈ Yarch and p = supp(α), the real closed field R(α) is Archimedean. So
it will a fortiori be relatively Archimedean over its subring A/p, which implies that
α is a closed point (Proposition 3.6.17). Now assume that Y is absolutely bounded,
let α ∈ Ymax and put p = supp(α). We claim that the real closed field R(α) is Archi-
medean, which will prove α ∈ Yarch. Since α is a closed point, the ring extension
A/p ⊆ R(α) is relatively Archimedean (3.6.17). For b ∈ R(α), this means that there
is a ∈ A with |b| < a in R(α). On the other hand, Y is absolutely bounded, so there
exists an integer N with a(α) < N. Together this shows that the real closed field
R(α) is Archimedean. Compactness of Ymax was observed in 3.4.19(b). �

5.2.20 Let Y ⊆ Sper(A) be a closed set. For every α ∈ Yarch there is a unique field
embedding R(α) → R (Hölder’s theorem 1.1.18). Hence there exists a unique ring
homomorphism ϕα : A→ R that represents the point α (in the sense of 3.1.15). This
implies that every element f ∈ A defines a real-valued function f̂ on Yarch, namely

f̂ : Yarch → R, f̂ (α) = ϕα( f ) (α ∈ Yarch)

Clearly f̂ + g = f̂ + ĝ and f̂ g = f̂ ĝ hold for all f , g ∈ A, and 1̂ = 1. Moreover, the
functions f̂ are continuous. Indeed, if a, b, n are integers with n ≥ 1 and a < b, the
preimage of the open interval

] a
n ,

b
n
[
⊆ R under f̂ is Yarch∩U(n f −a, b−n f ), which

is an open subset of Yarch. Since every open set in R is a union of such intervals,
continuity of f̂ follows.

If X is any topological space, let C(X,R) denote the ring of continuous R-valued
functions on X. For any closed set Y ⊆ Sper(A), the previous discussion shows that
f 7→ f̂ defines a ring homomorphism Φ : A → C(Yarch,R). When Y is absolutely
bounded we have Yarch = Ymax, and so we get:

5.2.21 Corollary. For every closed and absolutely bounded set Y ⊆ Sper(A), the
map Φ : A → C(Ymax,R), Φ( f ) = f̂ is a homomorphism from A into the ring of
continuous real-valued functions on the compact space Ymax. ut

We now identify the sets XM with suitable subsets of the real spectrum:

5.2.22 Proposition. Let M ⊆ A be a subset. The map ψ : XM → Sper(A), ϕ 7→ αϕ =

[ϕ] is a homeomorphism from XM onto X(M)arch.

Proof. Recall (5.2.14) that [ϕ] denotes the point in Sper(A) that is represented by
ϕ. For ϕ ∈ XM , it is obvious that αϕ lies in X(M)arch. The map ψ is bijective onto
X(M)arch, and the inverse map sends a point β ∈ X(M)arch to the homomorphism
ϕβ ∈ XM (5.2.20). Moreover ψ is continuous: Given f ∈ A we have ψ−1(U( f )) =

{ϕ : ϕ( f ) > 0}, which is an open subset of XM since f̂ is continuous. To show that
ψ is a topological embedding, it suffices to show for any f ∈ A and any rational
numbers ε, t ∈ Q, that the set{

αϕ : ϕ ∈ XM , |ϕ( f ) − t| < ε
}
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is relatively open in X(M)arch. Indeed, this suffices since the finite intersections of
sets {β ∈ XM : |β( f )− t| < ε} (with f ∈ A and ε, t ∈ Q) form a basis for the topology
of XM . Now∣∣∣∣ϕ( f ) −

m
n

∣∣∣∣ < 1
n
⇔

∣∣∣ϕ(n f − m)
∣∣∣ < 1 ⇔ ϕ

(
1 ± (n f − m)

)
> 0.

So it is enough to show for every f ∈ A that the set {αϕ : ϕ ∈ XM , ϕ(1 ± f ) > 0} is
relatively open in X(M)arch. This set is X(M)arch∩U(1+ f , 1− f ), and the proposition
is proved. �

Combining the homeomorphism 5.2.22 with 5.2.19, we see in particular:

5.2.23 Corollary. If M ⊆ A is an Archimedean semigroup, the topological spaces
XM and X(M)max are canonically homeomorphic. ut

5.2.24 Remarks. Let M ⊆ A be a semigroup.

1. Assume that M is Archimedean. An element f ∈ A is strictly positive on X(M)
if, and only if, f is strictly positive on XM . Indeed, for the backward (⇐) direction
it suffices to note that every point in X(M) specializes to a point in X(M)max = XM .
For non-strict positivity we have f ≥ 0 on X(M)⇒ f ≥ 0 on XM , but not conversely
in general.

2. For general rings, the topological space Hom(A,R) or its subspace XM may
have little or no significance. For example, Hom(A,R) is empty whenever A contains
a non-Archimedean real closed field. In this generality, the real spectrum is the
correct object to work with. In the important case of R-algebras however, one may
replace the real spectrum by the “less abstract” space XM ≈ X(M)arch for some
purposes.

5.2.25 Remark. Corollary 5.2.21 has an important consequence that we want to
record. Before doing so, recall the Stone–Weierstrass approximation theorem (see
[172], for example): Let X be a compact topological space and let A ⊆ C(X,R)
be a ring of real-valued continuous functions on X (containing 1

2 ). Assume that A
separates points, i.e. that for any pair x , y of points in X there exists f ∈ A
with f (x) , f (y). Then A is dense in C(X,R) with respect to the norm of uniform
convergence: For every continuous map g : X → R and every real number ε > 0
there exists f ∈ A with | f − g| < ε, uniformly on X.

Usually this theorem is stated for subrings A ⊆ C(X,R) that contain R. It holds
in the generality above since 1

2 ∈ A implies that the closure of A contains all of R.

5.2.26 Proposition. Let Y ⊆ Sper(A) be a closed set that is absolutely bounded.
Then the image of the ring homomorphism

Φ : A→ C(Ymax,R), f 7→ f̂

(see 5.2.20) is a dense subring of C(Ymax,R).
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Proof. The topological space Ymax is compact (5.2.19), and the ring Φ(A) separates
points: Given α , β in Ymax, there exists f ∈ A with f̂ (α) , f̂ (β). In fact, there even
exists f ∈ A with f̂ (α) > 1 and f̂ (β) < −1 (Exercise 3.6.10). �

We will come back to Proposition 5.2.26 in Theorem 5.3.9, and then again in
Section 6.2.

Exercises

5.2.1 Let A be a ring that is generated by two subrings A1, A2. For i = 1, 2 let Mi be an Archime-
dean semigroup in Ai. Prove that the set of all finite sums

∑
j b jc j with b j ∈ M1, c j ∈ M2 is

an Archimedean semigroup in A.

5.2.2 Give an example of a ring A for which the subset Sper(A)arch is not closed.

5.2.3 Let K be a field and let M ⊆ K be a proper quadratic module. Show that

OK(M) =

{ n
1 + x

−
n

1 + y
: x, y ∈ M, n ∈ N

}
.

Hint: To prove that f ∈ OK(M) lies in the right hand set, choose n ∈ Nwith u := n2− f 2 ∈ M,
and note that f = 2n2 f ( f 2 + u + n2)−1. Now try to rewrite the right hand expression in the
desired way.

5.2.4 Let A = R[x, y] with x = (x1, . . . , xn), y = (y1, . . . , yn). Using notation from Exercise 5.1.6,
let Σh ⊆ A be the semiring of sums of Hermitian squares in C[z, z], and let M be a Σh-module
in A. Prove that M is Archimedean if (and only if) c − (|z1|

2 + · · · + |zn|
2) ∈ M for some real

number c > 0. (Hint: Show that {p ∈ C[z] : − |p(z)|2 ∈ R + M} is a subring of C[z].)

5.2.5 Let S ⊆ R[t] be the semiring generated by 1 − t2 and all fourth powers in R[t]. Show
that every element in S has even degree, and conclude that S is not Archimedean. As a
challenge, prove that S becomes Archimedean when fourth powers are replaced by sixth
powers. (Reference for this question: [18])

5.2.6 Let M be a semiordering of the field K, and write a ≤M b ⇔ b − a ∈ M for a, b ∈ K. Let
a, b ∈ K in (b) and (c), and prove:

(a) The restriction of ≤M to Q ⊆ K is the usual ordering of Q;
(b) 0 <M a <M b implies 0 <M

1
b <M

1
a ;

(c) if 0 <M a <M b, and if a ∈ ΣK2 or b ∈ ΣK2, then 0 <M a2 <M b2.

Hint on (b): b
a(b−a) = 1

a + 1
b−a .

5.2.7 Show that every Archimedean semiordering M of a field K is (the positive cone of) an
ordering of K. (Hint: Use Exercise 5.2.6, and start by showing that Q is dense in K with
respect to the order topology of M.)

5.2.8 (Compare Example 3.5.8) Let M be a semiordering of the field K, and let O(M) = OK(M)
as in Definition 5.2.3.

(a) O(M) is a valuation ring of K, and is M-convex;
(b) the maximal ideal m of O(M) is M-convex;
(c) the set M := {a : a ∈ M} is the positive cone of an Archimedean ordering of the residue

field k = O(M)/m.
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5.3 The Archimedean positivstellensatz

The following theorem is one of the central results in this entire course. Although
the statement itself is of abstract nature, it has far-reaching consequences that are
very concrete and explicit, as we will see. Recall the definition of XM from 5.2.14.

5.3.1 Theorem. (Archimedean positivstellensatz) Let M ⊆ A be an Archimedean
quadratic module, or a module over an Archimedean semiring S in A. Given f ∈ A,
the following are equivalent:

(i) f > 0 on XM;
(ii) there exists an integer n ≥ 1 with n f ∈ 1 + M.

Proof. When M is an Archimedean quadratic module write S = ΣA2. So in any
case, S is a generating semiring and M is an S -module. The implication (ii) ⇒ (i)
is clear. Indeed, from n f ∈ 1 + M we get n f ≥ 1 on XM , and hence f ≥ 1

n > 0 on
XM . The essential part of the theorem is therefore the implication (i)⇒ (ii). Assume
f > 0 on XM and write M′ = M − S f . Then M′ is an Archimedean S -module with
XM′ = ∅. Since S is generating we have −1 ∈ M′ by Corollary 5.2.13, so there
exists s ∈ S with s f − 1 ∈ M. Since M is Archimedean, there are integers k, q ≥ 1
with 2k − 1 − s2 f ∈ M and f + q ∈ M. By enlarging k we can ensure that also
(k − s)2 ∈ S . Indeed, if S is Archimedean we can even get k − s ∈ S . Otherwise
S = ΣA2, and (k − s)2 ∈ S is automatic. In any case we conclude

2k − s = (2k − 1 − s2 f ) + s(s f − 1) + 1 ∈ M.

Writing
Q :=

{
(m, n) : m, n ∈ Z, m ≥ 1, m f + n ∈ M

}
we have (1, q) ∈ Q. Let (m, n) ∈ Q be any pair with n ≥ 0. Then also

k2m f + (k2n − m)

= (k − s)2(m f + n) + 2km(s f − 1) + ns(2k − s) + m(2k − 1 − s2 f )

lies in M, since m f + n ∈ M and (k − s)2 ∈ S . So the implication

(m, n) ∈ Q and n ≥ 0 ⇒ (k2m, k2n − m) ∈ Q (5.3)

holds in general. Repeating the argument and starting with (1, q) ∈ Q, we succes-
sively find that (1, q), (k2, k2q− 1), (k4, k4q− 2k2), . . . lie all in Q, until the second
component gets negative for the first time. More precisely, we find that

k2 j(k2, k2q − j − 1
)
∈ Q for j = 0, 1, . . . , k2q.

The last possible value j gives k2 j(k2, −1) ∈ Q. This means k2 j(k2 f − 1) ∈ M, and
therefore k2 j+2 f ∈ 1 + M. Theorem 5.3.1 has been proved. �
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5.3.2 Remarks.

1. Inspecting the proof, we see that the number n in (ii) can be chosen to be a
power of 2. Indeed, the choice of k in the beginning may be increased arbitrarily,
and in particular, k may be chosen to be a 2-power.

2. The inductive step (5.3) in the previous proof becomes more transparent if we
assume Q ⊆ A and Q+ ⊆ S . Then (m, n) ∈ Q is equivalent to f + n

m ∈ M, and (5.3)
says that 0 ≤ q ∈ Q and f + q ∈ M imply f + q − 1

k2 ∈ M. After finitely many steps,
therefore, we have found a rational number q < 0 with f + q ∈ M.

We stress the fact that Theorem 5.3.1 is essentially a denominator-free posi-
tivstellensatz. This becomes obvious from the following reformulation:

5.3.3 Corollary. Let M be an Archimedean quadratic module, or a module over an
Archimedean semiring S with 1

2 ∈ S . Then M contains every f ∈ A with f > 0 on
XM .

Proof. In Theorem 5.3.1 there is an integer r ≥ 0 with 2r f ∈ 1 + M (use Remark
5.3.2.1). Since we assumed 1

2 ∈ S , we can divide by 2r and get f ∈ 2−r + M ⊆ M.�

5.3.4 Remarks.

1. Note how Corollary 5.3.3 gives a much stronger conclusion than the Krivine–
Stengle positivstellensatz 3.2.7. Of course, there is a price to pay: 5.3.3 needs the
Archimedean condition, whereas 3.2.7 is true in complete generality. On the other
hand, 3.2.7 holds for preorderings only, whereas the Archimedean positivstellensatz
applies to situations of much more general type. This includes very relevant explicit
cases, as we will see in the next sections.

2. Most important for applications will be the following situation. Let V be an
affine R-variety and let M be either an Archimedean quadratic module in R[V], or a
module over an Archimedean semiring S in R[V]. Then M contains every f ∈ R[V]
with f > 0 on the subset XM of V(R). Prominent examples of this sort will be
discussed in the next two sections.

3. The proof of Theorem 5.3.1 gets much simpler if M = S is assumed to be
an Archimedean preordering. Indeed, the hypothesis f > 0 on XS , together with S
Archimedean, implies that f > 0 on X(S ) (Remark 5.2.24.1). If S is a preordering,
one finds s ∈ S with s f ∈ 1 + S (first step in the proof of 5.3.1) just from the
general Krivine–Stengle positivstellensatz 3.2.7. In particular, there is no need to
invoke Theorem 5.2.11 or Corollary 5.2.13, and the proof can directly enter into the
inductive argument.

4. Note that the case where M is an Archimedean module over a generating
semiring is not covered by Theorem 5.3.1. Leaving the quadratic modules case
aside, what the theorem requires is that the semiring itself is Archimedean. In the
proof there is only one single step where the Archimedean property for S is needed,
namely to guarantee for s ∈ S the existence of an integer k ≥ 1 with (k − s)2 ∈ S .
In fact, there do exist examples of Archimedean modules over generating semirings
for which Theorem 5.3.1 fails, see Exercises 5.3.2 and 5.3.3.
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The conclusion of the Archimedean positivstellensatz can also be stated as a
nichtnegativstellensatz:

5.3.5 Corollary. (Archimedean nichtnegativstellensatz) Let M be an Archimedean
quadratic module, or a module over an Archimedean semiring S ⊆ A with 1

2 ∈ S .
For any f ∈ A, the following are equivalent:

(i) f ≥ 0 on XM ,
(ii) ∀ n ∈ N 1 + n f ∈ M.

Proof. If f ≥ 0 on XM then 1 + n f > 0 on XM for every n ≥ 1, and therefore
1 + n f ∈ M by 5.3.3. Conversely, if f (α) < 0 for some α ∈ XM then f (α) < − 1

n for
some integer n ≥ 1. Therefore (1 + n f )(α) < 0, which implies 1 + n f < M. �

5.3.6 Remark. Conversely, Corollary 5.3.5 implies the positivstellensatz 5.3.3: If
f > 0 on XM , there exists m ≥ 0 with f ≥ 1

2m on XM , by compactness of XM .
Applying 5.3.5 to g := f −2−m with n = 2m gives 1+2mg = 2m f ∈ M, hence f ∈ M.

5.3.7 Corollary. A quadratic module M ⊆ A is Archimedean if, and only if, XM is
compact and M contains every f ∈ A with f > 0 on XM .

Proof. M Archimedean implies that XM is compact (5.2.23) and that M contains
all elements that are strictly positive on XM (5.3.3). The converse is true for any
semigroup M, not just for quadratic modules: If XM is compact and f ∈ A, there
exists n ≥ 1 with n± f > 0 on XM . So if M contains all elements strictly positive on
XM , it follows that n ± f ∈ M. Therefore M is Archimedean. ut

5.3.8 Remark. The historical genesis of the Archimedean positivstellensatz has
many ramifications. An ur-version was proved by Stone [204] in 1940. General-
izations were later found by Kadison [104] in 1951 and Dubois [57] in 1967. Inde-
pendently, Krivine [113] in 1964 stated essentially the version discussed here, in the
case of preorderings. Apparently, neither was Krivine aware of the work of Stone,
Kadison or Dubois, nor did Krivine’s result get much attention. A purely algebraic
proof (for modules over Archimedean semirings) was given by Becker–Schwartz
[15] in 1983. There, as well as in other places in the literature, the result goes un-
der the name “Kadison–Dubois theorem”. The extension to Archimedean quadratic
modules was found by Jacobi [100] in 1999. He also proved the result for Archime-
dean modules of higher level, a case that is not included in our discussion. A recent
approach by Schmüdgen–Schötz [192] derives the semiring case directly from the
case of quadratic modules (for R-algebras). We refer to Section 5.6 in [159] for a
detailed account of the history of the Archimedean positivstellensatz. In Section 5.7
we will present a very different alternative approach to these results.

In the literature, the Archimedean positivstellensatz is often referred to as the
representation theorem (for example [104], [15], [159] or [136]). Let us briefly in-
dicate how this can be justified. Let X be a topological space and let C(X,R) be the
ring of continuous R-valued functions on X, as before. If B is a subring of C(X,R),
let B+ := { f ∈ B : ∀ x ∈ X f (x) ≥ 0}, which is a semiring in B. The starting point
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for the representation theorem is the question how to characterize, in purely alge-
braic terms, when a pair (A, S ) of a commutative ring A and a semiring S ⊆ A is
isomorphic to a pair (B, B+), with X a compact topological space and B ⊆ C(X,R) a
subring. This question can now be answered:

5.3.9 Corollary. (Representation Theorem) Let A be a ring and S ⊆ A a semiring
with 1

2 ∈ S . There exists a compact topological space X and a subring B of C(X,R)
with (A, S ) � (B, B+) if, and only if, the following hold:

(1) S is Archimedean;
(2) S ∩ (−S ) = {0};
(3) if f ∈ A and 1 + n f ∈ S for all n ∈ N, then f ∈ S .

If (1)–(3) hold, one can moreover arrange in addition that B is a dense subring of
C(X,R).

Here “dense subring” refers to the norm ||g|| = max{|g(x)| : x ∈ X} of uniform
convergence. The condition (A, S ) � (B, B+) means that there exists a ring isomor-
phism A→ B that maps S onto B+.

Proof. Properties (1)–(3) are obvious if X is a compact space and (A, S ) = (B, B+),
with B ⊆ C(X,R) a subring. Conversely assume that (A, S ) satisfies (1)–(3). We take
X := XS , which is a compact topological space since S is Archimedean (5.2.23).
The ring homomorphism

Φ : A→ C(XS ,R), f 7→ f̂

(see 5.2.20) satisfies Φ−1(C+(XS ,R)) = S , by the Archimedean nichtnegativstellen-
satz 5.3.5 and by (3). So (2) implies that Φ is injective. By Corollary 5.2.26, Φ(A)
is a dense subring of C(XS ,R). �

Exercises

5.3.1 Let the set S ⊆ R[x, y] consist of all finite sums of polynomials of the form(
p1(x)2 + p2(x)2(1 − x2)

) (
q1(y)2 + q2(y)2(1 − y2)

)
with pi(x) ∈ R[x] and qi(y) ∈ R[y]. Show that S is an Archimedean semiring inR[x, y] whose
associated basic closed set is XS = [−1, 1] × [−1, 1] ⊆ R2. Deduce that c + (x − y)2 ∈ S for
every real number c > 0, and decide whether this remains true for c = 0. (A more general
statement will be proved in Exercise 5.5.2.)

5.3.2 Let R[t] be the polynomial ring in one variable, let S ⊆ R[t] be the semiring generated by
R+ and t, and let M = S + S (1 − t).

(a) S is a generating semiring of R[t], and M is an Archimedean S -module.
(b) If 0 < c < 1 and f = c + (1 − t2)2 then f > 0 on XM , but f < M.

Hence the Archimedean positivstellensatz is usually false for Archimedean modules over
generating semirings.
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5.3.3 For another example in a similar vein, let Σh be the set of sums of Hermitian squares in
C[z, z] (one complex variable z), a generating semiring in the polynomial ring A = R[x, y] in
two variables (Example 5.1.6). The Σh-module M = Σh + Σh(1 − |z|2) in A is Archimedean
according to Exercise 5.2.4. When 0 < c < 1 is a real number, show that the polynomial
f = c + (1 − |z|2)2 is strictly positive on XM , but f < M.

5.3.4 In the notation of Exercise 5.1.6, let z = (z1, . . . , zn) and w = (w1, . . . ,wn), let f (z,w) ∈
C[z,w] be such that f = f ∗ and f (u, u) > 0 for every u ∈ Cn with |u| = 1. Prove Quillen’s
theorem [162]: There exist finitely many polynomials p1, . . . , pr ∈ C[z] such that

f (u, u) =

r∑
j=1

|p j(u)|2

holds for every u ∈ Cn with |u| = 1. (Hint: Use Exercise 5.2.4 for the module M = Σh + I,
where I is the principal ideal generated by 1 −

∑n
j=1 |z j|

2.)

5.4 First applications: Theorems of Pólya and Handelman

With the Archimedean positivstellensatz at our disposal, we start the row of appli-
cations, and we begin with semirings. The following theorem is a classical result by
Pólya. Using Theorem 5.3.1 it admits an easy proof:

5.4.1 Theorem. (Pólya) Let f ∈ R[x1, . . . , xn] be a homogeneous polynomial. The
following are equivalent:

(i) f is strictly positive on C := {ξ ∈ Rn : ξ1 ≥ 0, . . . , ξn ≥ 0} r {(0, . . . , 0)};
(ii) there is an integer N ≥ 1 such that all coefficients of the form (x1 + · · ·+ xn)N · f

are strictly positive.

Proof. Let h = x1 + · · · + xn. Condition (ii) implies that hN f is strictly positive on
C, and hence that f > 0 on C since h > 0 on C. So (ii)⇒ (i) is clear. We prove (i)
⇒ (ii) by applying the Archimedean positivstellensatz to a suitable semiring. Let V
be the complement of the hyperplane h = 0 in projective space Pn−1. Then V is an
affine R-variety, isomorphic to An−1, and has coordinate ring R[V] = R[ x1

h , . . . ,
xn
h ]

(see A.6.10). Let S ⊆ R[V] be the semiring generated by R+ and x1
h , . . . ,

xn
h . From

x1
h + · · · + xn

h = 1 we see that 1 − xi
h ∈ S for i = 1, . . . , n. So S is Archimedean

by Proposition 5.2.7(a). The set XS ⊆ V(R) consists of the homogeneous tuples
[ξ] ∈ V(R) with ξ j

ξ1+···+ξn
≥ 0 for j = 1, . . . , n, and so

XS =
{
(ξ1 : · · · : ξn) ∈ Pn−1(R) : ξ1 ≥ 0, . . . , ξn ≥ 0

}
.

Let d = deg( f ). Then f
hd ∈ R[V], and f

hd > 0 on XS holds by (i). So the positivstel-
lensatz 5.3.3 implies f

hd ∈ S . This means that there is an identity

f
hd =

∑
e∈Zn

+

ce ·
xe1

1 · · · x
en
n

he1+···+en
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in R(x) with real numbers ce ≥ 0, almost all of them zero. Multiplying with a high
power of h we see that, for large N, the coefficients of hN f are non-negative.

We show that all coefficients of hN f (in degree d + N) can even be made strictly
positive, by further increasing N. Since f > 0 on the standard (n − 1)-simplex

∆ =

{
ξ ∈ Rn : ξ1 ≥ 0, . . . , ξn ≥ 0,

n∑
i=1

ξi = 1
}
,

and since ∆ is compact, there exists ε > 0 with f > ε > 0 on ∆. Hence the form
f1 := f − εhd is strictly positive on ∆, and therefore on C. By the first part of the
proof there exists N ≥ 0 such that hN f1 has non-negative coefficients. Therefore
hN f = hN f1 + εhN+d has all coefficients strictly positive. �

5.4.2 Remarks.

1. The essential step in the previous proof was to show that the first condition in
5.4.1 implies

(ii’) there is N ∈ N such that (x1 + · · · + xn)N f has non-negative coefficients,

which is a slightly weaker form of (ii). Often the conclusion (i) ⇒ (ii’) alone is
referred to as Pólya’s theorem.

2. If we allow f in Theorem 5.4.1 to be inhomogeneous, the conclusion of this
theorem becomes false in general. For similar reasons, it fails if f is allowed to have
a zero in C. See Exercises 5.4.1 and 5.4.2.

3. Pólya’s theorem can be stated over any real closed field R. However it becomes
false as soon as R is non-Archimedean. A counterexample is the quadratic form
f = (x + y)2 + c(x − y)2, if c ∈ R is larger than any integer. This follows from
Exercise 5.4.3.

4. It is natural to ask for a quantitative version of Pólya’s theorem, i.e. for a
bound on the exponent N in terms of the given form f . Writing f with normalized
coefficients

f =
∑
|α|=d

d!
α1! · · ·αn!

cα xα1
1 · · · x

αn
n

(where cα ∈ R), let c = maxα |cα| and λ := min f (∆) > 0, where ∆ ⊆ Rn is the
standard (n − 1)-simplex. Then if

N >
d
2

(d − 1)
c
λ
− d,

the form (x1 + · · · + xn)N f has positive coefficients (Powers-Reznick [156]). Re-
markably, this bound doesn’t depend on n. For d = 2 it is even best possible, see
Exercise 5.4.3.

We now discuss another application of Theorem 5.3.1 to semirings.
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5.4.3 Theorem. (Handelman) Let f1, . . . , fr ∈ R[x] = R[x1, . . . , xn] be linear poly-
nomials such that the polyhedron

K = S( f1, . . . , fr) =
{
ξ ∈ Rn : f1(ξ) ≥ 0, . . . , fr(ξ) ≥ 0

}
is compact (i.e., a polytope) and non-empty. Then every polynomial f ∈ R[x] with
f |K > 0 has a representation

f =
∑
α∈Zr

+

cα f α1
1 · · · f αr

r (5.4)

with real numbers cα ≥ 0 (almost all of them zero).

Our proof via the Archimedean positivstellensatz needs a classical result from
polyhedral geometry. A (self-contained) proof will be given later (Corollary 8.1.24),
and for the moment we just quote it:

5.4.4 Proposition. Let f , f1, . . . , fr ∈ R[x] = R[x1, . . . , xn] be linear polynomials
such that the polyhedron K = {ξ ∈ Rn : f1(ξ) ≥ 0, . . . , fr(ξ) ≥ 0} is non-empty. If
f ≥ 0 on K, there exist a0, . . . , ar ≥ 0 in R with f = a0 + a1 f1 + · · · + ar fr.

Obviously, the converse is true as well. We remark that Theorem 5.4.4 holds over
any real closed field, for example by Tarski’s principle.

Proof of Theorem 5.4.3. Let S ⊆ R[x] be the semiring generated by R+ and
f1, . . . , fr. Clearly XS = K. Since K is compact by hypothesis, there is a positive
real number c with K ⊆ [−c, c]n. From Proposition 5.4.4 it follows that c ± xi ∈ S
for i = 1, . . . , n. Therefore S is Archimedean by 5.2.7(a). Now the claim follows
again from Theorem 5.3.3. ut

Using the strength of the Archimedean positivstellensatz, it is easy to arrive at
versions of Theorem 5.4.3 that are considerably more general, like the following
one:

5.4.5 Corollary. Let f1, . . . , fr ∈ R[x] be linear polynomials such that the poly-
hedron K = {ξ ∈ Rn : fi(ξ) ≥ 0 (i = 1, . . . , r)} is compact and non-empty.
Let again S ⊆ R[x] be the semiring generated by R+ and f1, . . . , fr, and let
g1, . . . , gs ∈ R[x] be arbitrary polynomials. Then every polynomial that is strictly
positive on K′ = {ξ ∈ K : g j(ξ) ≥ 0 ( j = 1, . . . , s)} lies in M = S + S g1 + · · · + S gs.

Proof. The semiring S is Archimedean as shown in the previous proof, and M is an
S -module. Since XM = K′, the assertion follows again from 5.3.3. �

5.4.6 Remarks.

1. The condition K , ∅ cannot be dropped in 5.4.3 (and neither in 5.4.4), as the
example f1 = x1 − 1, f2 = −x1, f = x2 in R[x1, x2] shows. Here K = S( f1, f2) is
empty, but f is not contained in the semiring generated by f1, f2 and R+.
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2. In Handelman’s theorem 5.4.3, it is clear that a non-zero polynomial f can
never have a representation (5.4) if it vanishes somewhere in the interior of K.
Moreover, it is not hard to see that the theorem fails if the field R is replaced by
a non-Archimedean field, see Exercise 5.4.4. On the other hand, Theorem 5.4.3 re-
mains true if R is replaced by an Archimedean real closed field.

3. Linearity of the polynomials fi in Theorem 5.4.3 is essential. For an illustra-
tion, let S ⊆ R[t] (one variable) be the semiring generated by t, 1 − t2 and R+. Then
XS = [0, 1] is compact, but c − t < S for any c ∈ R (see Exercise 5.4.5).

4. Pólya’s theorem 5.4.1 can be seen as a particular case of Handelman’s theo-
rem 5.4.3: The variety V = Pn−1 r V(h) considered in the proof of 5.4.1 is affine
space An−1 with linear coordinates yi = xi

h (i = 1, . . . , n − 1). Under the resulting
isomorphism R[V] � R[y] = R[y1, . . . , yn−1], the semiring S ⊆ R[V] defined in the
proof of 5.4.1 corresponds to the semiring S ′ ⊆ R[y] generated by R+ together with
y1, . . . , yn−1 and 1 − (y1 + · · · + yn−1). Applying Theorem 5.4.3 to S ′ and translating
back to R[V] gives Theorem 5.4.1.

5. Originally, the theorems of Pólya and Handelman discussed in this section
were proved by very different arguments. The proofs presented here are essentially
due to Wörmann (1996), see [19]. With the Archimedean positivstellensatz in our
pocket, observe how natural and easy the proofs became. A similar remark holds for
a classical theorem by Quillen, for which an easy proof was presented in Exercise
5.3.4 using the Archimedean positivstellensatz.

Exercises

5.4.1 The dehomogenized version of Pólya’s theorem is false: Find a polynomial f ∈ R[x1, . . . , xn]
(necessarily inhomogeneous) with f > 0 on Rn, such that (1+x1 + · · ·+xn)N · f has a negative
coefficient for each N ≥ 0.

5.4.2 Let f ∈ R[x1, . . . , xn] be a homogeneous polynomial that is non-negative on the positive
orthant Rn

+. If there exist ξ, η ∈ Rn
+ with f (ξ) = 0, f (η) , 0 and {i : ξi = 0} ⊆ {i : ηi = 0},

show that (x1 + · · · + xn)N · f has a negative coefficient for every N ≥ 0.

5.4.3 Let c be a positive real number and let f (x, y) = (x + y)2 + c(x − y)2. Show that if n ∈ N is
even with n < c − 1, then the form (x + y)n · f (x, y) has a negative coefficient.

5.4.4 Prove the assertions made in Remark 5.4.6.2.

5.4.5 Let R[t] be the polynomial ring in one variable. For a ∈ R let Sa be the semiring in R[t]
generated by t − a, 1 − t2 and R+. The set XSa is compact and non-empty for a ≤ 1. Show
that Sa fails to be Archimedean for a ≤ 0, but is Archimedean for a > 0.

5.4.6 Let f = f (x) ∈ R[x] = R[x1, . . . , xn] be a form that is strictly positive definite. Following
Habicht (1940), we give an explicit proof for the fact that f is a sum of squares of rational
functions. Apart from the use of Pólya’s theorem, the proof is completely elementary.

(a) Use Pólya’s theorem to show: There is a form g(x) , 0 such that the product f (x)g(x)
has non-negative coefficients and contains only even monomials x2β.

(b) Let deg( f ) = 2d and put F(x, u) = f (x)+u2d , where u is a new variable. For every i ≥ 0,
show that there are integers 0 ≤ j < 2d and k ≥ 0 with ui = F(x, u)P(x, u)± f (x)ku j for
some polynomial P(x, u) and some sign ±.
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(c) Use (a) to find a form G(x, u) such that F(x, u)G(x, u) =
∑
β,i cβ,i x2βu2i with cβ,i ≥ 0.

Use (b) to rewrite the right hand side modulo F(x, u) as a polynomial of degree ≤ 4d−2
in u with coefficients in R[x]. Now compare the coefficients of suitable powers of u.

Hints: For (a), note that the product
∏

ε∈{0,1}n f (ε1 x1, . . . , εn xn) has only even monomials.
For (b) write i = 2dk + j.

5.5 Schmüdgen’s positivstellensatz and consequences

We now apply the Archimedean positivstellensatz to preorderings and quadratic
modules. If f1, . . . , fr ∈ R[x] = R[x1, . . . , xn], recall that S( f1, . . . , fr) = {ξ ∈
Rn : fi(ξ) ≥ 0 (i = 1, . . . , r)} denotes the associated basic closed set in Rn. The
central result here is:

5.5.1 Theorem. (Schmüdgen) Let f1, . . . , fr ∈ R[x] = R[x1, . . . , xn] be polynomials
for which the basic closed set K = S( f1, . . . , fr) ⊆ Rn is compact. Then the pre-
ordering PO( f1, . . . , fr) in R[x] contains every polynomial that is strictly positive
on K.

5.5.2 Corollary. Let V be an affine R-variety for which V(R) is compact. Every
regular function f ∈ R[V] that is strictly positive on V(R) is a sum of squares in
R[V].

Proof. Choose a closed embedding V ⊆ An, and let the vanishing ideal I = I(V)
be generated by f1, . . . , fr ∈ R[x]. The preordering T := PO(± f1, . . . ,± fr) in R[x]
satisfies T = ΣR[x]2 + I (easy, see Exercise 5.1.1). Since S(± f1, . . . ,± fr) = V(R),
the assertion is a particular case of Theorem 5.5.1. Alternatively, it is also a direct
consequence of Theorem 5.5.3 below. �

For K as in Theorem 5.5.1, Schmüdgen derived 5.5.1 from his solution of the
K-moment problem, that he proved by combining tools from operator theory with
the Krivine–Stengle positivstellensatz. We present a purely algebraic proof that is
based on the Archimedean positivstellensatz, and also on Krivine–Stengle. Another
algebraic proof, based on Pólya’s theorem, is due to Schweighofer [193].

Theorem 5.5.1 follows from the following theorem, combined with the Archime-
dean positivstellensatz:

5.5.3 Theorem. (Wörmann) Let A be a finitely generated R-algebra, let T ⊆ A be a
finitely generated preordering for which XT is compact. Then T is Archimedean.

Proof. Let the R-algebra A be generated by x1, . . . , xn, and let V = Spec(A). The set
XT is a (basic closed) semialgebraic set in V(R), since the preordering T is finitely
generated. So the subset X(T ) of Sper(A) is the unique constructible set associated
with the semialgebraic set XT (Proposition 4.1.2). Since XT is compact by hypothe-
sis, there exists a real number c such that

∑
i x2

i < c on XT . Therefore f := c −
∑

i x2
i

satisfies f > 0 on XT , and hence f > 0 on the subset X(T ) of Sper(A). To show that
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T is Archimedean, it suffices to find b ∈ R with b + f ∈ T , according to the criterion
in 5.2.7(b). By the Krivine–Stengle positivstellensatz 3.2.7, there exists t ∈ T with
(1 + t) f ∈ T . This implies

(1 + t) f + t ·
∑

i

x2
i = f + ct ∈ T. (5.5)

Let Q = T + f T , the preordering generated by T and f . Since (1 + t) f ∈ T we have

(1 + t)Q ⊆ T. (5.6)

Now Q is Archimedean by 5.2.7(b) since f ∈ Q. So there exists a ∈ Rwith a−t ∈ Q.
Therefore (5.6) gives

c(1 + t)(a − t) = ca + c(a − 1)t − ct2 ∈ T. (5.7)

Finally

c
(a
2
− t

)2
= c

a2

4
− act + ct2 ∈ T. (5.8)

Adding (5.5), (5.7) and (5.8) we get f + c
(
a + a2

4

)
∈ T , and the proof is complete.�

5.5.4 Example. Let us illustrate Theorem 5.5.1 in the simplest possible case, uni-
variate polynomials. Let h = t(1 − t) ∈ R[t] and T = PO(h), write K = XT = [0, 1].
By 5.5.1, every f ∈ R[t] with f |K > 0 can be written f = s+ th with sums of squares
s, t in R[t].

So far this is not deep. In fact, the conclusion is true and elementary even when
only f |K ≥ 0 is assumed. It gets interesting after we give it a slight twist. Instead of
h and T consider h′ = t3(1 − t) and T ′ := PO(h′). We still have K = XT ′ = [0, 1].
But now t < T ′, since in an identity t = s + s′h′ with sums of squares s, s′, the
polynomial s would be divisible by t and hence by t2, giving a contradiction. On
the other hand, Schmüdgen’s theorem gives for every real number ε > 0 an identity
t + ε = s + s′h′ with sums of squares s, s′ ∈ R[t]. If ε→ 0 then the degrees of s and
s′ necessarily explode to infinity, see Exercise 5.5.5.

This simple example already indicates that, in the general situation of Theorem
5.5.1, it will usually be hard to find explicit preordering representations, for given
polynomials that are strictly positive on K. For the concrete example discussed here,
reasonable upper degree bounds depending on ε > 0 are in fact available. But in
general the situation is rather dismaying. We will return to degree bounds in Section
6.6.

5.5.5 Remarks.

1. As the previous example already suggests, Schmüdgen’s theorem 5.5.1 be-
comes false when R is replaced by a non-Archimedean real closed fields R. See
Exercise 5.5.5. Over Archimedean R, the statement remains true.

2. In Theorem 5.5.3, one cannot drop the conditions that A and T are finitely
generated. See Exercise 5.5.1 for easy counterexamples in R[t], and see Marshall
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[139] for a counterexample in R[x1, x2, . . . ], the polynomial ring in infinitely many
variables.

5.5.6 We now discuss a series of applications of Schmüdgen’s theorem, starting
with Hilbert’s 17th problem. Let R be a real closed field and let f ∈ R[x] =

R[x1, . . . , xn] be a form that is positive definite, i.e. f (ξ) > 0 for all 0 , ξ ∈ Rn.
By Artin’s solution of Hilbert 17 (Theorem 1.5.21), there exists a non-zero form
h ∈ R[x] such that f h2 is sos. By the Krivine–Stengle positivstellensatz 3.2.7, such
h can be chosen to be positive definite itself (Exercise 3.3.2). If R = R (or if R is
Archimedean), we can use Theorem 5.5.1 to prove a much stronger statement:

5.5.7 Theorem. Let f , h ∈ R[x] = R[x1, . . . , xn] be two positive definite forms, and
assume that deg(h) divides deg( f ). Then for suitable N ≥ 1, the form hN f is a sum
of squares of forms.

5.5.8 Corollary. (Reznick) For every positive definite form f ∈ R[x], the product
(x2

1 + · · · + x2
n)N · f is a sum of squares of forms for sufficiently large N ≥ 1.

Proof of Theorem 5.5.7. The complement V of the hypersurface h = 0 in Pn−1 is an
affine R-variety with coordinate ring

R[V] =

{ g
hr : g ∈ R[x] homogeneous, deg(g) = r · deg(h)

}
.

Let m =
deg( f )
deg(h) . Then f

hm lies in R[V] and is strictly positive on V(R). Since V(R) =

Pn−1(R) is compact, f
hm is a sum of squares in R[V] by Corollary 5.5.2. This means

that there exist k ≥ 0 and forms g1, . . . , gr ∈ R[x] of degree k · deg(h), such that

f
hm =

r∑
i=1

( gi

hk

)2
.

Multiplying this identity with h2N for sufficiently large N we get the assertion. ut

5.5.9 Remarks.

1. Given any psd form f ∈ R[x] = R[x1, . . . , xn], there always exists a sum of
squares form h , 0 such that f h is a sum of squares of forms. So far, this is just
Artin’s solution of Hilbert 17. According to Corollary 5.5.8, h can be chosen to be
a power of x2

1 + · · · + x2
n whenever f is positive definite. In this sense, x2

1 + · · · + x2
n

is a uniform common denominator for positive definite forms.
2. In fact a stronger result holds, since the condition that deg(h) divides deg( f )

can be dropped in Theorem 5.5.7. Therefore, any non-constant positive definite form
is a uniform denominator for sos representations of arbitrary positive definite forms.
The proof needs additional techniques, and we will give it in 6.5.25.

3. For ternary forms (n = 3), even more is true: Any non-constant positive def-
inite form is a uniform denominator for all non-negative forms. On the other hand,
in four or more variables, such a uniform denominator for all non-negative forms
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does not exist. Both assertions will be proved in the next chapter (Corollary 6.5.28
and Exercise 6.2.3, respectively).

Another important consequence of 5.5.1 is the following characterization of
Archimedean quadratic modules in R[x1, . . . , xn]:

5.5.10 Theorem. Let M ⊆ R[x] = R[x1, . . . , xn] be a quadratic module. The follow-
ing are equivalent:

(i) M is Archimedean;
(ii) there is c ∈ R with c −

∑
i x2

i ∈ M;
(iii) there exists f ∈ M such that the set S( f ) = {ξ ∈ Rn : f (ξ) ≥ 0} is compact;
(iv) XM is compact, and M contains every f ∈ R[x] with f > 0 on XM .

Most interesting is the implication (iii) ⇒ (iv), known as Putinar’s positivstel-
lensatz.

Proof. The implications (i) ⇒ (ii) ⇒ (iii) are obvious, the equivalence of (i) and
(iv) was observed in Corollary 5.3.7. Conversely, if (iii) holds then the preorder-
ing PO( f ) is Archimedean by Theorem 5.5.3. But PO( f ) ⊆ M, so a fortiori, M is
Archimedean as well. �

Theorem 5.5.3 states that a finitely generated preordering in R[x1, . . . , xn] is
Archimedean as soon as its associated basic closed set is compact. For quadratic
modules, this conclusion usually fails:

5.5.11 Example. Let M ⊆ R[x1, . . . , xn] be the quadratic module generated by

gi = 2xi − 1 (i = 1, . . . , n), gn+1 = 1 − x1 · · · xn.

The semialgebraic set K = XM =
{
ξ ∈ Rn : ξi ≥

1
2 (i = 1, . . . , n), ξ1 · · · ξn ≤ 1

}
is

compact since ξi ≤ 2n−1 (i = 1, . . . , n) for every ξ ∈ K:

K

1
2

1
2

x1 x2=1

But M is not Archimedean if n ≥ 2. In other words, c −
∑

i x2
i < M for any c ∈ R.

We first show this for n = 2, and we relabel the two variables as x, y. Assume
that there are sums of squares s0, . . . , s3 in R[x, y] with

c − (x2 + y2) = s0 + (2x − 1)s1 + (2y − 1)s2 + (1 − xy)s3.

For i = 0, . . . , 3, the leading (highest degree) form ti of si is itself a sum of squares.
The leading forms of the four summands on the right are t0, 2xt1, 2yt2 and −xyt3,
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respectively. Let d be the maximum of their degrees. If d ≤ 2 then s1, s2, s3 are
constant and deg(s0) ≤ 2, which is impossible (look at the coefficient of x2). There-
fore d ≥ 3, and some of the leading forms add up to zero. More precisely we have
t0 − xyt3 = 0 if d > 2 is even, and xt1 + yt2 = 0 if d > 2 is odd. But both are
impossible since the rational functions xy and − x

y are indefinite.
Now let n ≥ 3 and assume c −

∑n
i=1 x2

i ∈ M. Substituting x3 = · · · = xn = 1 we
get

c′ − (x2
1 + x2

2) = s0 + (2x1 − 1)s1 + (2x2 − 1)s2 + (1 − x1x2)s3

for some c′ ∈ R, with sums of squares si ∈ R[x1, x2]. This contradicts the case n = 2
just discussed.

5.5.12 Remark. Let g1, . . . , gr ∈ R[x] = R[x1, . . . , xn] be such that the basic closed
set K = S(g1, . . . , gr) is compact. The previous example shows that the quadratic
module M = QM(g1, . . . , gr) in R[x] need not be Archimedean if r ≥ 2. In any case,
we may choose a polynomial g for which the set S(g) is compact and contains K. For
example, we may take g = c2 −

∑
i x2

i if |ξ| ≤ c for all ξ ∈ K. The quadratic module
M′ = QM(g1, . . . , gr, g) has XM′ = XM = K, and M′ is Archimedean by Putinar’s
theorem 5.5.10. Therefore, every polynomial f with f |K > 0 has a representation

f = s0 +

r∑
i=1

sigi + sg

with sums of squares s0, . . . , sr, s in R[x]. These are r + 2 summands. If we just use
Schmüdgen’s theorem 5.5.1, we get a weighted sos representation with 2r sum-
mands. For this reason, most applications work with Putinar’s positivstellensatz
5.5.10.

The example given in 5.5.11 has dimension ≥ 2. Using semiorderings, we prove
that there does not exist any such example of dimension one.

5.5.13 Proposition. Let K be a function field over R of transcendence degree one.
Then every semiordering of K is an ordering.

Proof. Let M be a semiordering of K, and let a ≤M b ⇔ b − a ∈ M denote the
total ordering induced by M on the abelian group (K,+). From Exercise 5.2.8, recall
that the subring O(M) = {a ∈ K : ∃ n ∈ N −n ≤M a ≤M n} of K is a valuation
ring of K. If m denotes its maximal ideal and k = O(M)/m its residue field, then
M = {a : a ∈ M} is an Archimedean ordering of k, by the same exercise. Since O(M)
clearly contains R, we conclude that k = R. Therefore O(M) is a discrete valuation
ring of (the one-dimensional function field) K.

Let t be a prime element of O(M) with t >M 0, and let g ∈ m. Then t
g2 < O(M),

which implies t
g2 >M 1 and hence t >M g2. The element u := 1+g therefore satisfies

0 <M u − t <M

(
1 +

g
2

)2
<M u + t.
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Applying Exercise 5.2.6(c) twice, it follows that (u − t)2 <M (u + t)2, and therefore
tu >M 0. Since every positive unit of O(M) has the form v = c2(1+g) with c ∈ R and
g ∈ m, we conclude vt >M 0 for any such v, and hence vtn >M 0 for every integer n.
Therefore M contains the set Q = {0} ∪ {vtn : n ∈ Z, v ∈ O(M)∗, v > 0}, which is a
positive cone of K by the Baer–Krull construction. It follows that M = Q. �

As a consequence of Proposition 5.5.13, one concludes that every quadratic mod-
ule in a one-dimensional function field over R is a preordering (use Exercise 5.1.8).
We remark that both Proposition 5.5.13 and this consequence remain true when R
is replaced by an arbitrary real closed field.

5.5.14 Proposition. Let x = (x1, . . . , xn), and let M be a finitely generated quadratic
module in R[x]. Assume that dimR[x]/ supp(M) ≤ 1, and that the basic closed set
XM is compact. Then M is Archimedean.

Proof. Every semiordering N of R[x] that contains M is (the positive cone of) an
ordering. Indeed, the residue field of the prime ideal supp(N) is a function field over
R of transcendence degree at most one. By Proposition 5.5.13, the semiordering
induced by N in this field is an ordering. Therefore N is an ordering as well.

By assumption there is c ∈ R such that
∑n

i=1 x2
i < c on XM . Put f = c −

∑n
i=1 x2

i ,
then the quadratic module M1 generated by M and − f satisfies XM1 = ∅. We claim
that M1 contains −1. Otherwise there exists a semiordering Q of R[x] with M1 ⊆ Q,
by Corollary 5.1.21. But Q is a positive cone as just remarked, and so it would follow
that X(M1) , ∅. Since the quadratic module M1 is finitely generated, the subset
X(M1) of SperR[x] is (basic closed) constructible. Therefore we get XM1 , ∅, a
contradiction.

We have therefore seen that there exist s ∈ ΣR[x]2 and g ∈ M with s f = 1 + g.
This implies S(g) ⊆ S( f ). In particular, the set S(g) is compact. So Putinar’s criterion
5.5.10 implies that M is Archimedean. �

5.5.15 Remark. Let M ⊆ R[x] be a finitely generated quadratic module such that
XM is compact. Jacobi and Prestel [101] gave necessary and sufficient conditions for
M to be Archimedean. Their approach makes essential use of terminology and re-
sults from reduced quadratic forms theory, in particular of the Bröcker–Prestel local-
global principle for weak isotropy. The conditions require that certain quadratic
equations are solvable at “points at infinity” of M. Although these are conditions
of very abstract nature, they allow concrete applications. For full details we refer to
[159] Chapter 6 or [136] Chapter 8.

We discuss a result that is much easier accessible, where compactness of XM plus
some extra condition implies the Archimedean property for a quadratic module M.

5.5.16 Lemma. Let g1, . . . , gr ∈ R[x] = R[x1, . . . , xn] be forms of even degree such
that S(g1, . . . , gr) = {0}. Then there exist sums of squares forms s0, . . . , sr and an
integer N ≥ 0 such that

(x2
1 + · · · + x2

n)N + s0 +

r∑
i=1

sigi = 0,
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and such that every summand is homogeneous of degree 2N.

Note that, conversely, such an identity implies both S(g1, . . . , gr) = {0} and even-
ness of the deg(gi).

Proof. Let h = x2
1 + · · · + x2

n and V = Pn−1 r V(h). As before, V is an affine R-
variety with compact set of R-points. By 5.5.3, every quadratic module in R[V] is
Archimedean. Write deg(gi) = 2di, and let M ⊆ R[V] be the quadratic module
generated by gih−di for i = 1, . . . , r. Then XM = ∅ by the hypothesis of the lemma.
Since M is Archimedean it follows that −1 ∈ M (Corollary 5.2.13). Hence there is
an identity

−1 =
s0

h2e0
+

r∑
i=1

sigi

hdi+2ei

of rational functions, where si is a sum of squares form of degree 4ei for i = 0, . . . , r.
Clearing denominators we get the claim. �

If g ∈ R[x] is any polynomial, let g̃ denote the leading form (highest degree
subform) of g.

5.5.17 Lemma. Let g1, . . . , gr ∈ R[x]. If S(g̃1, . . . , g̃r) = {0} then the set S(g1, . . . , gr)
is compact. (See Exercise 5.5.7 for the proof.)

5.5.18 Proposition. Let g1, . . . , gr ∈ R[x] = R[x1, . . . , xn] be polynomials such that
S(g̃1, . . . , g̃r) = {0}. If deg(gi) is even for i = 1, . . . , r, the quadratic module M =

QM(g1, . . . , gr) is Archimedean.

Proof. By Lemma 5.5.16, there are homogeneous sums of squares polynomials
s0, . . . , sr with

s0 +

r∑
i=1

sig̃i = −(x2
1 + · · · + x2

n)N ,

where N ≥ 0 and all summands have the same degree. The polynomial g = s0 +∑r
i=1 sigi lies in M, and g̃ = −

(∑
i x2

i
)N which is a negative definite form. Therefore

S(g) is compact by Lemma 5.5.17. Now Putinar’s criterion 5.5.10 implies that M is
Archimedean. �

The conclusion of Proposition 5.5.18 remains true if all degrees deg(gi) are odd
instead of even. The proof gets more complicated, see [136] Theorem 7.2.3.

5.5.19 Remark. Usually, applications of the Archimedean positivstellensatz are
stated either for modules over Archimedean semirings, or for Archimedean quadratic
modules. From the observation made in Exercise 5.2.1, one derives many more ap-
plications of “mixed” types. For concrete examples see Exercises 5.5.2 and 5.5.3,
for more background we refer to [192].

5.5.20 Although all aspects of non-commutative real algebraic geometry are oth-
erwise ignored in this course, we make an exception here and prove the following
matrix version of the Archimedean positivstellensatz. It will play a role again in
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Chapter 8. Let A be a (commutative) ring. Given a symmetric matrix S with coeffi-
cients in A and a ring homomorphism α : A → R into a real closed field R, we say
that α(S ) � 0 if the symmetric matrix α(S ) over R is positive definite. Similarly for
� instead of �.

5.5.21 Theorem. Let A be a ring, let M be an Archimedean quadratic module in
A, and let S ∈ Symn(A) be such that α(S ) � 0 for every α ∈ XM . Then there exist
symmetric matrices S1, . . . , Sm ∈ Symn(A) and ring elements a1, . . . , am in M with

S =

m∑
i=1

aiS2
i =

m∑
i=1

aiS>i Si.

When A is a polynomial ring over R and the quadratic module M is finitely gener-
ated, we’ll prove in Theorem 8.6.6 that the degrees of the coefficients of S1, . . . , Sm

can be bounded in terms of S .

Proof. Let B := A[S ] denote the subring of the matrix ring Mn(A) that is gener-
ated by A and the matrix S . Note that B is a commutative ring that is contained in
Symn(A). The proof will show that the matrices Si can in fact be chosen to lie in B.
The ring extension A ⊆ B is finite by the Hamilton–Cayley theorem. Therefore the
quadratic module MB, generated by M in B, is again Archimedean, see Corollary
5.2.10. Let s := S , considered as an element of B. We claim that s > 0 on the subset
XMB of Sper(B). For this let β : B → R be a homomorphism that lies in XMB . Write
α = β|A, then β ∈ XMB means that α ∈ XM . We claim that β(s) is an eigenvalue
of the symmetric matrix α(S ) ∈ Symn(R). For this let pT denote the characteristic
polynomial of a matrix T . Taking T = S , we have pS ∈ A[t] and pS (s) = 0. This
implies that β(pS (s)) = pα(S )(β(s)) = 0, which shows that β(s) is an eigenvalue of
the symmetric matrix α(S ).

Now α ∈ XM implies α(S ) � 0 by the hypothesis. Therefore β(s), being an
eigenvalue of the matrix α(S ), is strictly positive. We have thus shown that s ∈ B is
strictly positive on XMB . The positivstellensatz 5.3.3 therefore implies s ∈ MB since
MB is Archimedean. And s ∈ MB means an identity as claimed in the theorem (cf.
Remark 5.1.8). �

Exercises

5.5.1 Find a non-Archimedean preordering T ⊆ R[t] in the univariate polynomial ring for which
XT is compact. (By Theorem 5.5.3, T cannot be finitely generated.)

5.5.2 Let T1 ⊆ R[x] and T2 ⊆ R[y] be finitely generated preorderings where x = (x1, . . . , xm) and
y = (y1, . . . , yn), and assume that the corresponding basic closed sets K1 = S(T1) ⊆ Rm and
K2 = S(T2) ⊆ Rn are compact. Show that every polynomial f = f (x, y) ∈ R[x, y] with f > 0
on K1 × K2 can be written in the form

f (x, y) = f1(x)g1(y) + · · · + fr(x)gr(y)

with r ≥ 1 and with fi(x) ∈ T1, gi(y) ∈ T2 (i = 1, . . . , r).
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5.5.3 Consider the cylinder K = {ξ ∈ R3 : ξ2
1 + ξ2

2 ≤ 1, |ξ3| ≤ 1} in R3, and let f ∈ R[x1, x2, x3] be
strictly positive on K. Show that f can be written as a finite sum of products(

p2
1 + (1 − x2

1 − x2
2)p2

2
)
· (1 + x3)m(1 − x3)n

with p1, p2 ∈ R[x1, x2] and m, n ≥ 0.

5.5.4 Let f1, . . . , fr ∈ R[x] = R[x1, . . . , xn] be linear polynomials such that K = S( f1, . . . , fr) is
non-empty and compact, i.e. is a polytope. Show that the quadratic module QM( f1, . . . , fr)
is Archimedean.

5.5.5 Consider the univariate polynomial f = t3(1 − t) in R[t].

(a) Show for every fixed d ≥ 1 that{
p + q f : p, q ∈ R[t] sos with deg(p) ≤ d, 4 + deg(q) ≤ d

}
is a closed subset of R[t]≤d .

(b) Conclude that in any sequence of representations t + 1
n = pn +qn f with sums of squares

pn, qn ∈ R[t] for n ≥ 1, one necessarily has deg(pn), deg(qn)→ ∞ as n→ ∞.
(c) Let R be a non-Archimedean real closed field, and let T ⊆ R[t] be the preordering

generated by f . If ε ∈ R is a positive infinitesimal element, the linear polynomial t + ε
is strictly positive on S( f ) = [0, 1] but is not contained in T .

5.5.6 If C is an affine curve over R, every semiordering in R[C] is (the positive cone of) an order-
ing. (Hint: Proposition 5.5.13)

5.5.7 Prove Lemma 5.5.17.

5.5.8 Let A be a finitely generated R-algebra, let V = Spec(A) be the associated affine R-variety.
Use Schmüdgen’s theorem to prove equivalence of the following two conditions:

(i) The topological space V(R) is compact;
(ii) for a suitable integer n ≥ 1, there exists a surjective homomorphism of R-algebras from
R[x1, . . . , xn]/〈1 − x2

1 − · · · − x2
n〉 onto A.

In other words, every affine R-variety V for which V(R) is compact is isomorphic to a closed
subvariety of the “sphere variety”

∑n
i=1 x2

i = 1, for some n.

5.5.9 At the cost of becoming more technical, it is possible to formulate versions of Schmüdgen’s
theorem with arithmetic flavor. We illustrate this by just one example (statement (b) below).

(a) Let A be a finitely generated algebra over a ring k, and let T ⊆ A be a finitely generated
preordering for which T ∩ k is Archimedean in k and XT is compact. Imitate the proof
of 5.5.3 to show that T is Archimedean.

(b) Let V ⊆ An be an affine R-variety that is defined by polynomial equations with rational
coefficients. Let a polynomial f ∈ Z[x] = Z[x1, . . . , xn] be given with f > 0 on V(R).
Using (a), show that there exist m ≥ 0 and finitely many polynomials g1, . . . , gr ∈ Z[x]
such that 2m f =

∑
i g2

i (as elements in R[V]).

5.6 Pure states and the Goodearl–Handelman theorem

In this section and the next, we’ll present an alternative approach to the Archime-
dean positivstellensatz which is based on (pure) states on partially ordered rings.
To prepare for this, we introduce the formal setup here and prove a key result. This
requires the notion of locally convex vector space, together with the Hahn–Banach
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and Krein–Milman theorems. For a brief summary of this background we refer to
Appendix B. We also use the Eidelheit–Kakutani separation theorem B.14, that ap-
plies to real vector spaces of arbitrary dimension without topology. What is outlined
here is just a small part of a far more comprehensive theory, for which we refer to
work of Goodearl and Handelman [74], [80].

Let (G,+) be an abelian group, written additively, and let M ⊆ G be a subsemi-
group, always containing the neutral element 0. The theory to be discussed is empty
unless G = M − M.

5.6.1 Definition.

(a) A group homomorphism ϕ : G → R with ϕ|M ≥ 0 is called a state of (G,M).
(b) An element u ∈ M with G = M + Zu is called an order unit of (G,M).
(c) Let u be an order unit of (G,M). A monic state of (G,M, u) is a state ϕ of (G,M)

with ϕ(u) = 1.

5.6.2 Remark. An element u ∈ M is an order unit of (G,M) if, and only if, for
every x ∈ G there exists n ∈ Z with nu ± x ∈ M. We see a direct line to the concept
of Archimedean modules (Section 5.2): If A is a ring and M ⊆ A is an additive
semigroup, then M is Archimedean if and only if 1 ∈ M and u = 1 is an order unit
of (A,M).

5.6.3 Let Hom(G,R) denote the set of all group homomorphisms ϕ : G → R. By
identifying ϕ with the tuple (ϕ(g))g∈G, we embed Hom(G,R) into RG =

∏
g∈G R.

Equip RG with the product topology, then RG is a locally convex vector space
(Example B.5) and Hom(G,R) is a closed vector subspace of RG. In particular,
Hom(G,R) is a locally convex vector space by itself.

Assume that u is an order unit of (G,M). By S = S (G,M, u) we denote the set of
all monic states of (G,M, u), considered as a subset of Hom(G,R).

5.6.4 Proposition. The set S of monic states of (G,M, u) is a compact convex subset
of Hom(G,R).

Proof. It is clear that S is convex, and also that S is a closed subset of Hom(G,R),
and hence of RG. For any x ∈ G there exists an integer nx ≥ 1 with nxu ± x ∈ M,
since u is an order unit. Therefore every ϕ ∈ S satisfies |ϕ(x)| ≤ nx, and we see that
S ⊆

∏
x∈G[−nx, nx]. So Tikhonov’s theorem implies that S is compact. �

If K is a convex set (in some R-vector space), recall (B.1) that a point x ∈ K is an
extreme point of K if x = (1− t)y + tz with 0 < t < 1 and y, z ∈ K implies y = z = x.
In the situation of Proposition 5.6.4, the Krein–Milman theorem (see B.9) implies
that the set S of monic states is the closed convex hull of its extreme points. These
latter are of particular importance, so we define:

5.6.5 Definition. The extreme points of S (G,M, u) are called the pure states of
(G,M, u).
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5.6.6 We need a little more preparation. For the notions of Q-convex sets2 or cones
in a Q-vector space, or of Q-algebraic interior points, we refer to B.16. As before,
let G be an abelian group and M ⊆ G a semigroup. Put GQ := G⊗Q (tensor product
over Z), then the set MQ := {x ⊗ 1

n : x ∈ M, n ∈ N} is a Q-convex cone in GQ. If
x ∈ G then x ⊗ 1 ∈ MQ if and only if nx ∈ M for some n ≥ 1. See Exercise 5.6.1 for
the easy proofs.

If ϕ ∈ Hom(G,R), let ϕQ be the extension of ϕ to a group homomorphism GQ →
R. Then ϕ ≥ 0 on M holds if and only ϕQ ≥ 0 on MQ. So there is a natural bijective
correspondence between states of (G,M) and states of (GQ,MQ).

If u ∈ M is an order unit of (G,M) then u ⊗ 1 is an order unit of (GQ,MQ)
(Exercise 5.6.1). Clearly, the bijection between states of (G,M) and of (GQ,MQ)
restricts to bijections between monic states of (G,M, u) and of (GQ,MQ, u ⊗ 1), and
similarly for pure states. For these reasons, tensoring with Q is harmless when we
want to study states of (G,M).

5.6.7 Lemma. Let V be a Q-vector space, let C ⊆ V be a Q-convex cone. A point
u ∈ C is an order unit of (V,C) if, and only if, u is a Q-algebraic interior point of C.

Proof. Let u be an order unit, let v ∈ V . There is n ∈ N with nu + v ∈ C, hence
also u + 1

n v ∈ C. This already proves one direction. Conversely assume that u is a
Q-algebraic interior point of C, and let v ∈ V . By assumption there is 0 < t ∈ Q with
u + tv ∈ C. We may assume t = 1

n with n ∈ N, and get v ∈ Zu + C. �

Let G be an abelian group and M ⊆ G a semigroup. Using the theorems of
Krein–Milman and Eidelheit (Appendix B) we prove the main result of this section:

5.6.8 Theorem. (Goodearl, Handelman) Let u ∈ M be an order unit of (G,M) and
let x ∈ G. Assume that ϕ(x) > 0 holds for every pure state ϕ of (G,M, u). Then
nx ∈ M for some integer n ≥ 1.

Proof. We may replace G, M, u and x by G⊗Q, MQ, u⊗1 and x⊗1, respectively, see
5.6.6 and Lemma 5.6.7. Assume therefore that G is a Q-vector space, M ⊆ G is a Q-
convex cone and u ∈ M is a Q-algebraic interior point of M. Under the assumption
of Theorem 5.6.8, we have to prove x ∈ M.

Let S = S (G,M, u) be the set of monic states, which is a compact convex subset
of the locally convex vector space V := Hom(G,R) (see 5.6.4). We first show ϕ(x) >
0 for every ϕ ∈ S . The evaluation map ex : V → R, ex(ϕ) = ϕ(x) is a continuous
linear form on V . By Krein–Milman (Theorem B.9), the convex hull of the set of
pure states is dense in S . Since ϕ(x) > 0 for every pure state ϕ, it follows that
ex(ϕ) = ϕ(x) ≥ 0 for every ϕ ∈ S . Assume that there is a state ϕ ∈ S with ϕ(x) = 0.
Then ker(ex) is a supporting hyperplane of S , so it contains an extreme point of
S (Corollary B.11). This contradicts the hypothesis, and hence ϕ(x) > 0 for every
ϕ ∈ S .

Now assume that x < M. Apply Corollary B.19 (to Eidelheit’s theorem) to the
Q-vector space G, the Q-cone M ⊆ G (with Q-algebraic interior point u) and the

2 The notion of Q-convex sets has no connection with M-convex semigroups or ideals, as consid-
ered in Sections 3.6 and 5.1
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element x ∈ G. This gives a group homomorphism ϕ : G → R with ϕ|M ≥ 0,
ϕ(u) = 1 and ϕ(x) ≤ 0. But this contradicts the first part of the proof since ϕ is a
monic state. Therefore we must have x ∈ M. �

5.6.9 Remark. The concept of states on partially ordered abelian groups or rings
generalizes states on C∗-algebras. If A is a unital C∗-algebra, the set {x∗x : x ∈ A}
is a closed convex cone in A for which the unit 1 is an order unit. A state of A is
a continuous linear functional f : A → C that satisfies f (x∗x) ≥ 0 for all x ∈ A.
States on C∗-algebras have a natural interpretation in classical quantum mechanics.
Over the years, the notion of states was generalized from this classical context to
the generality sketched here. Theorem 5.6.8 is essentially due to Effros, Handelman
and Shen [60]. The version stated here corresponds to Theorem 4.12 in [74]. We
refer to [74] for much more details and background.

Exercises

5.6.1 Let G be an abelian group and M ⊆ G a subsemigroup, and let MQ ⊆ GQ be defined as in
5.6.6.

(a) For every x ∈ G, show that x ⊗ 1 ∈ MQ if and only if there is n ∈ N with nx ∈ M.
(b) If u ∈ M is an order unit of (G,M), show that u ⊗ 1 is an order unit of (GQ,MQ). Give

an example to show that the converse usually fails.

5.6.2 Let (G,M, u) be as in Theorem 5.6.8, and assume that x ∈ G satisfies ϕ(x) > 0 for every pure
state ϕ of (G,M, u). Show that nx is an order unit of M, for some n ≥ 1.

5.7 Application to Archimedean stellensätze

The purpose of this section is to present an alternative and more recent approach
to Archimedean stellensätze, based on pure states and the Goodearl–Handelman
theorem. In this way we will not only get quick and elegant proofs for our previous
results from Section 5.3, but we’ll arrive at new applications that go substantially
further. This section is largely taken from [36].

Let A be a ring (always with 1
2 ∈ A). We’ll work with “modules” M over semi-

rings S ⊆ A for which we don’t always require that 1 ∈ M. Therefore we define:

5.7.1 Definition. Let A be a ring, let S ⊆ A be a semiring. An S -pseudomodule in
A is a non-empty set M ⊆ A with M + M ⊆ M and S M ⊆ M. If S = ΣA2 we also
speak of a quadratic pseudomodule.

We consider S -pseudomodules M in ideals I of A for which (I,M) has an order
unit u. We’ll see that it is often possible to characterize the pure states of (I,M, u)
quite explicitly. The first result is a step in this direction:
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5.7.2 Proposition. Let A be a ring and I ⊆ A an ideal. Let S ⊆ A be an Archimedean
semiring, let M ⊆ I be an S -pseudomodule, and let u ∈ M be an order unit of (I,M).
Then every pure state ϕ of (I,M, u) satisfies the following multiplicative law:

∀ a ∈ A ∀ b ∈ I ϕ(ab) = ϕ(au) · ϕ(b). (5.9)

5.7.3 Let u ∈ M be an order unit of (I,M), let ϕ : I → R be an additive map. Given
any a ∈ A with ϕ(au) , 0, define ϕa : I → R by

ϕa(b) :=
ϕ(ab)
ϕ(au)

(b ∈ I).

Then ϕa is an additive map and ϕa(u) = 1. We call ϕa the localization of ϕ with
respect to a. If ϕ was a state of (I,M) and if aM ⊆ M, then ϕ(au) > 0 and ϕa|M ≥ 0,
so then ϕa is a monic state of (I,M, u). If a1, a2 ∈ A satisfy ϕ(aiu) > 0 for i = 1, 2,
then a direct calculation shows

ϕ(a1u) · ϕa1 + ϕ(a2u) · ϕa2 = ϕ((a1 + a2)u) · ϕa1+a2 . (5.10)

Proof of Proposition 5.7.2. Both sides of (5.9) are bi-additive in (a, b). Therefore,
and since A = S − S , it suffices to prove (5.9) for a ∈ S . So let a ∈ S , and note that
I = M + Zu since u is an order unit of (I,M).

Case 1: Assume ϕ(au) = 0, we have to show ϕ(aI) = 0. Since aI = aM + Zau it
suffices to show ϕ(aM) = 0. Let x ∈ M, then there is n ∈ N such that y := nu−x ∈ M.
So

0 ≤ ϕ(ay) = nϕ(au) − ϕ(ax) = −ϕ(ax) ≤ 0,

which shows that ϕ(ax) = 0.
Case 2: Assume ϕ(au) > 0. Since S is Archimedean, there is n ∈ Zwith n−a ∈ S .

Take n so large that ϕ(au) < n, hence ϕ((n − a)u) > 0. We can form the localized
(monic) states ϕa and ϕn−a. By 5.10,

ϕ(au) · ϕa + ϕ((n − a)u) · ϕn−a = ϕ(nu) · ϕn,

Now ϕ(nu) = n and ϕn = ϕ, so

ϕ(au)
n
· ϕa +

(
1 −

ϕ(au)
n

)
· ϕn−a = ϕ.

On the left we have a proper convex combination of the monic states ϕa and ϕn−a.
Since ϕ is a pure state, we conclude ϕa = ϕ. This is identity (5.9). ut

If I = A in Proposition 5.7.2 and M is an S -module, we may choose u = 1 since
M is Archimedean. Thus we get:

5.7.4 Corollary. Let S ⊆ A be an Archimedean semiring and M ⊆ A an S -module.
Every pure state of (A,M, 1) is a ring homomorphism A→ R, and hence an element
of XM . ut
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This already implies the positivstellensatz 5.3.1 for modules over Archimedean
semirings:

5.7.5 Corollary. (Modules over Archimedean semirings) Let S ⊆ A be an Archime-
dean semiring and M ⊆ A an S -module. If f ∈ A satisfies f > 0 on XM , there exists
an integer n ≥ 1 with n f ∈ 1 + M.

Proof. Since XM is compact, there exists m ∈ N such that f > 1
m on XM , and so

m f − 1 > 0 on XM . Every pure state ϕ of (A,M, 1) is an element of XM by 5.7.4,
so ϕ satisfies ϕ(m f − 1) > 0. Therefore, by Theorem 5.6.8, there is n ≥ 1 with
n(m f − 1) ∈ M. In particular, nm f ∈ 1 + M. �

Next we are going to work towards a proof of the positivstellensatz for Archi-
medean quadratic modules. First we establish the analogue of Proposition 5.7.2 for
quadratic pseudomodules.

5.7.6 Lemma. Let n ∈ N, and let

tn(x) =

n∑
k=0

(
1/2
k

)
(−x)k = 1 −

x
2
−

x2

8
− · · · −

1 · 3 · · · (2n − 3)
2n n!

xn,

the n-th Taylor polynomial of
√

1 − x. Then the polynomial tn(x)2 − (1 − x) has
non-negative coefficients in Z

[ 1
2
]
.

Proof. Write tn(x)2 − (1 − x) =
∑

k≥0 ck xk. Then ck = 0 for k ≤ n and for k > 2n. If
n < k ≤ 2n we have

ck = (−1)k
n∑

i=k−n

(
1/2

i

) (
1/2
k − i

)
.

All integers i, k− i in this sum are ≥ 1, and so the i-th summand in the sum has sign
(−1)i−1 · (−1)k−i−1. Hence ck > 0. Since

(
1/2
n

)
lies in Z[ 1

2 ] for all n ≥ 0, this proves
the lemma. �

5.7.7 Lemma. Let A be a ring, let I ⊆ A be an ideal and M ⊆ I a quadratic pseu-
domodule with order unit u ∈ M. Let a ∈ A with aM ⊆ M and (1 − 2a)u ∈ M. Then
we have ϕ((1 − a)M) ≥ 0 for any monic state ϕ of (I,M, u).

Proof. If a, b ∈ M, let a ≤M b stand for b − a ∈ M, as before. We have au ≤M
u
2

by hypothesis, and we may multiply the inequality with a since aM ⊆ M. Thus we
inductively conclude aku ≤M 2−ku for k ≥ 0.

Let b ∈ M. There is r ≥ 0 with 2ru − b ∈ M. To show ϕ((1 − a)b) ≥ 0 we may
replace b by 2−rb. So we can assume u − b ∈ M. We’ll show ϕ((1 − a)b) > −ε for
every real number ε > 0.

Let tn(x) be as in 5.7.6, write pn(x) := tn(x)2 − (1 − x). We have pn( 1
2 ) < ε

for some n ∈ N since the Taylor series converges for x = 1
2 . Fix such n and write

p(x) := pn(x). By 5.7.6 we have
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p(x) =

2n∑
k=0

ck xk

with non-negative coefficients ck ∈ Z
[ 1

2
]
. Since aM ⊆ M, this implies p(a)M ⊆ M.

Moreover b ≤M u implies p(a)b ≤M p(a)u, and so ϕ(p(a)b) ≤ ϕ(p(a)u). On the
other hand we have

ϕ
(
p(a)u

)
=

∑
k

ckϕ(aku) ≤
∑

k

ck2−k = p
(1
2

)
< ε.

So
ϕ
(
tn(a)2b

)
− ϕ

(
(1 − a)b

)
= ϕ(p(a)b) ≤ ϕ(p(a)u) < ε,

which implies
ϕ
(
(1 − a)b

)
> ϕ(tn(a)2b) − ε ≥ −ε

since M is a quadratic pseudomodule. �

Now we proceed as in the proof of 5.7.2, to show:

5.7.8 Proposition. Let I ⊆ A be an ideal, and let M ⊆ I be a quadratic pseudomod-
ule with order unit u. Every pure state ϕ of (I,M, u) satisfies ϕ(ab) = ϕ(au) · ϕ(b)
(5.9) for a ∈ A, b ∈ I.

Proof. Since the semiring ΣA2 is generating, it suffices to prove (5.9) for a ∈ ΣA2.
So let a ∈ ΣA2. If ϕ(au) = 0 then ϕ(aI) = 0 is shown exactly as in the first case
in the proof of 5.7.2. If ϕ(au) > 0, choose k ∈ N with 2ku − au ∈ M. In order to
prove 5.9 we may replace a by 2−(k+1)a. After doing so, we have (1− 2a)u ∈ M, and
therefore ϕ((1 − a)M) ≥ 0 by Lemma 5.7.7. Now one argues as in the second case
of 5.7.2, to see that ϕ is a proper convex combination of ϕa and ϕ1−a. Since both are
monic states of (I,M, u), and since ϕ is a pure state, we get ϕ = ϕa, which is the
claim. �

As before, the case I = A and u = 1 gives the positivstellensatz, now for quadratic
modules:

5.7.9 Corollary. (Archimedean quadratic modules) Let M ⊆ A be an Archimedean
quadratic module. If f ∈ A satisfies f > 0 on XM , then n f ∈ M for some n ∈ N.

Proof. By 5.7.8 (applied with I = A and u = 1), every pure state ϕ of (A,M, 1) is a
ring homomorphism, so it lies in XM . Hence ϕ( f ) > 0 holds by hypothesis, and the
claim follows from Theorem 5.6.8. �

As in Corollary 5.7.5, we can in fact conclude n f ∈ 1 + M for some n ∈ N.
So far we have used the multiplicative condition (5.9) only for I = A. But (5.9)

is relevant for proper ideals as well, and we’ll now have a closer look at this case.

5.7.10 Lemma. Let A be a ring and I ⊆ A an ideal, let u ∈ I, and let ϕ : I → R be
an additive map with ϕ(u) = 1. The following are equivalent:



5.7 Application to Archimedean stellensätze 207

(i) The multiplicative law (5.9) holds, i.e. ∀ a ∈ A ∀ b ∈ I ϕ(ab) = ϕ(au) · ϕ(b);
(ii) there exists a ring homomorphism φ : A→ R such that ϕ is φ-linear, i.e. ϕ(ab) =

φ(a) · ϕ(b) for all a ∈ A and b ∈ I.

Moreover, φ in (ii) is uniquely determined by ϕ and satisfies φ(a) = ϕ(au) (a ∈ A).

Proof. (i)⇒ (ii) Letting b = u in (ii) gives φ(a) = ϕ(au) for all a ∈ A. So we have
to define φ in this way. This map φ is additive. Moreover it satisfies φ(1) = 1 and

φ(a1a2) = ϕ(a1 · a2u) = ϕ(a1u) · ϕ(a2u) = φ(a1) · φ(a2)

for a1, a2 ∈ A. Hence φ is a ring homomorphism A→ R. The φ-linearity of ϕ is just
condition (5.9) rewritten.

(ii)⇒ (i): We have φ(a) = ϕ(au) (a ∈ A) as above, so (ii) gives ϕ(ab) = ϕ(au)ϕ(b)
(a ∈ A, b ∈ I). �

Summarizing, we find the following dichotomy:

5.7.11 Theorem. Let S ⊆ A be a preordering or an Archimedean semiring. Let
I ⊆ A be an ideal, M ⊆ I an S -pseudomodule and u ∈ M an order unit of (I,M).
If ϕ : I → R is a pure state of (I,M, u), there exists a unique ring homomorphism
φ : A → R that makes ϕ a φ-linear map. It is given by φ(a) = ϕ(au) (a ∈ A) and
satisfies φ ∈ XT where T = {t ∈ A : tu ∈ M} (an S -module). Moreover, exactly one
of the following two alternatives holds:

(1) φ(u) , 0 and ϕ(b) =
φ(b)
φ(u) for all b ∈ I;

(2) φ(I) = 0 and ϕ(I2) = 0.

Proof. The multiplicative law ϕ(ab) = ϕ(au)ϕ(b) (5.9) holds for a ∈ A, b ∈ I, by
Proposition 5.7.2 (if S is an Archimedean semiring) and Proposition 5.7.8 (if S is a
preordering). In both cases, by Lemma 5.7.10, φ(a) = ϕ(au) (a ∈ A) defines a ring
homomorphism φ : A→ R that makes ϕ a φ-linear map. It follows that

φ(b) = ϕ(ub) = φ(u)ϕ(b) (5.11)

holds for any b ∈ I. For any t ∈ T we have φ(t) = ϕ(tu) ≥ 0 since tu ∈ M. This
shows φ ∈ XT ⊆ XS . There are two possible cases: (1) If φ(u) = ϕ(u2) , 0 then
ϕ(b) =

φ(b)
φ(u) for b ∈ I, by (5.11). (2) If φ(u) = ϕ(u2) = 0, then φ(I) = 0 by (5.11), and

so ϕ(I2) = 0 by the φ-linearity of ϕ. ut

5.7.12 Remarks.

1. In general, both φ(u) > 0 and φ(u) < 0 are possible in case (1), and accord-
ingly, both φ ∈ XM and φ ∈ X−M . In many standard situations however, the second
cannot occur. For example, when M = I ∩ N for some quadratic module N of A,
then necessarily φ ∈ XM since u2 ∈ M. The same reasoning applies when M is a
semiring.
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2. In Theorem 5.7.11, monic states of type (2) need not be pure, as can be seen
from the discussion in Remark 5.7.13 below. On the other hand, if M is a quadratic
pseudomodule, then monic states of type (1) are indeed pure under suitable condi-
tions on M. See Exercise 5.7.5 for one result in this direction.

5.7.13 Remark. For a geometric interpretation of Theorem 5.7.11, consider the fol-
lowing setting. Let A = R[V] be the coordinate ring of an affine R-variety, and let
W ⊆ V be a closed subvariety with vanishing ideal I ⊆ A. Let S ⊆ A be an Archi-
medean semiring, let M ⊆ I be an S -pseudomodule with order unit u ∈ M, and
let ϕ : I → R be a pure state of (I,M, u). According to Theorem 5.7.11, one of the
following two cases holds. Either (1) there is a point ξ ∈ V(R) with u(ξ) , 0 such
that ϕ( f ) =

f (ξ)
u(ξ) for all f ∈ I. In particular ξ < W(R), and ϕ can be thought of as

“normalized” evaluation at ξ. Or else (2), there is ξ ∈ W(R) such that ϕ is a linear
map I → A/mξ = R of A-modules, where mξ is the maximal ideal of A at ξ.

Let us consider case (2), and assume in addition that ξ is a non-singular point of
both V and W. Then the conormal exact sequence (see A.6.18) implies that ϕ is an
element of the normal space Nξ(W,V) = Tξ(V)/Tξ(W) of W at ξ. More concretely,
ϕ( f ) = ∂ξ,v( f ) for f ∈ I, the directional derivative of f at ξ in some direction
v ∈ Tξ(V), which is well-defined modulo Tξ(W).

If we make stronger assumptions on M then more can be said. Assume that M =

S ∩ I, where either S = POR[V](g1, . . . , gr) is a finitely generated preordering, or S
is generated as a semiring in A by R+ and finitely many elements g1, . . . , gr ∈ A.
Let K = SV (g1, . . . , gr) be the associated basic closed set in V(R). Then ξ ∈ K in
both cases (1) and (2), since φ ∈ XT ⊆ XS = K in Theorem 5.7.11. To say more
on pure states of type (2), note that I = M − M since (I,M) has an order unit. In
particular, I is generated by M as an ideal, so we may assume that I = 〈g1, . . . , gs〉

with s ≤ r, and that gs+1, . . . , gr < I. If we further assume that W is irreducible and
K ∩W(R) is Zariski dense in W, then for any point ξ ∈ K ∩W(R) the following is
true: The image M of M = S ∩I in I/Imξ = Nξ(W,V)∨ is the polyhedral convex cone
generated by g1, . . . , gs. See Exercise 5.7.7 for the proof, and see Exercise 5.7.6 for
a simple application of Theorem 5.7.11.

5.7.14 Lemma. Let S ⊆ A be an Archimedean semiring and let M ⊆ A be an S -
pseudomodule. Let g1, . . . , gr ∈ M, and let I = 〈g1, . . . , gr〉. Then u = g1 + · · ·+ gr is
an order unit of (I,M ∩ I).

Therefore, if A is Noetherian and I ⊆ A is any ideal, then (I,M ∩ I) has an order
unit if and only if I is generated by M ∩ I.

Proof. Let f ∈ I, say f =
∑r

i=1 aigi with ai ∈ A. Since S is Archimedean there is
n ∈ N with n ± ai ∈ S for i = 1, . . . , r. It follows that nu ± f =

∑r
i=1(n ± ai)gi ∈ M.�

In general, Lemma 5.7.14 does not extend to Archimedean quadratic modules,
see Exercise 5.7.3 for an example.

Theorem 5.7.11 has important applications in the case where I ⊆ A is a proper
ideal, namely to non-negative polynomials with zeros. For a detailed study we re-
fer to Chapter 6. For now we give just one direct application to polytopes, as an
illustration of Remark 5.7.13. The following extends Handelman’s theorem 5.4.3:
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5.7.15 Proposition. Let K ⊆ Rn be a non-empty polytope described by linear in-
equalities g1 ≥ 0, . . . , gr ≥ 0, and let S ⊆ R[x] = R[x1, . . . , xn] be the semiring
generated by R+ and g1, . . . , gr. Let F be a face of K. If f ∈ R[x] satisfies f |F = 0,
f |KrF > 0 and ∂z−y f (y) > 0 for every y ∈ F and every z ∈ K r F, then f ∈ S .

Here ∂z denotes the directional derivative in direction z, i.e. ∂z =
∑n

i=1 zi
∂
∂xi

.

Proof. Write A := R[x]. The semiring S is Archimedean by 5.2.7(a), since for
every linear polynomial g ∈ A there exists c ∈ R with g + c ∈ cone(1, g1, . . . , gr)
(Proposition 5.4.4). Relabelling, we may assume gi|F ≡ 0 for 1 ≤ i ≤ s and g j|F . 0
for s + 1 ≤ j ≤ r. Let W denote the affine hull of F in Rn, then I := 〈g1, . . . , gs〉 is
the full vanishing ideal of W. If f is as in the theorem then f ∈ I, and we want to
show f ∈ S ∩ I. By 5.7.14, u := g1 + · · · + gs is an order unit of (I, S ∩ I). So it
suffices to show ϕ( f ) > 0 for every pure state ϕ of (I, S ∩ I, u).

Let ϕ be such a pure state. In case (1) (cf. Remark 5.7.13), φ is essentially evalu-
ation at some point ξ ∈ K r F, and so ϕ( f ) > 0 by assumption. Let ϕ be of type (2).
Then there is ξ ∈ F such that ϕ = ∂ξ,v, the partial derivative at ξ in some direction
v ∈ Rn. Translating the coordinate system, we may assume ξ = 0. Then W is the
linear span of F, and v is determined modulo W. We show that there exists w ∈ W
and c > 0 with cv + w ∈ K, which will complete the proof.

Choose a point z ∈ relint(F). For every index s + 1 ≤ j ≤ r with g j(0) = 0,
we have g j(z) > 0. So we may fix a large value of t > 0 such that g j(v + tz) =

g j(v) + tg j(z) > 0 for these indices j. With t being fixed, it follows for sufficiently
small c > 0 that g j(c(v + tz)) ≥ 0 holds for all indices j = 1, . . . , r. We are done. �

5.7.16 Remark. Techniques and arguments as in Remark 5.7.13 or Proposition
5.7.15 can also be applied to rings of “arithmetic” nature. For example, if A is a
finitely generated Q-algebra and M is a quadratic pseudomodule in some ideal I of
A, with order unit u of (I,M), then the pure states of (I,M, u) are the same as “after
tensoring with R”. See Exercise 5.7.10 for a precise formulation.

In the next chapter we’ll see applications to non-negative polynomials with zeros,
that go far beyond Proposition 5.7.15. The key to many of these applications will be
the following theorem:

5.7.17 Theorem. (Archimedean local-global principle) Let A be a ring, let S ⊆ A
be an Archimedean semiring and M ⊆ A an S -module. Assume that f ∈ A is such
that, for every maximal ideal m of A, there exists s ∈ S r m with s f ∈ M. Then
n f ∈ M for some n ∈ N.

Proof. Let I = supp(M + A f ), and let J̃ be the ideal generated by M ∩ I. For
every m ∈ Max(A) there is s ∈ S r m with s f ∈ M, and s f ∈ J̃ since f ∈ I.
Letting m range over all maximal ideals of A, we find elements s1, . . . , sr ∈ S with
〈s1, . . . , sr〉 = 〈1〉 such that si f ∈ J̃ for i = 1, . . . , r. Take an identity

∑r
i=1 aisi = 1

and multiply it with f , to see that f ∈ J̃. So there exist finitely many elements
x1, . . . , xm ∈ M ∩ I with f ∈ 〈x1, . . . , xm〉. Since I = supp(M + A f ), there exist
further elements y1, . . . , ym ∈ M ∩ I such that xi + yi ∈ A f (i = 1, . . . ,m). Consider
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the ideal J := 〈x1, . . . , xm, y1, . . . , ym〉. Then f ∈ J, and Lemma 5.7.14 implies that
u :=

∑m
i=1(xi + yi) is an order unit of (J,M ∩ J). There exists b ∈ A with u = b f ,

since xi + yi ∈ A f for each i.
Let ϕ be a pure state of (J,M ∩ J, u), we show ϕ( f ) > 0. Let φ ∈ XS be the ring

homomorphism associated with ϕ (Theorem 5.7.11). From 1 = ϕ(u) = ϕ(b f ) =

φ(b)ϕ( f ) we see ϕ( f ) , 0. By the hypothesis in the theorem, there exists s ∈ S with
φ(s) , 0 (hence φ(s) > 0) and s f ∈ M. From ϕ(s f ) = φ(s)ϕ( f ) ≥ 0 we therefore get
ϕ( f ) > 0. So Theorem 5.6.8 gives the conclusion of the theorem. �

With Theorem 5.7.17, the membership question for modules over Archimedean
semirings gets reduced to local rings. In many situations this makes the question
more accessible, as will be seen in Chapter 6. An second and independent proof of
Theorem 5.7.17, that does not rely on pure states, will be given in Section 6.2.

Exercises

5.7.1 Let A be a ring containing Q, and let M be a quadratic module in A. If (A,M) has an order
unit u then M is Archimedean. (Hint: Show ϕ(1) > 0 for every pure state ϕ of (A,M, u).)

5.7.2 Let A be a ring and S ⊆ A an Archimedean semiring, let M ⊆ A be an S -pseudomodule,
and let f ∈ M. Show that I := supp(M + A f ) is an ideal of A and that f is an order unit of
(I,M ∩ I).

5.7.3 Let M be the quadratic module generated by x, y and 1 − x − y in A = R[x, y]. Then M is
Archimedean and the ideal I = Ax is generated by an element of M. But (I,M ∩ I) does not
have an order unit. (Hint: Start by showing M ∩ I ⊆ x · ΣA2 + I2)

5.7.4 Let A be a ring containing Q, let S ⊆ A be an Archimedean semiring containing Q+, and let
M ⊆ A be an S -pseudomodule. A given element f ∈ A lies in M if and only if there exists
an ideal I in A with f ∈ A that has the following two properties:

(1) (I,M ∩ I) has an order unit u;
(2) ϕ( f ) > 0 for every pure state ϕ of (I,M ∩ I, u).

Moreover, when f ∈ M, the ideals I with the above properties are precisely the ideals
satisfying A f ⊆ I ⊆ supp(M + A f ).

5.7.5 Let A be a ring with R ⊆ A, let I ⊆ A be an ideal, and let M be a quadratic pseudomodule in
I with order unit u ∈ M and with x2 ∈ M for every x ∈ I. The goal of this exercise is to give
a proof of the following result (compare Theorem 5.7.11):

Theorem: Every monic state ϕ of (I,M, u) satisfying ϕ(ab) = ϕ(au)ϕ(b) for all a ∈ A,
b ∈ I and ϕ(u2) , 0 is pure.

To this end, prove the following steps:

(a) For real numbers a, b ∈ [0, 1] one has
√

ab +
√

(1 − a)(1 − b) ≤ 1, with equality only
if a = b.

(b) Let S (I,M) = {ψ ∈ Hom(I,R) : ψ|M ≥ 0}, the vector space of additive maps I → R
which are non-negative on M. Every ψ ∈ S (I,M) is R-linear.

(c) Let ψ ∈ S (I,M). For all f , g ∈ I show ψ( f g)2 ≤ ψ( f 2)ψ(g2) (1). For every f ∈ M show
ψ( f 2)2 ≤ ψ( f )ψ( f 3) (2).

Hint for (c): To show (1), consider ψ((t f −g)2) for t ∈ R. Use a similar argument to show (2).
Let ϕ ∈ S (I,M) as in the theorem, and let ϕ = ϕ1+ϕ2 where ϕ1, ϕ2 ∈ S (I,M). Put λ = ϕ(u2).
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(d) Show λ > 0.
(e) Let f ∈ M with ϕ( f ) = 1, put a := ϕ1( f ) and b := ϕ1( f 3)

λ2 . Calculate ϕ( f 2), and use
(c)(2) and (a) to conclude: ϕ1( f 2) = λϕ1( f ).

(f) Let f , g ∈ M with ϕ( f ) = ϕ(g) = 1. Use (c)(1) to show ϕ1( f ) = ϕ1(g).
(g) Conclude that ϕ1 = ϕ1(u) · ϕ, and use this to prove the theorem.

Hint for (f): Consider ϕ(( f − g)2).

5.7.6 Let W ⊆ V be a closed embedding of affine R-varieties, and let I = 〈g1, . . . , gr〉 be the
vanishing ideal of W in A = R[V]. Let T ⊆ A be a finitely generated preordering with
g1, . . . , gr ∈ T , for which K = SV (T ) is compact. Let f ∈ I be an element with f > 0 on
K r W(R), and assume for every ξ ∈ K ∩ W(R) that there exists an identity f =

∑r
i=1 gihi

with hi ∈ A and hi(ξ) > 0 for i = 1, . . . , r. Then f ∈ T .

5.7.7 As in Remark 5.7.13, let W ⊆ V be a closed embedding of irreducible affine R-varieties.
Let A = R[V], let I ⊆ A be the vanishing ideal of W, and let M = POA(g1, . . . , gr) and
K = SV (M) with elements gi ∈ A. Assume that I = 〈g1, . . . , gs〉 with 1 ≤ s ≤ r, that gi < I
for i = s+1, . . . , r, and that K∩W(R) is Zariski dense in W. Then for any point ξ ∈ K∩W(R),
show that the image of M ∩ I in I/Imξ is the convex cone generated by g1, . . . , gs.

5.7.8 Let x = (x1, . . . , xn), let A = R[[x]] be the ring of formal power series, with maximal ideal m,
and let f ∈ A be a power series with initial form f2d of degree 2d. If f2d lies in the interior of
the sum of squares cone Σn,2d (cf. Section 2.4), prove that f is a sum of squares in A. (Hint:
(m2d , ΣA2 ∩m2d) has an order unit.)

5.7.9 This exercise is aiming at a generalization of Pólya’s theorem 5.4.1 that allows for non-
linear multipliers. Let f , g ∈ R[x] = R[x1, . . . , xn] be non-constant forms such that g > 0
on C = Rn

+ r {0}, and such that all coefficients of f are strictly positive. Prove that f mg has
strictly positive coefficients for some m ≥ 0, as follows.

(a) Reduce to proving that f mg has non-negative coefficients for some m.
(b) Try to imitate the proof of Pólya’s theorem, defining a ring A of rational functions and a

suitable semiring S ⊆ A. The proof should go through as long as deg(g) divides deg( f ).
(c) In the general case, choose integers k, r ≥ 0 such that q := xk

1g/ f r has total degree
zero. Now use the Archimedean local-global principle 5.7.17 to show that q ∈ S .

5.7.10 Let A be a Q-algebra, let I be an ideal in A, let g1, . . . , gr ∈ I and put M = (ΣA2)g1 + · · · +

(ΣA2)gr, a quadratic pseudomodule in M. Assume that u ∈ M is an order unit of (I,M).
Let B = A ⊗ R and J = IB = I ⊗ R, and put N = (ΣB2)g1 + · · · + (ΣB2)gr, a quadratic
pseudomodule in N.

(a) Show that u is an order unit of (J,N).
(b) If an R-linear map ψ : J → R satisfies ψ|M ≥ 0, show that ψ|N ≥ 0.
(c) If p ∈ I is such that ψ(p) > 0 for every pure state ψ of (J,N, u), conclude that p ∈ M.

5.8 Notes

A brief summary of the historical genesis of the Archimedean positivstellensatz has
already been given in 5.3.8. Further instances of the positivstellensatz were proved
by Jacobi [100], namely for Archimedean modules over the semiring ΣA2n. This has
applications to the representation of positive polynomials as sums of higher (even)
powers, see chapter 7 of [159].

Semiorderings were originally introduced by Prestel [158] for fields, and ex-
tended to rings by Bröcker [31]. Using the local-global principle for weakly isotropic
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quadratic forms, proved by Prestel and Bröcker around 1973, one can give charac-
terizations of Archimedean quadratic modules in terms of certain residue quadratic
forms. This has a number of attractive consequences, see [159] chapter 6 and [136]
chapter 8. Our Proposition 5.5.18 is just one simple application of this sort, that can
be proved without using this theory.

Pólya’s theorem 5.4.1 is from 1928 and was published in [155]. The elementary
and explicit answer to Hilbert 17 for positive definite polynomials from Exercise
5.4.6 is due to Habicht [78] from 1940. Handelman’s theorem is in [79]. The proof
of Pólya’s and Handelman’s theorems from the Archimedean positivstellensatz is in
[19]. Schmüdgen’s positivstellensatz was proved in [190]. In his paper, Schmüdgen
first solved the K-moment problem for compact basic closed sets K in Rn, using the
Krivine-Stengle positivstellensatz together with operator-theoretic techniques. The
K-moment problem was then used to prove Theorem 5.5.1. The purely algebraic
proof given here is again in Berr–Wörmann [19]. Putinar’s positivstellensatz is in
[161]. The example in 5.5.11 is taken from Jacobi–Prestel [101]. Lemma 5.2.8 is
due to Brumfiel [34].

Reznick’s theorem 5.5.8 on uniform denominators is taken from [165]. The
stronger version 5.5.7, and its further improvement Theorem 6.5.25, are in Schei-
derer [184]. The basic ideas for proving the multiplicative properties of pure states
in Section 5.7 go back to Segal [195] in 1947, and are essentially all contained in
Bonsall, Lindenstrauss and Phelps [29] from 1966. The Archimedean local-global
principle was first proved for Archimedean preorderings in Scheiderer [183]. The
version stated in Theorem 5.7.17 is from [36].



Chapter 6
Positive Polynomials with Zeros

In the previous chapter we discussed polynomials that are strictly positive on a given
basic closed set. Under Archimedean hypotheses, it was shown that “denominator-
free” certificates for strict positivity do exist, most of them relying on sums of
squares. Now we allow the non-negative polynomials to have zeros, and are go-
ing to explore the extent to which certificates still exist. The question may be seen
as a broad generalization of the problem originally considered by Hilbert in 1888.
A central tool in our analysis will be the Archimedean local-global principle, al-
ready established in Theorem 5.7.17. This principle often enables us to reduce the
question to the case of local rings.

We start with elementary cases in Section 6.1, and then prove a general negative
result in dimension greater than or equal to 3. Section 6.2 introduces saturated pre-
orderings together their basic properties. Then a second and independent proof of
the Archimedean local-global principle is presented that is based on real spectrum
techniques. The next two sections focus on quadratic modules in local and semilo-
cal rings. Section 6.5 shifts back to a global perspective and presents a variety of
consequences. To mention just one example, it is shown that psd = sos holds on all
non-singular real surfaces with a compact set of R-points (Theorem 6.5.19). Section
6.6 addresses the existence question for degree bounds in weighted sos representa-
tions, and discusses basic results in this direction.

6.1 First examples, and a general negative result

6.1.1 Let V be an affine variety over a real closed field R. Given polynomials
g1, . . . , gr ∈ R[V] on V , we may consider the basic closed set

K = SV (g1, . . . , gr) =
{
ξ ∈ V(R) : g1(ξ) ≥ 0, . . . , gr(ξ) ≥ 0

}
on V on the one hand, and the preordering

213
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T = POV (g1, . . . , gr) =
∑

e∈{0,1}r
ΣR[V]2 · ge1

1 · · · g
er
r

in R[V], generated by the gi, on the other. If R = R and K is compact, then T
contains every f ∈ R[V] with f |K > 0 (Schmüdgen’s theorem 5.5.1). To what extent
can one expect that such a result extends to polynomials that are just non-negative
on K, possibly with zeros? This is the main question studied in this chapter.

In general, for V and K as above, the preordering PV (K) = P(K) := { f ∈
R[V] : f |K ≥ 0} is called the saturated preordering associated with K (termi-
nology will be generalized in Section 6.2). If K = SV (g1, . . . , gr), and if T =

POV (g1, . . . , gr) contains P(K) (hence T = P(K)), this fact may be considered a
denominator-free nichtnegativstellensatz on K. We have seen two situations where
such a result holds, namely the affine line V = A1 and the plane curve V =

V(1 − x2 − y2) (the circle). In either case, every non-negative polynomial on V is
a sum of two squares in R[V] (Lemma 2.3.2 and Proposition 2.3.1, respectively).

We start this section by discussing yet another case where such a result is true.

6.1.2 Let R be a real closed field, let K ⊆ R be a proper and non-empty closed
semialgebraic set. Then K has the form

K = ]−∞, b0] ∪ [a1, b1] ∪ · · · ∪ [am, bm] ∪ [am+1,∞[

where
−∞ ≤ b0 < a1 ≤ b1 < · · · < am ≤ bm < am+1 ≤ ∞

and m ≥ 0 (we adopt the convention that ]−∞,−∞] := [∞,∞[ := ∅). The polyno-
mials

pi := (t − bi)(t − ai+1) (i = 0, . . . ,m)

(with t − b0 := 1 if K is bounded below (case b0 = −∞) and t − am+1 := −1 if K
is bounded above (case am+1 = ∞)) are called the natural generators for the set K.
Clearly the description K = S(p0, . . . , pm) holds.

6.1.3 Example. For K = [−2,−1]∪{0}∪[1,∞[, the natural generators are p0 = t+2,
p1 = (t + 1)t = t2 + t and p2 = t(t − 1) = t2 − t. For K = [−2,−1] ∪ [1, 2], they are
p0, q1 = (t + 1)(t − 1) = t2 − 1 and q2 = 2 − t.

6.1.4 Proposition. Let K ⊆ R be as before (K , R, K , ∅), with natural generators
p0, . . . , pm.

(a) P(K) = PO(p0, . . . , pm).
(b) Conversely, if K is unbounded, and if G ⊆ R[t] is any set of polynomials that

generates the preordering P(K), there exist constants c0, . . . , cm > 0 in R such
that ci pi ∈ G for i = 0, . . . ,m.

Assertion (a) is a denominator-free nichtnegativstellensatz for the set K. When
K is unbounded, the combination of (a) and (b) says that the saturated preordering
P(K) has a unique (up to positive scaling) minimal system of generators, which is
given by the natural generators.
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Proof. We prove (a) under the assumption that K has no isolated points. See Remark
6.1.5 and Exercise 6.1.4 for the general case. So assume ai < bi for i = 1, . . . ,m.
Given f , 0 in R[t] with f |K ≥ 0, we have to prove f ∈ PO(p0, . . . , pm). We may
factor f as f = f1g with polynomials f1, g ∈ R[t], in such a way that g ≥ 0 on R,
and all roots of f1 are real and simple. Then g is a sum of (two) squares in R[t],
and f1|K ≥ 0 since K has no isolated point. Replacing f by f1, we may therefore
assume that f is real-rooted with only simple roots. In each of the intervals [bi, ai+1]
(1 ≤ i ≤ m − 1), the number of roots of f is even. To prove (a) it therefore suffices
to show:

(1) If b ≤ α < β ≤ a then (t − α)(t − β) ∈ PO
(
(t − a)(t − b)

)
;

(2) t − α ∈ PO(t − a) for α ≤ a, and β − t ∈ PO(b − t) for β ≥ b.

Statements (2) are obvious, and (1) is not hard either, see Exercise 6.1.2. This proves
(a) when K has no isolated point.

For the proof of (b) let K be unbounded. Let p = pi be one of the natural gen-
erators for K. We start by reasoning that p generates an extreme ray (see 8.1.14 or
B.1) in the R-convex cone P(K). So assume p = q1 + q2 with q1, q2 ∈ P(K). Then
deg(q j) ≤ deg(p) for j = 1, 2 since K is unbounded. Since p is real-rooted and q1, q2
vanish in the roots of p, it follows that q1, q2 are non-negative scalar multiples of p.
Now assume that g1, . . . , gr ∈ P(K) are such that p ∈ PO(g1, . . . , gr), say

p =
∑

e∈{0,1}r
se · g

e1
1 · · · g

er
r

with sums of squares se in R[t]. By the previous argument, every summand is a non-
negative scalar multiple of p. Since p is not a product of two non-constant members
of P(K), this implies g j ∈ R+ p for some j ∈ {1, . . . , r}. So we have shown that every
generating system for the preordering P(K) contains p, up to positive scaling. �

6.1.5 In the situation of Proposition 6.1.4, let S ⊆ K be the set of isolated points of
K. We briefly sketch how to prove 6.1.4(a) when S , ∅. Let T = PO(p0, . . . , pm),
the preordering in R[t] generated by the canonical generators for K, and let f ∈ R[t]
with f |K ≥ 0. One can prove f ∈ T by induction on σ( f ) :=

∑
c∈S ordc( f ). Note

that f lies in T if σ( f ) = 0, by the argument used before. So assume that f (c) = 0
for some c ∈ S . If ordc( f ) ≥ 3 then f may be replaced by (t − c)−2 f , while keeping
the hypothesis f |K ≥ 0. Thus we can assume ordc( f ) ∈ {1, 2}. Through a case-by-
case discussion one shows that f has a factorization f = f1 f2 with f1, f2 ∈ P(K),
and with f1(c) = 0 and deg( f1) ≤ 2. It follows that f1 ∈ T , by one of (1) or (2) in
the proof of 6.1.4. Since σ( f2) < σ( f ), this suffices for the induction. We refer to
Exercise 6.1.4 for full details.

6.1.6 Remarks.

1. Let K ⊆ R be a closed semialgebraic set (K , ∅, K , R) and let g1, . . . , gr ∈

R[t] be polynomials with K = S(g1, . . . , gr). The inclusion

PO(g1, . . . , gr) ⊆ P(K) (6.1)
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holds by definition. Whether or not (6.1) is an equality depends strongly on the
choice of the gi, as we see from Proposition 6.1.4. The set K can always be described
by one single inequality g ≥ 0, for example by letting g be the product of the natural
generators. But as long as K is unbounded, the inclusion (6.1) is proper unless all
natural generators are among g1, . . . , gr (up to scaling).

2. The uniqueness property in 6.1.4(b) breaks down completely when K is
bounded. In fact, we’ll later see for R = R and for compact K, that the saturated
preordering P(K) can always be generated by two polynomials, and even by a sin-
gle polynomial if K has no isolated point (Proposition 6.5.16).

3. Let K ⊆ R be a closed semialgebraic set (with K , ∅ and K , R), with natural
generators p0, . . . , pm. We have seen that the preordering PO(p0, . . . , pm) in R[t] is
the full saturated preordering P(K) of K. On the other hand, easy examples (e.g.
Exercise 5.1.3(b)) show that QM(p0, . . . , pm) , P(K) in general. If K is unbounded,
it can be shown that QM(p0, . . . , pm) = P(K) holds if and only if K is either a half-
line, or a half-line together with an isolated point. See [115] Theorem 2.5, and see
also Exercise 6.1.3. On the other hand, when R = R and K is compact, we will later
see (Section 6.5) that p0, . . . , pm generate P(K) even the sense of quadratic modules.

For arbitrary (closed) semialgebraic sets K in R, the preordering P(K) is finitely
generated, as we have seen. But for sets K of higher dimension, this usually fails. In
fact, the following is true:

6.1.7 Theorem. Let V be an affine R-variety, let g1, . . . , gr ∈ R[V], and let K =

SV (g1, . . . , gr), a basic closed set in V(R). If dim(K) ≥ 3, there exists a polynomial
f ∈ R[V] with f ≥ 0 on V(R) but f < PO(g1, . . . , gr).

6.1.8 Corollary. If K ⊆ V(R) is a closed semialgebraic set of dimension dim(K) ≥
3, the saturated preordering P(K) is not finitely generated. ut

6.1.9 To prove Theorem 6.1.7 we need to work in suitable local rings, so we start
with recalling a few basic facts (see A.4.7). If (A,m, k) is a regular local ring, recall
that gr(A) =

⊕
ν≥0 grν(A) is the associated graded ring, where grν(A) = mν/mν+1.

The order of an element f , 0 in A isω( f ) = max{ν ≥ 0: f ∈ mν}. The leading form
of f is the residue class L( f ) of f in grn(A) = mn/mn+1 where n = ω( f ). If a1, . . . , ad

is a regular system of parameters in A, the graded ring gr(A) is the polynomial ring
over k in the variables yi := L(ai) (i = 1, . . . , d). In particular, L( f ) is a homogeneous
k-polynomial in y1, . . . , yd of degree ω( f ), for every f , 0.

6.1.10 Lemma. Let A be a regular local ring whose residue field k is real. If f , 0
is a sum of r squares in A, then ω( f ) = 2s is even, and L( f ) ∈ gr2s(A) is a sum of r
squares of elements in grs(A).

Proof. The map ω extends to a discrete valuation of K = qf(A), see A.4.7. It is not
hard to see that the residue field of this valuation is purely transcendental over k
(of transcendence degree dim(A) − 1 if A , k). To prove the lemma, we only need
to know that this residue field is real. A direct proof for this fact goes as follows.
For non-zero elements a1, . . . , an, b ∈ A with ω(ai) = ω(b) =: m for all i, we have
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to show that ω(
∑

i(
ai
b )2) = 0, or equivalently, ω(

∑
i a2

i ) = 2m. The leading forms
L(ai) are homogeneous of degree m. Therefore

∑
i L(ai)2 is homogeneous of degree

2m and non-zero, since gr(A) is a polynomial ring over the real field k. This proves
ω(

∑
i a2

i ) = 2m, and hence the residue field of ω is real.
Now let f =

∑
i f 2

i with fi ∈ A, and let s = mini ω( fi). By the basic fact 3.5.1 we
have ω( f ) = 2s. Since f 2

i ∈ m
2s for all i, it is clear that L( f ) is the sum of the L( fi)2

for those indices i for which ω( fi) = s. �

6.1.11 Corollary. Let (A,m, k) be a regular local ring with real residue field k, and
let a1, . . . , an be a regular system of parameters in A. Let g ∈ A[x1, . . . , xn] be
a homogeneous polynomial of degree d whose coefficient-wise reduction g mod-
ulo m is not sos in k[x1, . . . , xn]. Then, for arbitrary h ∈ md+1, the element
f := g(a1, . . . , an) + h is not a sum of squares in A.

Proof. The element f ∈ A has order ω( f ) = d and has leading form L( f ) =

g(y1, . . . , yd) ∈ grd(A) = md/md+1, with yi = L(ai) ∈ gr1(A). If f were a sum of
squares in A then L( f ) would be a sum of squares in gr(A) (Lemma 6.1.10). By the
hypothesis of the corollary, this is not the case. �

6.1.12 Example. Let k be a real field, and let f =
∑
α cαxα be a formal power series

over k, where x = (x1, . . . , xn). If ω( f ) = d, and if the leading form
∑
|α|=d cαxα of f

is not sos as a polynomial in k[x], then f is not a sum of squares in k[[x]].

Proof of Theorem 6.1.7. The Zariski closure Z of K in V has dimension dim(Z) =

dim(K). So there exists an irreducible component Y of Z with dim(Y) = d ≥ 3.
After relabelling the gi we may assume that gs+1, . . . , gr vanish identically on Y ,
while g1, . . . , gs don’t. Since K ∩ Y(R) = SY (g1, . . . , gs) is Zariski dense in Y , the
same is true for the basic open set UY (g1, . . . , gs) in Y(R). The non-singular locus
Yreg of Y is open and dense in Y , so there exists a point ξ ∈ K ∩ Yreg(R) that satisfies
gi(ξ) > 0 for i = 1, . . . , s. Since the local ring A := OY,ξ is regular of dimension d,
there exist a sequence a1, . . . , ad in R[V] that generates the maximal ideal of A.

Let p ∈ R[x1, x2, x3] be a psd form with integer coefficients that is not sos in
R[x1, x2, x3], for example the Motzkin form. The element f := p(a1, a2, a3) of R[V]
is non-negative on V(R), since f is the pullback of p under the polynomial map
(a1, a2, a3) : V → A3. We show that f is not contained in the preordering T :=
POR[V](g1, . . . , gr).

To see this, let Â be the completion of A (A.4.4) and assume f ∈ T . Then f ∈
T̂ = POÂ(g1, . . . , gr) as well, using the natural homomorphisms R[V] → R[Y] →
A → Â. For i = 1, . . . , s, the element gi is a square in Â since gi(ξ) > 0 and A has
residue field R (compare A.4.8). For i = s + 1, . . . , r, on the other hand, we have
gi = 0 in A, and hence in Â as well. So f ∈ T̂ means that f is actually a sum of
squares in Â. On the other hand, f fails to be sos in Â, according to Corollary 6.1.11.
This contradiction completes the proof of Theorem 6.1.7. ut

6.1.13 Remarks.

1. The conclusion of Corollary 6.1.8 can be extended to sets K ⊆ R2 that contain
an open convex cone. This will be shown in 6.6.24.
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2. In view of the previous results, it is natural to ask for a characterization of those
(basic closed) semialgebraic sets K whose saturated preordering P(K) is finitely
generated. Later in this chapter we’ll see answers in typical cases. To get there we
need to work in an abstract real spectrum setting, and we start preparing for this in
the next section.

Exercises

6.1.1 Let K ⊆ Rn be a closed semialgebraic set. If the preordering P(K) = { f ∈ R[x] : f |K ≥ 0} is
finitely generated, show that K is basic closed.

6.1.2 Let R be a real closed field, let a, b ∈ R with |a|, |b| ≤ 1. In the polynomial ring R[t], show
that (t − a)(t − b) ∈ PO(t2 − 1).

6.1.3 Let K = {0} ∪ [1,∞[ ⊆ R, and let M ⊆ R[t] be the quadratic module generated by the natural
generators for K. Show that M is a preordering in R[t].

6.1.4 Fill in the missing details in the proof of Proposition 6.1.4(a), see 6.1.5.

6.1.5 Coordinate rings of nonrational affine curves over R do not in general satisfy psd = sos,
unlike R[t]. Prove this for the following example. Let g ∈ R[x] be a univariate polynomial
of odd degree ≥ 3, and let C be the plane affine curve y2 = g(x). Show that there exists
p ∈ R[C] = R[x, y]/〈y2 − g(x)〉 with p > 0 on C(R), such that p fails to be sos in R[C].

Hint: One can assume that g is monic, by changing x into −x if necessary. Let T ⊆ R[x]
be the preordering generated by g. If x + c were sos in R[C] for c ∈ R, show that this would
imply x + c ∈ T (compare Lemma 6.3.4). Conclude that this cannot happen.

6.1.6 Let A be a ring. In 3.2.9 it was remarked that a psd element f of A need not satisfy an
identity (1 + s) f = t with s, t ∈ ΣA2. Give an example for such A and f . (Hint: You may
use Example 6.1.12.)

6.2 Saturated preorderings, and the Archimedean local-global
principle revisited

We prepare the setup to study nichtnegativstellensätze systematically, using the real
spectrum. A key role will eventually be played by the Archimedean local-global
principle, proved in the previous chapter using the notion of pure states (Theorem
5.7.17). We’ll present a second, independent proof at the end of this section (Theo-
rem 6.2.19). It avoids pure states and is based on real spectrum techniques. Always
let A be a ring that contains 1

2 .

6.2.1 Notation. If M ⊆ A is any subset, recall from 3.1.6 the notation X(M) ={
α ∈ Sper(A) : ∀ f ∈ M f (α) ≥ 0}. Subsets of Sper(A) of this form are called pro-

basic, since they are the intersections of families of basic closed constructible sets. If
Y ⊆ Sper(A) is any subset, we write P(Y) := { f ∈ A : f |Y ≥ 0} for the preordering of
all ring elements that are non-negative on Y . Note that this generalizes the notation
P(K) introduced for semialgebraic sets in 6.1.1. If we consider elements of Y as
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positive cones in A, then simply P(Y) =
⋂

P∈Y P. With this notation, note that a
subset Y of Sper(A) is pro-basic if, and only if, Y = X(P(Y)).

6.2.2 Remark. The operators X and P reverse inclusions. For any subsets M ⊆ A
and Y ⊆ Sper(A), note the equivalence

Y ⊆ X(M) ⇔ M ⊆ P(Y). (6.2)

Indeed, either condition is equivalent to M ⊆ P for every positive cone P ∈ Y . Hence
the tautological inclusions M ⊆ P ◦ X(M) and Y ⊆ X ◦ P(Y) hold, and we conclude

P ◦ X ◦ P = P, X ◦ P ◦ X = X.

Technically speaking, (6.2) means that the pair (X, P) of operators forms a Galois
connection, aka adjunction pair. We will not make use of this terminology.

6.2.3 Lemma and Definition. For any preordering T ⊆ A, the following conditions
are equivalent:

(i) T is an intersection of positive cones of A;
(ii) T = P(Y) for some subset Y of Sper(A);

(iii) T = P(X(T ));
(iv) if f ∈ A satisfies an identity s f = f 2m + t with m ≥ 0 and s, t ∈ T, then f ∈ T.

The preordering T is said to be saturated if (i)–(iv) hold.

Proof. (i)⇒ (iii): If T =
⋂

i Pi with positive cones Pi, then Pi ∈ X(T ) for all i, and
so

⋂
P∈X(T ) P ⊆ T is clear. The reverse inclusion holds anyway. The implications (iii)

⇒ (ii)⇒ (i) are obvious, and the equivalence between (iii) and (iv) is a consequence
of the nichtnegativstellensatz 3.2.8. �

Remark 6.2.2 therefore implies that the operators X and P induce a bijective
correspondence between pro-basic closed sets in Sper(A) and saturated preorderings
in A.

6.2.4 Corollary. For any subset T ⊆ A there exists a unique smallest saturated
preordering S in A with T ⊆ S . We call S the saturation of T and write S = Sat(T ).
The saturation satisfies X(Sat(T )) = X(T ) and Sat(T ) = P(X(T )). When T is a
preordering, it is given by

Sat(T ) = { f ∈ A : ∃m ∈ N ∃ s, t ∈ T s f = f 2m + t}.

Proof. S is the intersection of all saturated preorderings that contain T , and is there-
fore saturated by 6.2.3(i). Since T ⊆ P(X(T )) and P(X(T )) is saturated, we have
S ⊆ P(X(T )), hence X(T ) ⊆ X(S ). The reverse inclusion is clear from T ⊆ S .
Hence X(S ) = X(T ), and therefore S = P(X(T )) by 6.2.3(ii). The description of
Sat(T ) for T a preordering is the nichtnegativstellensatz 3.2.8. �

6.2.5 Remarks. We illustrate the concept of saturation with several remarks and
examples.
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1. The concept of saturation is irrelevant in non-real rings (see 3.2.16). In such a
ring, T = A is the only preordering, and is in particular saturated.

2. In a field, every preordering is saturated (Proposition 1.1.28). In most other
real rings this statement is false.

3. The smallest saturated preordering in A is

Sat(ΣA2) = A+ = { f ∈ A : ∀ ξ ∈ Sper(A) f (ξ) ≥ 0}

(3.2.18) and consists of the psd (positive semidefinite) elements of A. By definition,
the preordering ΣA2 is saturated if, and only if, every psd element is a sum of squares
in A, i.e. A+ = ΣA2. This is a key property of a ring, therefore we introduce a special
phrase for it: Given a ring A, we say that psd = sos holds in A if A+ = ΣA2 holds.
Otherwise we say that psd , sos holds in A.

As remarked in 3.2.19, examples of rings with psd = sos are fields, the polyno-
mial ring R[t] in one variable, or the coordinate ring of the circle, over a real closed
field R. Typical non-examples are polynomial rings in more than one variable over R
(Hilbert 2.4.9). Other non-examples are coordinate rings of affine R-varieties V with
dim V(R) ≥ 3 (Theorem 6.1.7), or also regular local rings of dimension ≥ 3 (Corol-
lary 6.1.11).

4. Every ring homomorphism ϕ : A→ B satisfies ϕ(A+) ⊆ B+.
5. If V is an affine R-variety and K = SV (g1, . . . , gr) is a basic closed set in

V(R), with gi ∈ R[V], the saturation of the preordering T = POV (g1, . . . , gr) is
PV (K) = { f ∈ R[V]: f |K ≥ 0}. Note that this is in agreement with terminology 6.1.1
for P(K).

6. From a general view point, a nichtnegativstellensatz in a ring A is nothing else
but the statement that a certain preordering T in A is saturated. Usually such a result
will only be of interest when the preordering T is finitely generated, like T = ΣA2,
or like in Proposition 6.1.4.

We discuss a few technical results related to saturation. They will be useful later
in this chapter.

6.2.6 Proposition. Let A be a ring and let T be a saturated preordering in A. For
any multiplicative set S ⊆ A, the preordering TS in AS is again saturated.

Here TS = { t
s2 : t ∈ T, s ∈ S }, the preordering in AS generated by T (5.1.11).

Proof. Identify Sper(AS ) with a subset of Sper(A) in the usual way (3.1.9), and
similarly for the Zariski spectra. Let X = XA(T ), and write XS for XAS (TS ) = X ∩
Sper(AS ). Given f ∈ AS with f ≥ 0 on XS , we have to show f ∈ TS , and we may
assume f ∈ A. Let W := {α ∈ X : f (α) < 0}. For every α ∈ W there is sα ∈ S
with sα(α) = 0, since α < Sper(AS ). Therefore W ⊆

⋃
α∈W ZA(sα). Now W is pro-

constructible in Sper(A), and the sets ZA(sα) are constructible in Sper(A). So there
exist finitely many points α1, . . . , αn ∈ W such that W ⊆

⋃n
i=1 ZA(sαi ) (Proposition

3.4.13(b)). Putting s := sα1 · · · sαn , the element s lies in S and W ⊆ ZA(s). Therefore
g := s2 f ∈ A satisfies g ≥ 0 on X. Hence g ∈ T since T is saturated, and so f =

g
s2

lies in TS . �
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6.2.7 Corollary. If psd = sos holds in the ring A, and if S ⊆ A is any multiplicative
subset, psd = sos holds in AS as well.

Proof. Enough to apply 6.2.6 with T = ΣA2, since TS = ΣA2
S . �

6.2.8 Corollary. Let A be a ring. If A has a prime ideal p with real residue field for
which the local ring Ap is regular of dimension ≥ 3, then psd , sos in A.

Proof. By 6.2.7 it suffices to show psd , sos for Ap. This follows from Corollary
6.1.11: If a1, a2, a3 ∈ A form a regular sequence in Ap, and if p(x1, x2, x3) denotes
the Motzkin form, the element p(a1, a2, a3) ∈ A is psd in A but not sos. �

6.2.9 Lemma. Let A be a ring. For every quadratic module M in A we have√
supp(M) ⊆

⋂
α∈X(M)

supp(α) = supp(Sat(M)).

When M is a preordering, the inclusion is an equality.

Proof. Recall that supp(M) = M ∩ (−M). The second equality follows from
Sat(M) =

⋂
P∈X(M) P by applying the support to both sides. It follows that the sup-

port of Sat(M) is an intersection of (real) prime ideals, and therefore is a (real)
radical ideal. From M ⊆ Sat(M) we get

√
supp(M) ⊆ supp(Sat(M)). Conversely

let M be a preordering, and let f ∈ supp(Sat(M)). Then f vanishes identically
on X(Sat(M)) = X(M), and so f ∈

√
supp(M) by the abstract real nullstellensatz

3.2.10. �

6.2.10 Proposition. Let Y ⊆ Sper(A) be a pro-constructible set and consider the
ideal I =

⋂
α∈Y supp(α) of A. For every prime ideal p of A with I ⊆ p, there exists

α ∈ Y with supp(α) ⊆ p. In particular,

dim(A/I) = sup
{
dim(A/ supp(α)) : α ∈ Y

}
.

Proof. Let I ⊆ p, and assume supp(α) * p for every α ∈ Y . Then, for every α ∈ Y ,
there exists fα ∈ supp(α) with fα < p, which implies Y ⊆

⋃
α∈Y Z( fα). Since the sets

Z( fα) are constructible and Y is pro-constructible, there exists a finite subcovering.
Hence there are finitely many elements α1, . . . , αn ∈ Y such that Y ⊆

⋃n
i=1 Z( fαi ).

Let f := fα1 · · · fαn , then Y ⊆ Z( f ), and so f ∈
⋂
α∈Y supp(α) = I. Since f < p, this

contradicts the hypothesis I ⊆ p. �

6.2.11 Remarks.

1. Let us re-interpret the preceding results in a geometrical setting. Let R be a real
closed field and let T ⊆ R[x] = R[x1, . . . , xn] be a finitely generated preordering. We
put K = S(T ) ⊆ Rn, a basic closed set in Rn. Let V be the Zariski closure of K in An

and let I(V) ⊆ R[x] be the vanishing ideal of V . Then X(T ) = K̃ and
⋂
α∈K̃ supp(α) =⋂

ξ∈K mξ = I(V) (the second equality holds by definition of V). So Lemma 6.2.9
implies

√
supp(T ) = I(V). In particular we see dim R[x]/ supp(T ) = dim(K).
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2. For (finitely generated) quadratic modules M the situation is quite different in
general, since the dimension of the semialgebraic set S(M) can be strictly smaller
than the Krull dimension of the ring A/ supp(M). See Exercise 6.2.5 for an example,
and Exercise 6.2.6 for another example that in addition is Archimedean.

6.2.12 Remark. Every ring homomorphism ϕ : A → B satisfies ϕ(A+) ⊆ B+. Con-
versely, assume that ϕ is surjective and that g ∈ B+ is given. When does there exist
f ∈ A+ with ϕ( f ) = g? Geometrically this means that we are given a closed subva-
riety W of an affine R-variety V , together with a psd polynomial g on W. When can
g be extended to a psd polynomial f on all of V?

Clearly, every sum of squares in B lifts to a sum of squares in A under ϕ. On the
other hand there are easy examples where the above question has a negative answer
(Exercise 6.2.2). We discuss a condition that is sufficient for a positive answer. It
will be used in the proof of Theorem 6.2.19 below.

6.2.13 Lemma. Let A be a ring and I ⊆ A an ideal, let Y ⊆ Sper(A) be a closed set,
and let f ∈ A satisfy f ≥ 0 on Y ∩ Z(I). For every α ∈ Y ∩ Z(I) ∩ Z( f ), assume that
there exists h ∈ I with h ≥ 0 on Y and f + h ≥ 0 on a neighborhood of α in Y. Then
there is h ∈ I with f + h ≥ 0 on Y.

Proof. It suffices to prove for every α ∈ Y that there exists hα ∈ I with hα ≥ 0 on Y
and ( f + hα)(α) ≥ 0. By compactness of the constructible topology, this will imply
the existence of finitely many α1, . . . , αn ∈ Y for which Y ⊆

⋃n
i=1 X( f + hαi ). Then

the element h :=
∑n

i=1 hαi lies in I and satisfies f + h ≥ 0 on Y .
So let α ∈ Y . First assume that α has a specialization β in Z(I), so f (β) ≥ 0 holds

by the hypothesis. If f (β) > 0 then f (α) > 0, and we may take h = 0. If f (β) = 0
then, by assumption, there exists h ∈ I ∩ P(Y) with f + h ≥ 0 near β on Y , and
in particular ( f + h)(α) ≥ 0. There remains the case where {α} ∩ Z(I) = ∅. This
means −1 ∈ Pα + I, hence there is g ∈ I with g(α) ≥ 1. Therefore the element
h := (1 + f 2)g2 ∈ I satisfies h(α) > | f (α)|, which is enough to conclude. �

6.2.14 Corollary. If f ∈ A is psd on a neighborhood of Y ∩ Z(I) in Y, there is h ∈ I
with f + h ≥ 0 on Y. In particular, this holds when f > 0 on Y ∩ Z(I).

Proof. For every α, the condition of the lemma is satisfied with h = 0. �

6.2.15 Remark. The condition of Lemma 6.2.13 is sufficient for the desired con-
clusion, but it is by no means necessary. For example, let A = R[x, y] and I = Ax,
and take Y = Sper(A) in 6.2.13. The image of A+ → (A/I)+ obviously contains
f = x + y2, but there is no psd polynomial h in I that would make f + h psd locally
around the origin.

We are now heading for a second proof of the Archimedean local-global princi-
ple. From 5.2.17, recall the notion of absolute boundedness for subsets of the real
spectrum.

6.2.16 Lemma. Let Y be a closed subset of Sper(A) that is pro-basic (6.2.1) and
absolutely bounded. Given elements f , g ∈ A with f ≥ 0 on Y and g < 0 on
Y ∩ Z( f ), there exists a positive integer N such that N f > g on Y.
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Proof. Let Y1 = Y ∩ {g ≥ 0} and put T = P(Y1). Then Y1 = X(T ) since Y1 is
pro-basic, and so f > 0 on X(T ) holds by hypothesis. By the positivstellensatz
3.2.7 there are s, t ∈ T with s f = 1 + t. On the other hand there exist integers
m, n ≥ 1 with m > g and n > s on Y1, since Y1 is absolutely bounded. It follows that
mn f > ms f ≥ m > g on Y1, and therefore mn f > g on Y as well. �

The following lemma is the key for our second proof of the Archimedean local-
global principle:

6.2.17 Lemma. Let Y ⊆ Sper(A) be a closed set that is pro-basic and absolutely
bounded, and let f , g ∈ A be non-negative on Y. Then any h ∈ A f + Ag with h > 0
on Y can be written h = s f + tg with elements s, t ∈ A that are strictly positive on Y.

Proof. Start with arbitrary elements a, b ∈ A for which a f + bg = h. We have a > 0
on Y ∩ Z(g) and b > 0 on Y ∩ Z( f ). Hence by 6.2.16 there exist positive integers
N1, N2 such that N1g > −a and N2 f > −b on Y .

The topological space Ymax = Yarch is compact (5.2.19). Recall that every s ∈ A
defines a continuous R-valued function ŝ on Ymax (5.2.20). Let ϕ : Ymax → R be
the function defined by ϕ(ξ) = max

{
−N1, −

b̂(ξ)
f̂ (ξ)

}
if f̂ (ξ) , 0, and by ϕ(ξ) = −N1 if

f̂ (ξ) = 0. This function ϕ is continuous. To see this we only need to consider ϕ in
a neighborhood of ξ ∈ Ymax with f̂ (ξ) = 0, i.e. f (ξ) = 0. Now U := U(b − N1 f ) is
an open neighborhood of Y ∩ Z( f ), and for ξ ∈ U ∩ Ymax with f (ξ) , 0 we have
b̂(ξ)
f̂ (ξ)

> N1, and hence ϕ(ξ) = −N1. This means that ϕ is constant in a neighborhood

of ξ. In a similar way let ψ : Ymax → R be defined by ψ(ξ) := min
{
N2,

â(ξ)
ĝ(ξ)

}
for

ĝ(ξ) , 0 and ψ(ξ) = N2 for ĝ(ξ) = 0. Then ψ is continuous by an analogous
reasoning.

We claim that ϕ < ψ holds (pointwise) on Ymax. By the choice of N1 and N2,
the inequalities −N1 < â/ĝ and −b̂/ f̂ < N2 hold whenever the denominators do not
vanish, and −b̂/ f̂ < â/ĝ holds since h > 0. On Ymax ∩ Z( f ) we have ϕ = −N1, on
Ymax ∩ Z(g) we have ψ = N2, hence the inequality ϕ < ψ holds there as well.

Therefore the Stone–Weierstrass theorem (Corollary 5.2.26) implies the exis-
tence of an element c ∈ A satisfying ϕ < c < ψ on Ymax. This implies that the
inequalities

−b < c f and cg < a

hold everywhere on Ymax, and hence on Y as well. Hence the elements s := a − cg
and t := b + c f in A satisfy s, t > 0 on Y and s f + tg = h. �

We generalize the lemma to the case of more than two generators:

6.2.18 Proposition. Let Y ⊆ Sper(A) be a closed set that is pro-basic and absolutely
bounded. Let f1, . . . , fr in A be non-negative on Y, and let h ∈ A f1 + · · · + A fr with
h > 0 on Y. Then there exist a1, . . . , ar ∈ A with a1 f1 + · · ·+ ar fr = h and with ai > 0
on Y (i = 1, . . . , r).

Proof. The case r = 1 is trivial, and r = 2 is Lemma 6.2.17. Let r > 2 and assume
that the claim has already been proved for r − 1. Put A = A/〈 fr〉 and f i = fi + 〈 fr〉
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for i = 1, . . . , r − 1. The pro-basic closed set Y := Y ∩ Z( fr) in Sper(A) is absolutely
bounded. By the inductive hypothesis there are b1, . . . , br−1 ∈ A with bi > 0 on
Y ∩ Z( fr) and with

b1 f1 + · · · + br−1 fr−1 ≡ h (mod fr).

By Corollary 6.2.14 there exist c1, . . . , cr−1 ∈ A with ci ≡ bi (mod fr) and with
ci > 0 on Y (i = 1, . . . , r − 1). Put f :=

∑r−1
i=1 ci fi and g := fr. Then f , g ≥ 0 on Y

and h ∈ A f + Ag. Apply Lemma 6.2.17 to f and g, this gives s, t ∈ A with s > 0,
t > 0 on Y and with h = s f + tg. This implies the assertion. �

We can now give a second proof of the Archimedean local-global principle. For
convenience, here is the statement again:

6.2.19 Theorem. (Archimedean local-global principle) Let A be a ring, let S ⊆ A
be an Archimedean semiring and M ⊆ A an S -module. Assume that f ∈ A is such
that, for every maximal ideal m of A, there exists s ∈ S r m with s f ∈ M. Then
n f ∈ M for some integer n ≥ 1.

Proof. The set {s ∈ S : s f ∈ M} is not contained in any maximal ideal of A. Hence
there exist finitely many elements s1, . . . , sr in S with si f ∈ M for every i and with
〈s1, . . . , sr〉 = 〈1〉. The closed pro-basic set X(S ) ⊆ Sper(A) is absolutely bounded
since S is Archimedean (5.2.18). From Proposition 6.2.18 we therefore get elements
a1, . . . , ar ∈ A with

∑r
i=1 aisi = 1 such that ai > 0 on X(S ). By the Archimedean

positivstellensatz 5.3.1, there is an integer n ≥ 1 with nai ∈ S for i = 1, . . . , r. It
follows that n f =

∑r
i=1(nai)(si f ) ∈ M. �

6.2.20 Remark. It seems not to be known whether an analogue of Theorem 6.2.19
for Archimedean quadratic modules exists. Let M be an Archimedean quadratic
module in a ring A, and let f ∈ A. If for every maximal ideal m of A there exists
s ∈ A rm with s2 f ∈ M, does it follow that f ∈ M?

We’ll return to the local-global principle in Section 6.5 below.

Exercises

6.2.1 Let A be a connected Noetherian ring that is real but not real reduced (3.2.16, 3.2.17), i.e.
Sper(A) , ∅ and re√

〈0〉 , {0}.

(a) Show that psd , sos in A.
(b) Conclude that psd , sos holds in every connected algebra A of finite type over a field

with dim(A) ≥ 3 and Sper(A) , ∅.

Hint on (a): The nilradical I =
re√
〈0〉 of A satisfies I , I2, by Nakayama’s lemma.

6.2.2 Let A = R[x, y] and I = 〈y2− x3〉 ⊆ A. Prove that the map A+ → (A/I)+ fails to be surjective.
6.2.3 Let n ≥ 4. This exercise shows that there is no uniform denominator for all psd forms in

R[x] = R[x1, . . . , xn] (see Remark 5.5.9.3). Given a non-zero form h ∈ R[x], show that there
exists a psd form f ∈ R[x] such that f hN is not a sum of squares for any N ≥ 0. (Hint: Fix
a point ξ ∈ Rn with h(ξ) , 0 and work in the local ring of Pn−1 at [ξ].)
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6.2.4 Let m be a maximal ideal of the polynomial ring R[x] = R[x1, . . . , xn] whose residue field is
the field R(

√
−1). When n ≥ 4, show that psd , sos holds in the localization R[x]m. (Use the

fact that any localization of a regular local ring is again regular, A.4.5.) Remark: Benoist
[17] has shown that the statement is true for n = 3 as well.

6.2.5 Consider the quadratic module M = QM(x, y,−xy) in R[x, y]. Show that the semialgebraic
set K = S(M) is one-dimensional, but that supp(M) = {0}. (Hint: Exercise 5.1.9)

6.2.6 With a bit more effort we can also construct a quadratic module as in Exercise 6.2.5, which
in addition is Archimedean. Let M ⊆ R[x, y] be the quadratic module that is generated by
1− x2 − y2, −xy, x− y and y− x2. Show that M is Archimedean and S(M) is a point, but that
supp(M) = {0}.

Remark: Some valuation theory is needed to identify the support. The quotient field
R(x, y) admits a valuation v with residue field R and value group Γ, such that 0 < v(x) <
v(y) < 2v(x) and v(x), v(y) are Z-linearly independent in Γ. Assuming the existence of such
v, you should be able to show supp(M) = {0}.

6.3 Sums of squares in local rings

We study preorderings and their saturations in local rings A. Given a preordering T
in A and an element f in the saturation of T , we try to identify conditions that imply
f ∈ T . As a first step we show that f > 0 on X(T ) always implies f ∈ T . In general,
the question becomes easier when we replace A and T by their completions (the
completion T̂ of T will be defined below). The main results are saying that, under
suitable conditions, f ∈ T̂ implies f ∈ T .

We continue to assume 1
2 ∈ A for every ring A. As before, an element a ∈ A is

said to be psd if a ∈ A+ (6.2.5).

6.3.1 Theorem. Let (A,m, k) be a local ring, and let u ∈ A∗ be a psd unit of A. Then
u is a sum of squares in A.

Proof. Consider the ring B = A[t]/〈t2 + u〉 = A[τ], where τ denotes the coset of
t in B. Since Sper(B) is empty we have −1 ∈ ΣB2 (Corollary 3.2.16). So there are
ai, bi ∈ A with −1 =

∑r
i=1(ai + biτ)2 in B. In particular,

− 1 =

r∑
i=1

a2
i − u

r∑
i=1

b2
i (6.3)

holds in A, which says u
∑

i b2
i = 1 +

∑
i a2

i . Therefore, if
∑r

i=1 b2
i is a unit in A, then

u =
( r∑

i=1

b2
i

)−1(
1 +

r∑
i=1

a2
i

)
is a sum of squares in A and we are done. When the field k = A/m is real, this will
hold automatically, since by (6.3) we cannot have bi ∈ m for all i. For the rest of
the proof we assume

∑
i b2

i ∈ m, and we’ll show how to find another identity (6.3)
which has the desired property.
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For x, y ∈ Ar write 〈x, y〉 =
∑r

i=1 xiyi. By enlarging r if necessary, we may assume
that bi ∈ m holds for at least two indices i, say b1, b2 ∈ m. There exist w1, w2 ∈ A
such that both w2

1 + w2
2 and 1 + u(w2

1 + w2
2) are units; for example, we may take

w1 = 1 and w2 = 0 or 1. The tuples w = (w1,w2, 0, . . . , 0), a = (a1, . . . , ar) and
b = (b1, . . . , br) in Ar satisfy 〈b,w〉 ∈ m. Since 〈b, b〉 ∈ m by assumption, we have
〈a, a〉 ≡ −1 (mod m) from (6.3). Let

γ =
〈a, a〉 − u〈b,w〉
〈a, a〉 − u〈w,w〉

∈ A∗

(note that the denominator is a unit by the choice of w). Further let(
a′, b′

)
:=

(
a, b

)
− 2γ

(
a, w

)
∈ Ar ⊕ Ar.

Now we calculate:

〈a′, a′〉 − u · 〈b′, b′〉 = (1 − 2γ)2〈a, a〉 − u · 〈b − 2γw, b − 2γw〉

=
(
〈a, a〉 − u〈b, b〉

)
+ 4γ

(
(γ − 1)〈a, a〉 + u(〈b,w〉 − γ〈w,w〉)

)
= −1 + 4γ

(
γ
(
〈a, a〉 − u〈w,w〉

)
−

(
〈a, a〉 − u〈b,w〉

))
= −1. (6.4)

On the other hand, 〈b′, b′〉 is a unit in A since 〈b′, b′〉 ≡
〈
b − 2γw, b − 2γw

〉
≡

4γ2〈w,w〉 modulo m. Using identity (6.4) instead of (6.3), we conclude u ∈ ΣA2 by
the argument at the beginning of the proof. �

What is behind this proof is a transversality argument, which is a standard tech-
nique in quadratic forms theory. Recall that a ring A , {0} is semilocal if it has
only finitely many maximal ideals. To generalize the previous theorem to semilocal
rings we could use a similar technique. But it is easier to deduce the semilocal case
directly from the local case:

6.3.2 Proposition. Let A be a semilocal ring, let M be a quadratic module in A. If
f ∈ A is such that f ∈ Mm for every maximal ideal m of A, then f ∈ M.

Here Mm denotes the extension of M to the localization Am of A (see 5.1.8),
which is

Mm =
{ x

s2 : x ∈ M, s ∈ A rm
}
.

Proof. Letm1, . . . ,mr be the maximal ideals of A. For every index i = 1, . . . , r there
exists, by assumption, an element si ∈ A with si < mi and s2

i f ∈ M. By the Chinese
remainder theorem there are elements a1, . . . , ar ∈ A with ai ≡ 1 (mod mi) and
ai ≡ 0 (mod m j), for all i , j in {1, . . . , r}. The element u =

∑r
i=1(aisi)2 is a unit in

A, and u f =
∑r

i=1 a2
i s2

i f ∈ M. Since u−1 =
∑

i(aisiu−1)2 is a sum of squares in A, we
conclude f ∈ M. �

6.3.3 Corollary. In a semilocal ring, every psd unit is a sum of squares.
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Proof. Let f ∈ A∗ be psd. Then f is a psd unit in Am for every maximal ideal m
of A, and is therefore a sum of squares in Am by Theorem 6.3.1. Apply Proposition
6.3.2 with M = ΣA2 to conclude that f is sos in A. �

In fact, the statement can be generalized further. For this the following elemen-
tary observation is useful. Let A be a ring, let gi (i ∈ I) be a family of elements of
A and let T = POA(gi : i ∈ I) be the preordering generated by the gi. We formally
adjoin square roots of the gi and write

B = A[xi : i ∈ I]
/
〈x2

i − gi : i ∈ I〉.

6.3.4 Lemma. Given f ∈ A, we have f ∈ T if and only if f is sos in B, and also
f ∈ Sat(T ) if and only if f is psd in B.

Proof. See Exercise 6.3.1. �

6.3.5 Corollary. Let A be a semilocal ring, let T be a preordering in A. Then
Sat(T ) ∩ A∗ ⊆ T.

Note that this generalizes Corollary 6.3.3 (which in turn generalizes Theorem
6.3.1).

Proof. Let f ∈ Sat(T ) ∩ A∗. Then X(− f ) ∩ X(T ) = X(− f ) ∩
⋂

t∈T X(t) = ∅ since
f > 0 on X(T ). By compactness of the constructible topology there exist finitely
many t1, . . . , tr ∈ T such that f > 0 on X(t1, . . . , tr). Consider the ring

B = A[x1, . . . , xr] / 〈x2
i − ti, i = 1, . . . , r〉.

Since A is semilocal and the ring extension A ⊆ B is finite, B is a semilocal ring as
well. By Corollary 6.3.3, f is sos in B, which implies f ∈ T by 6.3.4. �

After these generalities, here is a key lemma:

6.3.6 Lemma. Let A be a semilocal ring, let T be a preordering in A and let f ∈
Sat(T ). If f ∈ T + 〈 f 2〉 then f ∈ T.

Proof. By Proposition 6.3.2 we may assume that A is local, with maximal ideal m.
By hypothesis there is an identity f = t+ f 2g with t ∈ T and g ∈ A. If f is a unit in A
then f ∈ T by Corollary 6.3.5. So assume that f ∈ m, which implies 1− f g ∈ A∗ and
f (1− f g) = t. We claim that 1− f g ∈ Sat(T ). Indeed, f ≥ 0 on X(T ) and 1− f g ≡ 1
on Z( f ), so the claim follows from f (1− f g) ∈ T . So 1− f g ∈ T by Corollary 6.3.5,
and hence f = t(1 − f g)−1 lies in T as well. �

From this lemma we get a further generalization of Proposition 6.3.5:

6.3.7 Corollary. If T is a preordering in a semilocal ring A, then T contains every
f ∈ A that is strictly positive on X(T ).

When one of the residue fields of A is non-real, the hypothesis is strictly more
general than f ∈ A∗ ∩ Sat(T ).
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Proof. Let f > 0 on X(T ). Since the preordering T ′ = T + A f 2 in A satisfies
X(T ′) = X(T ) ∩ Z( f ) = ∅, we have T ′ = A by Theorem 3.2.3. So Lemma 6.3.6
implies f ∈ T . �

The next result is much stronger in general than Lemma 6.3.6:

6.3.8 Proposition. Let A be a semilocal ring, let T ⊆ A be a preordering and let
f ∈ Sat(T ). If f < T, there is an ideal J of A with f < T + J and with

√
J =√

supp(T + A f ).

Proof. We start with a simple observation: If f ∈ Sat(T ) and g ∈ supp(T ), and if
f ∈ T + A( f + g)2, then f ∈ T . Indeed, we have f + g ∈ T + A( f + g)2, and so
f + g ∈ Sat(T ) implies f + g ∈ T by Lemma 6.3.6. This implies f ∈ T since −g ∈ T .

Now let f ∈ Sat(T ). We have X(T + A f ) = X(T ) ∩ Z( f ) = X(T + A f 2), and so
Lemma 6.2.9 implies √

supp(T + A f ) =

√
supp(T + A f 2).

Choose a family (gλ)λ∈Λ of elements that generates the ideal supp(T + A f 2) and put

J := A f 2 +
∑
λ∈Λ

A( f + gλ)2.

It is easy to see that
√

J =
√

supp(T + A f 2). Let f ∈ T + J be given. We’ll show that
f ∈ T , which will complete the proof. There exist finitely many elements among the
gλ, say g1, . . . , gr, with

f ∈ T +
〈

f 2, ( f + g1)2, . . . , ( f + gr)2〉.
Writing T ′ = T + 〈 f 2, ( f + g1)2, . . . , ( f + gr−1)2〉 we have f ∈ T ′ + A( f + gr)2. Since
f ∈ Sat(T ′) and gr ∈ supp(T ′), the observation from the beginning of the proof
implies f ∈ T ′. By iterating this step we get f ∈ T + 〈 f 2〉, and applying Lemma
6.3.6 a last time (now we use f ∈ Sat(T )) gives f ∈ T , as desired. �

6.3.9 Definition. Let (A,m) be a local Noetherian ring, and let (Â, m̂) denote its
completion (see A.4.4). Given a preordering T in A, the completion T̂ of T is the
preordering in Â that is generated by i(T ), where i : A→ Â denotes the natural map.

6.3.10 Lemma. Let A be a local Noetherian ring A. For any preordering T in A and
any n ≥ 0, one has i−1(T̂ + m̂n) = T +mn.

Proof. Only “⊆” needs a proof. Given f ∈ A with i( f ) ∈ T̂ + m̂n, we have

i( f ) ≡ g2
1i(t1) + · · · + g2

r i(tr) (mod m̂n)

with suitable t j ∈ T and g j ∈ Â ( j = 1, . . . , r). The natural map A/mn → Â/m̂n is
bijective. In particular, there exist elements h j ∈ A with g j ≡ i(h j) (mod m̂n), for
j = 1, . . . , r. So t :=

∑
j h2

j t j lies in T and satisfies i(t) ≡ i( f ) (mod m̂n). Therefore
f − t lies in i−1(m̂n) = mn, proving f ∈ T +mn. �
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6.3.11 Theorem. Let A be a local Noetherian ring, let T be a preordering in A and
let f ∈ Sat(T ). Assume that supp(α) = m holds for every α ∈ Z( f ) ∩ X(T ). Then the
following conditions are equivalent:

(i) f ∈ T,
(ii) i( f ) ∈ T̂ ,

(iii) f ∈ T +mn for all n ≥ 0.

The conditions are satisfied when T̂ is saturated (in Â).

Proof. The hypotheses imply i( f ) ∈ Sat(T̂ ), showing that (ii) holds if T̂ is saturated.
The implication (i)⇒ (ii) is trivial, and (ii)⇒ (iii) follows from Lemma 6.3.10. To
prove (iii) ⇒ (i) let T ′ = T + A f , so X(T ′) = Z( f ) ∩ X(T ). By Lemma 6.2.9, the
hypothesis in the theorem says m ⊆

√
supp(T ′). Assume that f ∈ T + mn for every

n ≥ 0, but f < T . Proposition 6.3.8 gives an ideal J ⊆ A for which f < T + J
and
√

J =
√

supp(T ′), so m ⊆
√

J. Since A is Noetherian, there exists n ≥ 0 with
mn ⊆ J. This implies f < T +mn, which contradicts the assumption. �

6.3.12 Remark. Let us consider Theorem 6.3.11 in a geometric setting. Let K =

S(g1, . . . , gr) be a basic closed set in Rn, where g1, . . . , gr ∈ R[x] = R[x1, . . . , xn] are
polynomials. For a given polynomial f with f ≥ 0 on K, we consider the question
whether f lies in POR[x](g1, . . . , gr). To study this question locally at a given point
ξ ∈ K means to work in the local ring A = R[x]mξ (with mξ ⊆ R[x] the maximal
ideal of ξ), and to discuss whether f lies in T := POA(g1, . . . , gr). The assumption
f ∈ P(K) implies f ∈ SatA(T ). Let ZK( f ) = Z( f )∩K be the zero set of f in K. Then
the subset ZA( f )∩XA(T ) of Sper(A) is identified with the intersection of Z̃K( f ) with
Sper(A) (inside Sper R[x] = R̃n). So the condition

supp(α) = mA for every α ∈ ZA( f ) ∩ XA(T ) (6.5)

from Theorem 6.3.11 holds trivially if f (ξ) , 0. More interestingly, if holds if f has
only finitely many zeros in K. When ξ is just an isolated point of ZK( f ), (6.5) may
however fail.

6.3.13 Remark. Under the hypothesis (6.5) made in Theorem 6.3.11, the theorem
states that the obvious inclusion T ⊆ Sat(T ) ∩ i−1(T̂ ) of preorderings is an equality.
Without a condition like (6.5), this inclusion is usually strict. To give an example,
consider the localization A of R[x1, . . . , xn] in a non-real maximal ideal m, and let
T = ΣA2. The completion Â is a formal power series ring over C, so condition (ii)
in 6.3.11 becomes empty since T̂ = Â. On the other hand, when n ≥ 4, T fails to be
saturated by Exercise 6.2.4. (In fact for n = 3 as well, according to [17].)

We give first applications of Theorem 6.3.11. Since the natural map i : A → Â is
injective for A local and Noetherian, we identify A with a subring of Â in the sequel.

6.3.14 Corollary. Let A be a local Noetherian ring of dimension one, let T ⊆ A be
a preordering, and let f ∈ Sat(T ) not be a zero divisor in A. Then f ∈ T ⇔ f ∈ T̂ .
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Proof. Since f is not a zero divisor, f is not contained in any minimal prime ideal
of A. Therefore m ⊆

√
A f and hence m ⊆

√
supp(T + A f ), which shows that the

hypothesis of Theorem 6.3.11 holds. �

Corollary 6.3.14 may fail when f is a zero divisor (Exercise 6.3.3).

6.3.15 Corollary. psd = sos holds in every discrete valuation ring.

Proof. Let (A,m, k) be a discrete valuation ring, let f , 0 be a psd element of A.
If k is non-real then f > 0 on Sper(A), and so f is sos by Corollary 6.3.7. Let k
be real and write f = utn where t is a prime element and u ∈ A∗. Then n is even
by the Baer–Krull theorem (3.5.11). Assume that u(α) < 0 for some α ∈ Sper(A).
Then t(α) = 0 since f is psd, so supp(α) = m. Again by Baer–Krull, there is a
proper generalization β of α in Sper(A). Then supp(β) = {0} and u(β) < 0, implying
f (β) < 0, a contradiction. Therefore u is psd in A, and so u (and hence f ) is sos in A
by Theorem 6.3.1. �

6.3.16 (Plane curve singularities) Let R be a real closed field, let C be a plane affine
curve over R. So C = V( f ) ⊆ A2 for some non-constant polynomial f ∈ R[x, y]
without multiple factors. The coordinate ring of C is R[C] = R[x, y]/〈 f 〉, and the
curve C is irreducible over R if and only if the polynomial f is irreducible in R[x, y].
An R-point ξ of C is singular if both partial derivatives fx =

∂ f
∂x , fy =

∂ f
∂y vanish

at ξ. The simplest type of singular points are nodes (or A1-singularities), which are
singular points ξ for which the Hessian matrix D2 f =

( fxx fxy
fyx fyy

)
is invertible at ξ.

Nodes come in two types over R, since R is not algebraically closed: The singular
R-point ξ of C is an ordinary node if the symmetric matrix D2 f is indefinite at ξ,
and is an acnode1 if D2 f is (positive or negative) definite at ξ:

x2 − y2 − x3 = 0
ordinary node

x2 + y2 − x3 = 0
acnode

x3 − y2 = 0
cusp

In other words, if affine coordinates (x, y) are chosen such that ξ = (0, 0) is a node
of C, then after a suitable linear coordinate change, f can be brought in one of the
two forms f (x, y) = x2 − y2 + g(x, y) or f (x, y) = x2 + y2 + g(x, y), with g ∈ 〈x, y〉3.
The first corresponds to an ordinary node, the second to an acnode. Note that an
acnode is an isolated point of C(R), while an ordinary node isn’t. It is easy to see
that the completed local ring ÔC,ξ = R[[x, y]]/〈 f 〉 is isomorphic to R[[x, y]]/〈x2−y2〉 �
R[[x, y]]/〈xy〉 in the first case and to R[[x, y]]/〈x2 + y2〉 in the second. See Exercise
6.3.6.
1 terminology is not uniform in the literature
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The next simple type of plane curve singularities are cusps (alias A2-singularities).
The origin is an (ordinary) cusp of C if, after suitable linear coordinate change, f
has the form f (x, y) = y2 + f3(x, y) + g(x, y) where g ∈ 〈x, y〉4 and f3 is a cubic form
with f3(x, 0) , 0. The completed local ring ÔC,ξ is easily shown to be isomorphic to
R[[x, y]]/〈y2 − x3〉 in this case (Exercise 6.3.6).

6.3.17 Remarks.

1. Let C be a plane curve over R as above, let ξ ∈ C(R). When ξ is either a regular
point or an ordinary node of C, the property psd = sos holds in the local ring OC,ξ

(Corollary 6.3.15 for ξ regular and Exercise 6.3.7 for ξ an ordinary node). On the
other hand, psd = sos does not hold in the local ring (and hence not in R[C] either)
when ξ is an acnode or an ordinary cusp (Exercise 6.3.8).

2. All curve singularities (plane or not) with the psd = sos property have been de-
termined in [179]. They are precisely the ordinary multiple points with independent
tangents, i.e. the local rings whose completion is isomorphic to

R[[x1, . . . , xn]]/〈xix j : 1 ≤ i < j ≤ n〉

for some n ≥ 1. Informally speaking, these are those curve singularities in real
n-space that locally look like the union of coordinate axes.

Exercises

6.3.1 Prove Lemma 6.3.4.
6.3.2 Let (A,m, k) be a local Henselian ring with char(k) , 2. We denote the residue map A → k

by a 7→ a.

(a) If f ∈ A∗ is such that f is a sum of n squares in k, then f is a sum of n squares in A.
(b) Let T ⊆ A be a preordering. If f ∈ T ∩ A∗, show that f + g ∈ T for every g ∈ m.

6.3.3 Let B = R[x, y] and f = x, g = y2 + 1 − x ∈ B, and let m = 〈x, y2 + 1〉 ⊆ B. The local ring
A := Bm/〈 f g〉 has Krull dimension one. Show that f is psd in A and sos in Â, but that f is
not sos in A.

6.3.4 Let k be a field (with char(k) , 2).

(a) Show that k[[x, y]]/〈xy〉 is isomorphic to the subring of k[[t]]×k[[t]] consisting of all pairs
( f , g) with f (0) = g(0).

(b) Show that k[[x, y]]/〈y2 − x3〉 is isomorphic to the subring of k[[t]] consisting of all power
series with no linear term.

6.3.5 Let k be a field (with char(k) , 2).

(a) Show that psd = sos holds in k[[x, y]]/〈xy〉.
(b) If the field k is real, show that psd = sos holds neither in k[[x, y]]/〈x2 + y2〉 nor in

k[[x, y]]/〈y2 − x3〉.

(The exercise should be easy if you use Exercise 6.3.4.)
6.3.6 Let C be a plane curve over R, let ξ ∈ C(R) be a singular point of C, and let Oξ = OC,ξ be

the local ring of C at ξ (see 6.3.16. Show that Ôξ is isomorphic to
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(a) R[[x, y]]/〈x2 − y2〉 � R[[x, y]]/〈xy〉 if ξ is an ordinary node,
(b) R[[x, y]]/〈x2 + y2〉 if ξ is an acnode,
(c) R[[x, y]]/〈y2 − x3〉 if ξ is a cusp.

6.3.7 Let C be a plane affine curve over R and let ξ ∈ C(R) be an ordinary node. Show that
psd = sos holds in the local ring OC,ξ . (Use Exercise 6.3.5 and a result from the text, but
note that the case of zero divisors needs an extra argument.)

6.3.8 Let C be a plane affine curve over R, and let ξ ∈ C(R) be a singular point of C.

(a) If ξ is an acnode (Remark 6.3.16), show that psd , sos in R[C].
(b) Try to prove the same conclusion if ξ is a cusp.

Hint: Assuming that ξ is the origin, show in case (a) that there is g ∈ 〈x, y〉2 for which
f := x + g is psd on C(R). For (b), try to modify the argument suitably.

6.3.9 Let A be a discrete valuation ring, let t ∈ A be a prime element.

(a) The ring A[x]/〈x2 − t〉 is a discrete valuation ring.
(b) The preordering PO(t) in A is saturated.
(c) Which of the preorderings PO(t,−t) or PO(t,−t2) in A are saturated?

6.3.10 Let g1, . . . , gr ∈ A = R[[t]] (formal power series in one variable), let T = PO(g1, . . . , gr).

(a) Assume X(T ) = X(t). Then T is saturated iff ω(gi) = 1 for some index i.
(b) Assume X(T ) = X(t,−t). Then T is saturated iff there are indices i, j with ω(gi) =

ω(g j) = 1 and with gig j ≤ 0 on Sper(A).

6.4 Two-dimensional local rings

The main result of this section (Theorem 6.4.7) says that psd = sos holds in every
regular local ring of dimension two. Not surprisingly, the proof becomes harder
than for the analogous result in dimension one (6.3.15). Using techniques from the
previous sections, we reduce to the case of a formal power series ring. Then we
employ the Weierstrass division and preparation theorems to deal with this case.

We start by recalling two classical theorems from the theory of quadratic forms.
As usual, all rings are assumed to contain 1

2 , and in particular, all fields have char-
acteristic different from two.

6.4.1 Theorem. (Artin) Let k be a field, let f ∈ k[t] be a monic and irreducible
polynomial. If the residue field k[t]/〈 f 〉 is non-real, f is a sum of squares in k[t].

It is obvious that the converse is true as well.

Proof. We may assume that the field k is real. By assumption there is an identity

f h =

n∑
i=1

g2
i (6.6)

with polynomials gi, h ∈ k[t] and with h , 0. Clearly we may assume gi , 0 and
deg(gi) < deg( f ) for all i, which implies deg(h) < deg( f ). It suffices to find such
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an identity for which h is a constant. Indeed, this constant will then be the leading
coefficient of the right hand sum of squares, so it is sos in k, and we will be done.

Assume that deg(h) ≥ 1 in (6.6). We’ll find a new identity of the same type in
which the degree of h has become smaller. Write gi = qih + ri for i = 1, . . . , n
where qi, ri ∈ k[t] and deg(ri) < deg(h). Then ri , 0 for at least one index i, since
otherwise we would have f h = h2 ∑

i q2
i and hence f = h

∑
i q2

i , contradicting that f
is irreducible. We use the identity(∑

i

g2
i

)(∑
i

r2
i

)
=

(∑
i

rigi

)2
+

∑
i< j

(
rig j − r jgi

)2
. (6.7)

From ri ≡ gi (mod h) we get
∑

i r2
i ≡

∑
i rigi ≡

∑
i g2

i ≡ 0 (mod h), and also
rig j − r jgi ≡ 0 (mod h) for all i < j. So the right hand side of (6.7) has the form
h2q where q ∈ k[t] is sos. On the left we get a product decomposition

∑
i r2

i = hh′

with 0 , h′ ∈ k[t], where deg(h′) < deg(h). So f h2h′ = h2q, and cancelling we get
f h′ = q. Since deg(h′) < deg(h), the proof is complete. �

6.4.2 Corollary. Let k be a field. If f ∈ k[t] is a sum of squares in k(t), it is a sum of
squares in k[t].

Proof. We may assume that f has no multiple factors. By assumption there is an
identity f h2 =

∑n
i=1 g2

i with polynomials h, gi , 0. In particular, the leading coeffi-
cient of f is sos in k. Let f1 ∈ k[t] be irreducible such that f1 divides f as well as
each gi, say f = f1 f̃ and gi = f1g̃i. Then f1 doesn’t divide f̃ , and the above identity
implies h = f1h̃ for some polynomial h̃. So we get

f ( f1h̃)2 = f 2
1

∑
i

g̃2
i ,

and cancelling gives f h̃2 =
∑

i g̃2
i . Repeating the argument if necessary, we even-

tually arrive at an identity f h2 =
∑n

i=1 g2
i with gcd( f , g1, . . . , gn) = 1. Now every

monic irreducible factor f ′ of f has a non-real residue field, and so each such factor
f ′ is a sum of squares in k[t] by Theorem 6.4.1. Since the leading coefficient of f is
sos, f itself is sos in k[t]. �

We remark that Cassels [37] proved a stronger theorem in 1964: If a polynomial
f ∈ k[t] is a sum of m squares in k(t), f is a sum of m squares in k[t].

6.4.3 Lemma. Let B be a discrete valuation ring with real residue field and with
quotient field K. Then ΣB[t]2 = B[t] ∩ ΣK(t)2. In particular, psd = sos holds in the
polynomial ring B[t].

Proof. Let π be a prime element of B and let f ∈ B[t] be a sum of squares in K(t).
By Corollary 6.4.2, f is a sum of squares in K[t]. Clearing denominators of elements
in K, this means an identity π2n f = f 2

1 + · · · + f 2
r with f1, . . . , fr ∈ B[t] and n ≥ 0. If

n ≥ 1 then reduction modulo π shows that each fi has all coefficients divisible by π,
using that the residue field of B is real. Therefore, we inductively see that f is sos in
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B[t]. Every psd element of B[t] is psd in K(t) and hence lies in ΣK(t)2, which shows
the last statement. �

The next lemma is an easy consequence of Theorem 3.6.8 and the fact that every
localization of a regular local ring is again regular (A.4.5):

6.4.4 Lemma. Let A be a regular local ring, let K = qf(A). Then A+ = A ∩ ΣK2.

Proof. A+ ⊆ K+ = ΣK2 is clear. For the converse let f ∈ A ∩ ΣK2. By Corollary
3.6.9, any point β ∈ Sper(A) has a generalization α in Sper(K), and f (α) ≥ 0 implies
f (β) ≥ 0. So f lies in A+. �

After these preparations we are going to prove the main result for rings of formal
power series:

6.4.5 Theorem. For every field k (with char(k) , 2), psd = sos holds in the ring
k[[x, y]] of formal power series in two variables.

Proof. Our proof uses the Weierstrass division and preparation theorems, see A.4.9
for more details. Write A = k[[x, y]], which is a regular local ring. Given a psd
element f , 0 in A, we need to show that f is sos in A. By Theorem 6.3.1 we may
assume that f is not a unit in A. Since A is a unique factorization domain (ufd) we
may write f = f1g2 with f1, g ∈ A, where f1 doesn’t contain any repeated factor.
By Lemma 6.4.4, the element f1 is psd in A as well, and it suffices to show that f1 is
sos in A.

So assume that f doesn’t contain any repeated factor in A. After a suitable linear
coordinate change we have f = ug, where u is a unit in A and g ∈ k[[x]][y] is
a Weierstrass polynomial in y (Weierstrass preparation theorem, see A.4.9). This
means that g has the form

g = ym +

m−1∑
i=0

ai(x)yi

where ai(x) ∈ k[[x]] are power series that satisfy ai(0) = 0 (i = 0, . . . ,m − 1). Write
B := k[[x]]. Since the polynomial ring B[y] is a ufd, we can write g = p1 · · · pr where
each pi is irreducible in B[y] and monic as a polynomial in y. Then each pi is a
Weierstrass polynomial in y by itself. For each index i = 1, . . . , r, the ring inclusion
B[y] ⊆ A induces an isomorphism B[y]/piB[y] → A/piA of the residue rings. This
is a direct consequence of the Weierstrass division theorem, see A.4.9. Therefore,
each pi is irreducible also as an element of A.

For each index i, the quotient field of A/〈pi〉 is non-real. Indeed, say i = 1 and
assume that there is α ∈ Sper(A) with supp(α) = 〈p1〉. Since A〈p1〉 is a discrete
valuation ring, there exist α1, α2 ∈ Sper(A) with supp(α j) = 〈0〉, with α j  α
( j = 1, 2) and with p1(α1) > 0 and p1(α2) < 0. Since f = up1 · · · pr is psd in A,
one of the remaining factors u, p2, . . . , pr has to have opposite signs in α1 and α2 as
well. But this implies that this factor is divisible by p1, a contradiction.

On the other hand, let K = qf(B) = k((x)). The quotient field of A/〈pi〉 �
B[y]/〈pi〉 is isomorphic to K[y]/〈pi〉. Indeed, Gauss’s lemma shows that pi is ir-
reducible as a polynomial over K, and that the natural homomorphism B[y]/〈pi〉 →
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K[y]/〈pi〉 is injective. So this map induces an isomorphism of qf(B[y]/〈pi〉) �
qf(A/〈pi〉) with K[y]/〈pi〉.

It follows that the field K[y]/〈pi〉 is non-real. Since pi is monic in K[y], Theorem
6.4.1 implies that pi is a sum of squares in K[y]. By Lemma 6.4.3, therefore, pi is a
sum of squares in B[y], and hence in A as well. Since f = up1 . . . pr is psd in A, the
unit u is psd in A as well by Lemma 6.4.4. Therefore u is sos in A (Theorem 6.3.1).
Altogether we have shown that f is a sum of squares in A. �

When the ground field is real closed, we can say more:

6.4.6 Corollary. Let R be a real closed field. Then every psd element of R[[x, y]] is a
sum of two squares.

Proof. Let again A = R[[x, y]], B = R[[x]] and K = R((x)). Every psd unit in A is a
square (Exercise 6.3.2). Following the proof of Theorem 6.4.5, and since a product
of two sums of two squares is a sum of two squares, we may assume that f ∈ B[y]
is irreducible and monic in y, and that f is sos in B[y]. We’ll show that f is a sum of
two squares in B[y]. The field K[y]/〈 f 〉 = qf(B[y]/〈 f 〉) is a finite non-real extension
of K, see the previous proof. Therefore it contains i =

√
−1, see Exercise 6.4.2 for

a proof. This means there exist polynomials p, q ∈ B[y] which are not divisible by
f , and such that f divides p2 + q2. We claim that f becomes reducible in the ring
B[i, y] = C[[x]][y], where C = R(

√
−1). Indeed, since f divides (p + iq)(p − iq), f

would otherwise divide one of the factors. This would mean that f divides both p
and q in B[y], a contradiction. It follows that f = u(g + ig′)(g − ig′) = u(g2 + g′2)
with u ∈ B∗ and suitable g, g′ ∈ B[y]. Since u is a square in B, we see that f is a
sum of two squares in B[y]. �

As a second step, we show that Theorem 6.4.5 extends to arbitrary regular local
rings of dimension two:

6.4.7 Theorem. Let (A,m) be a regular local ring of dimension at most two. Then
psd = sos holds in A.

Proof. If dim(A) = 1 then A is a discrete valuation ring, and this case was already
settled in Corollary 6.3.15. So let dim(A) = 2. By the Auslander–Buchsbaum the-
orem, A is a ufd, see A.4.5. Let f ∈ A be psd, say f = p1 · · · pr with irreducible
factors pi in A. As in the proof of Theorem 6.4.5 we may assume that f has no
multiple factors. By the same argument as there, the field qf(A/〈pi〉) is non-real for
each i. Therefore supp(α) = m holds for every zero α ∈ Sper(A) of f . By Theorem
6.3.11 it therefore suffices to show that f is sos in the completion Â of A. If k = A/m
is non-real then Sper(Â) = ∅ (Exercise 3.2.5), hence ΣÂ2 = Â (3.2.16). If k is real
then Â � k[[x, y]], see A.4.6, and so f is sos in Â by Theorem 6.4.5. �

For greater flexibility in geometric applications, we extend Theorem 6.4.7 to
certain preorderings:

6.4.8 Proposition. Let (A,m) be a regular local ring with dim(A) = 2, and let f , g ∈
A with 〈 f , g〉 = m. Then both preorderings PO( f ) and PO( f , g) in A are saturated.
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Proof. Let B1 = A[x]/〈x2− f 〉 and B2 = A[x, y]/〈x2− f , y2−g〉. Both are regular local
rings of dimension two (Exercise 6.4.1). Hence they satisfy psd = sos (Theorem
6.4.7), and the claim follows using Lemma 6.3.4. �

The one-dimensional analogue to 6.4.8 was proved in Exercise 6.3.9.

6.4.9 Remark. Concerning regular local rings A, we have seen that psd = sos holds
in A whenever dim(A) ≤ 2 (Theorem 6.4.7). Another case where psd = sos holds is
when the field of fractions K = qf(A) is non-real. Indeed, this implies that Sper(A)
is empty (Corollary 3.6.9), and so ΣA2 = A by 3.2.16. On the other hand, psd = sos
fails whenever dim(A) ≥ 3 and the residue field of A is real (Corollary 6.2.8). What
is left is the case where A has dimension ≥ 3, the residue field is non-real and the
quotient field K is real. When dim(A) ≥ 4 and A is the local ring of a point on an
R-variety, Exercise 6.2.4 shows that again psd = sos fails in A. The same is true
when the variety is over an arbitrary field, as long as K = qf(A) is real.

The case dim(A) = 3 is more subtle and was settled only recently by Benoist.
He proved that the result is the same as in dimensions ≥ 4 ([17] Theorem 0.5). So
altogether, when A is the local ring of an algebraic variety over a field at some non-
singular point, the property psd = sos holds if and only if dim(A) ≤ 2 or K = qf(A)
is non-real.

The negative results for dim(A) ≥ 3 hold for local rings of algebraic varieties,
but they do not extend to general regular local rings. In fact Benoist constructs, for
every d ≥ 3, a regular local R-algebra A with dim(A) = d, for which K = qf(A) is
real and psd = sos holds ([17] Theorem 4.2). In this example, Sper(A) consists of a
single point only, whose support is the zero ideal.

We would like to mention the notion of bad points on a real variety, since it is
closely related to the “psd = sos” property of local rings. For simplicity we restrict
to varieties over R.

6.4.10 Definition. Let f ∈ R[x] = R[x1, . . . , xn] be a polynomial. A point ξ ∈ Cn is
a bad point of f if h(ξ) = 0 for every h ∈ R[x] for which f h2 is a sum of squares in
R[x]. By B( f ) ⊆ Cn we denote the bad locus of f , namely the set of all bad points
of f .

By definition, B( f ) is always a Zariski closed R-subvariety of An. When f is psd
on Rn, the bad locus B( f ) is a proper subvariety of An, by Artin’s theorem 1.5.21.
Otherwise B( f ) = An. Directly from the definition we see:

6.4.11 Lemma. A point ξ ∈ Cn is a bad point of f if and only if f is not a sum of
squares in the local ring Oξ = R[x]mξ at ξ. ut

Theorem 6.4.7 therefore implies that psd polynomials in two variables have no
bad points. In other words, for a psd polynomial f ∈ R[x1, x2] there are no local
obstructions against f being a sum of squares in R[x1, x2]. More generally, if f ∈
R[x1, . . . , xn] is psd then B( f ) (is empty or) has codimension at least three. Indeed,
let V ⊆ An be an irreducible component of B( f ), and let p = I(V) ⊆ R[x] be the
prime ideal corresponding to V . Since f is not a sum of squares in the local ring
R[x]p, and since this ring is regular, it must have dimension ≥ 3 by Theorem 6.4.7.
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6.4.12 Remark. Benoist’s paper [17] mentioned before contains several other re-
markable results closely related to bad points. To mention two of them, he constructs
a psd polynomial f ∈ R[x1, x2, x3] whose bad locus consists of just two complex-
conjugate points ([17] Theorem 3.6). This is the first example where R-points are
not dense in B( f ). He also constructs a psd polynomial f ∈ R[x1, x2, x3] with a bad
point ξ ∈ R3 such that f is a sum of squares in the completion Ôξ. Whether such f
exists (in any number of variables) had been a question of Brumfiel ([50] p. 62).

Exercises

6.4.1 Let (A,m) be a regular local ring, and let a1, . . . , ar ∈ m be linearly independent modulo m2.
Let positive integers n1, . . . , nr be given. Then

B = A[x1, . . . , xr]/〈x
ni
i − ai : i = 1, . . . , r〉

is again a regular local ring, and dim(B) = dim(A). (Hint: Use going-up and consider the
Artinian ring B/mAB.)

6.4.2 Let k be a field and let K = k((x)), the field of formal Laurent series over k. Find all finite field
extensions of K up to K-isomorphism when k is (a) algebraically closed of characteristic
zero, (b) real closed. Hint: When k is algebraically closed, recall that the field k((x1/∞)) of
Puiseux series is algebraically closed (Puiseux’ theorem A.4.10)

6.4.3 Let f ∈ R[x1, . . . , xn] be homogeneous, let d = deg( f ).

(a) Show that f is a sum of squares if and only if the origin in Cn is not a bad point of f .
(b) Let 0 , ξ ∈ Cn, let k be an index with ξk , 0. Show that ξ ∈ B( f )⇔ f x−d

k is not a sum
of squares in the local ring of Pn−1 at [ξ] = (ξ1 : · · · : ξn).

6.4.4 Let f ∈ R[x1, . . . , xn] be psd. Show that f vanishes in each of its bad points. When f > 0 on
Rn, show that f has no (real or complex) bad points.

6.4.5 Let f ∈ R[x] = R[x1, . . . , xn] be psd. Show that there exists h ∈ R[x] such that h2 f is sos,
and such that the only real zeros of h are the real bad points of f .

6.5 Global results

We now combine local saturatedness results, as obtained in the previous sections,
with the Archimedean local-global principle (Theorem 6.2.19), to obtain global re-
sults. We start by providing more convenient versions of Theorem 6.2.19 in the case
of preorderings or quadratic modules. Let always A be a ring. For simplicity we
assume Q ⊆ A.

6.5.1 Theorem. Assume Q ⊆ A, let T ⊆ A be an Archimedean preordering and let
f ∈ Sat(T ). If f ∈ Tm holds for every maximal ideal m of A with supp(T + A f ) ⊆ m,
then f ∈ T.

Proof. Let f ∈ Sat(T ) be as in the theorem. The condition f ∈ Tm means that there
exists s ∈ A, s < m, with s2 f ∈ T . In view of Theorem 6.2.19, it suffices therefore
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to show f ∈ Tm for every maximal ideal m with supp(T + A f ) * m. So let m be
such a maximal ideal. Clearly f ∈ SatAm (Tm). If f < m then f is a unit in Am, and
so f ∈ Tm by Corollary 6.3.5. So assume f ∈ m. By assumption on m, there exist
ti ∈ T , ai ∈ A (i = 1, 2) with t1 + a1 f = −t2 + a2 f < m. Hence t1, t2 are units in Am,
and so t1, t2 > 0 on XAm (Tm). Since t1 + t2 = (a2 − a1) f and f ≥ 0 on XAm (Tm), we
conclude that f > 0 on XAm (Tm) as well. So Corollary 6.3.7 implies f ∈ Tm. �

6.5.2 Remark. In a geometric setting, Theorem 6.5.1 becomes more intuitive. Let
V be an affine R-variety and let K = SV (g1, . . . , gr) be a basic closed set in V(R),
with gi ∈ R[V]. We assume that K is compact, which means that the preordering
T = PO(g1, . . . , gr) in R[V] is Archimedean (Theorem 5.5.3). Given a polynomial
f ∈ R[V] with f |K ≥ 0, Theorem 6.5.1 provides a necessary and sufficient criterion,
in terms of “local” conditions, for f to be contained in T . Namely, for each maximal
ideal m of R[V] with supp(T + A f ) ⊆ m we have the condition f ∈ Tm. These maxi-
mal ideals correspond to the (complex) points in the Zariski closure Z of ZV ( f )∩K,
the zero set of f in K, as we see from applying Remark 6.2.11 to the preordering
T + A f . Beware that, in general, it is not enough to check f ∈ Tm for the real points
in Z, i.e. for the maximal ideals m with residue field R. An example illustrating this
point is given in Exercise 6.5.5.

For quadratic modules we only have a weaker statement:

6.5.3 Proposition. AssumeQ ⊆ A, and let M ⊆ A be a module over an Archimedean
preordering T of M. If f ∈ M satisfies f ∈ Mm for every maximal ideal m of A with
supp(M) ⊆ m, then f ∈ M.

Proof. By Theorem 6.2.19 it suffices to show f ∈ Mm for every maximal ideal m
with supp(M) * m. For such m there is s ∈ supp(M) with s < m. Since supp(M) is
an ideal we have s2 f ∈ supp(M), and so f ∈ Mm (compare Lemma 5.1.11). �

In any case, the question of being saturated can be decided locally:

6.5.4 Corollary. (Q ⊆ A) Let M ⊆ A be a module over an Archimedean preordering.
If Mm is saturated (in Am) for every maximal ideal m of A with supp(M) ⊆ m, then
M is saturated (in A).

Of course, the converse is true anyway, without any Archimedean hypothesis
(Proposition 6.2.6).

Proof. If f ∈ Sat(M) then f ∈ Sat(Mm) for anym. So the claim follows from 6.5.3.�

We now discuss selected geometric applications. In all of them we are given an
affine R-variety V and a compact basic closed set K = SV (g1, . . . , gr) ⊆ V(R), and
we consider the preordering T and the quadratic module M generated by g1, . . . , gr

in R[V]. Given a point ξ ∈ V(C), we denote by Tξ the preordering generated by T in
the local ring OV,ξ, and by T̂ξ the preordering generated by T in the completed local
ring ÔV,ξ. Similarly for Mξ and M̂ξ.

Let f ∈ R[V] be a polynomial with f |K ≥ 0. Assuming that f has only finitely
many zeros in K, we have:
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6.5.5 Proposition. Let V be an affine R-variety, let T ⊆ R[V] be a finitely generated
preordering, let K = SV (T ), and let f ∈ R[V] satisfy f ≥ 0 on K. If K is compact
and ZV ( f ) ∩ K is a finite set, and if f ∈ T̂ξ holds for every ξ ∈ ZV ( f ) ∩ K, then
f ∈ T.

Proof. The preordering T is Archimedean (Theorem 5.5.3). By Theorem 6.5.1 it
therefore suffices to show f ∈ Tm for every maximal ideal m of R[V] that contains
supp(T + 〈 f 〉). These maximal ideals are the maximal ideals mξ of the C-points in
the Zariski closure of ZV ( f ) ∩ K in V . Since ZV ( f ) ∩ K is a finite set of R-points, it
means we have to show f ∈ Tξ for each ξ ∈ ZV ( f ) ∩ K. By assumption f ∈ T̂ξ for
each such ξ, so the assertion follows from Theorem 6.3.11. �

There is also a version for quadratic modules that gives the same conclusion.
The hypotheses K compact and |ZV ( f ) ∩ K| < ∞ have to be replaced by assump-
tions which are equivalent in the preorderings case, but are stronger for quadratic
modules:

6.5.6 Proposition. Let V be an affine R-variety, let M ⊆ R[V] be a finitely generated
Archimedean quadratic module, let K = SV (M), and let f ∈ R[V] satisfy f |K ≥ 0.
Assume that the ideal J := supp(M + 〈 f 2〉) of R[V] satisfies dimR[V]/J = 0. If
f ∈ M̂ξ for every ξ ∈ ZV ( f ) ∩ K, then f ∈ M.

The proof is based on the following general lemma, which is an Archimedean
analog of Lemma 6.3.6:

6.5.7 Lemma. Let A be a ring, let M ⊆ A be an Archimedean quadratic module and
let f ∈ Sat(M). If f ∈ M + 〈 f 2〉 then f ∈ M.

Proof. By assumption there is an identity f = x − s f 2 with x ∈ M and s ∈ ΣA2,
since M + 〈 f 2〉 = M − f 2ΣA2. So x = f (1 + s f ), and both f and 1 + s f are ≥ 0 on
Y := X(M). By Lemma 6.2.17 there exist a, b ∈ A with

1 = a f + b(1 + s f ) (6.8)

and with a > 0, b > 0 on Y . Hence also ab > 0 on Y , and so a, b, ab ∈ M by
the Archimedean positivstellensatz 5.3.1. Multiply (6.8) with b f to get that b f =

ab f 2 + b2 f (1 + s f ) = ab f 2 + b2x lies in M. Multiply (6.8) with f to see f =

a f 2 + b f + bs f 2 ∈ M. �

Proof of Proposition 6.5.6. Write A = R[V]. By Lemma 6.5.7 it suffices to show
f ∈ M + J, since M + J ⊆ M + 〈 f 2〉. Being 0-dimensional and Noetherian, the
ring A/J is semilocal. Every minimal = maximal ideal of A/J is real by Proposition
5.1.17, so it is the maximal ideal mξ/J of some point ξ ∈ ZV ( f ) ∩ K. Applying
Proposition 6.3.2 to the quadratic module (M + J)/J in A/J, it suffices to show, for
every such maximal ideal m/J = mξ/J, that the quadratic module generated by M
in (A/J)m/J contains f . Consider the commutative diagram
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A Am Âm

A/J Am/JAm Âm/JÂm
∼

of ring homomorphisms. The map labelled ∼ is an isomorphism since dim(A/J) = 0.
In view of the natural isomorphism (A/J)m/J � Am/JAm, this completes the proof.

ut

Using Proposition 6.5.6, we can decide the question left open in Remark 6.1.6.3:

6.5.8 Proposition. Let C be a non-singular affine curve overR, and let M ⊆ R[C] be
a quadratic module that is finitely generated. If the subset S(M) of C(R) is compact
then M is a preordering.

Proof. The quadratic module M is Archimedean by Proposition 5.5.14. Given
0 , f , g ∈ M, we have to show f g ∈ M. For this we may assume that C is ir-
reducible. Now Proposition 6.5.6 applies since the ideal supp(M + 〈( f g)2〉) is 0-
dimensional, and so the question may be decided in the completed local rings ÔC,ξ

(ξ ∈ C(R)). These rings are isomorphic to the formal power series ring R[[t]]. By an
easy argument (Exercise 6.5.8), every quadratic module in R[[t]] is a preordering. So
we are done. �

A prominent case where Propositions 6.5.5 and 6.5.6 apply is when suitable as-
sumptions are made on the Hessian of f at each of its zeros:

6.5.9 Definition. Let V be an affine R-variety, let ξ ∈ V(R) be a non-singular R-
point of V with maximal ideal mξ, and let g = (g1, . . . , gn) ∈ R[V] be a regular
system of parameters at ξ. Let f ∈ R[V] with f (ξ) = 0, and write f =

∑n
i=1 aigi +∑n

i, j=1 bi jgig j + h with ai, bi j = b ji ∈ R and h ∈ m3
ξ .

(a) f satisfies the Hessian conditions at ξ if a1 = · · · = an = 0 (i.e. f ∈ m2
ξ) and if

the Hessian matrix (bi j)1≤i, j≤n (of f with respect to g) is positive definite.
(b) Let 0 ≤ r ≤ n, then f satisfies the boundary Hessian conditions at ξ with respect

to g1, . . . , gr if a1 > 0, . . . , ar > 0 and ar+1 = · · · = an = 0, and if the symmetric
matrix (bi j)r+1≤i, j≤n (of size n − r) is positive definite.

6.5.10 Remarks.

1. The Hessian conditions (a) are independent of the chosen regular parameter
system g. Similarly, the boundary Hessian conditions (b) depend only on the first r
parameters g1, . . . , gr. Note that (a) is the particular case r = 0 of (b).

2. Let V = An be affine n-space, let g = x = (x1, . . . , xn) be the cartesian co-
ordinates. For 0 ≤ r ≤ n let Kr = {ξ ∈ Rn : ξ1 ≥ 0, . . . , ξr ≥ 0}. If f ∈ R[x]
is a polynomial with f (0) = 0, the following hold by elementary calculus (Exer-
cise 6.5.1): If f satisfies the boundary Hessian conditions at ξ = 0 with respect to
x1, . . . , xr, then f > 0 on (U∩Kr)r {0} for some neighborhood U of the origin. Con-
versely, if f |Kr has a local minimum at the origin, the “non-strict” boundary Hessian



6.5 Global results 241

conditions hold, i.e. ∂ f
∂xi

(0) ≥ 0 (i = 1, . . . , r) and
( ∂2 f
∂xi ∂x j

(0)
)
r+1≤i, j≤n � 0. The same

holds, mutatis mutandis, around any non-singular R-point on any affine R-variety,
and with respect to any regular system of parameters. Therefore, the boundary Hes-
sian conditions (b) at ξ are a natural sufficient condition, for the restriction of f to
SV (g1, . . . , gr) to have a local minimum at ξ.

6.5.11 Theorem. Let V be an affine R-variety, let T ⊆ R[V] be a finitely generated
preordering for which K = SV (T ) is compact, and let f ∈ R[V] with f |K ≥ 0. For
every ξ ∈ Z( f ) ∩ K, assume that ξ is a non-singular point of V, and that there is a
sequence g1, . . . , gr in T which is part of a regular system of parameters at ξ, such
that f satisfies the boundary Hessian conditions at ξ with respect to g1, . . . , gr. Then
f ∈ T.

For the proof we need the following lemma:

6.5.12 Lemma. If k is a field and f ∈ k[[x1, . . . , xn]] satisfies ω( f −
∑n

i=1 x2
i ) ≥ 3,

then f is a sum of squares in k[[x1, . . . , xn]].

Proof. The lemma is a particular case of Exercise 5.7.8. The following direct proof
is taken from Marshall [136]. If n = 1 then f = x2 f1 where f1 ∈ 1 + m, so f1 and
hence f is a square. Let n > 1, let g = f −

∑n
i=1 x2

i . Since ω(g) ≥ 3 we may write
g = x2

1g1 + x1g2 + g3, where the gi are power series such that x1 occurs neither in g2
nor in g3, and ω(gi) ≥ i for i = 1, 2, 3. So we have

f =
1
2

x2
1(1 + 2g1) +

1
2

(x1 + g2)2 + h (6.9)

where
h = x2

2 + · · · + x2
n + g3 −

1
2

g2
2.

Both the first two summands in (6.9) are squares. Since g2, g3 involve only the
variables x2, . . . , xn, the series h is sos by the inductive hypothesis, and so f is sos
as well. �

The following is an easy generalization, see Exercise 6.5.6 for the proof:

6.5.13 Corollary. Let R be a real closed field, let x = (x1, . . . , xn) and 1 ≤ i ≤ r. Let
f , g ∈ R[[x]] be such that f =

∑n
i=r+1 aixi +

∑n
i, j=1 ai jxix j + g where ai, ai j = a ji ∈ R

and ω(g) ≥ 3. Assume that ar+1, . . . , an > 0 and that the symmetric matrix (ai j)1≤i, j≤r

is positive definite. Then f lies in the preordering of R[[x]] that is generated by
xr+1, . . . , xn.

Proof of Theorem 6.5.11. By Corollary 6.5.13, f lies in T̂ξ for every ξ ∈ ZV ( f )∩ K.
Since the boundary Hessian conditions imply that each zero of f in K is isolated in
K, the zero set ZV ( f ) ∩ K is finite. So the theorem follows from Proposition 6.5.5.

ut
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6.5.14 Remark. When we replace T in 6.5.11 by an Archimedean quadratic module
M, the same proof works if we add the assumption that R[V]/ supp(M + 〈 f 〉) is 0-
dimensional, see 6.5.6. In fact, this additional assumption may be shown to hold
automatically, therefore it is not needed. We refer to Marshall’s paper [135] for the
details.

6.5.15 Example. Consider the preordering T ⊆ R[x, y] generated by 1 − x2 and
1 − y2. The associated basic closed set K is the square with vertices (±1,±1). The
polynomial f = 2 − x2 − y2 is non-negative on K, and vanishes in the four vertices.
Theorem 6.5.11 applies to give f ∈ T (and in fact f ∈ M = QM(1 − x2, 1 − y2),
according to Remark 6.5.14). In the point ξ = (1, 1), for instance, we may use the
local parameter system u = 1 − x, v = 1 − y: Then f satisfies the boundary Hessian
conditions at ξ with respect to u, v since u, v ∈ M and f = 2u + 2v − u2 − v2.
This example may be generalized in various directions, see Exercise 6.5.9 for one
possibility.

We now consider preorderings on curves.

6.5.16 Proposition. Let C be an irreducible affine curve over R without real singu-
lar points, and let g1, . . . , gr ∈ R[C] be such that K = SC(g1, . . . , gr) is compact.
The preordering T = PO(g1, . . . , gr) in R[C] is saturated if and only the following
two conditions hold:

(1) For every boundary point ξ of K (relative to C(R)) there is an index i with
ordξ(gi) = 1;

(2) for every isolated point ξ of K there are indices i, j with ordξ(gi) = ordξ(g j) = 1
such that gig j ≤ 0 in a neighborhood of ξ on C(R).

Proof. For every boundary point ξ of K, there exists f ∈ R[C] with f ≥ 0 on K
and with ordξ( f ) = 1. This implies that (i) holds if T is saturated. For condition
(ii) one may argue similarly. Conversely assume that (i) and (ii) are true. Then for
every ξ ∈ K, the completed local preordering T̂ξ at ξ is saturated, by Exercise 6.3.10.
Hence the uncompleted preordering Tξ is saturated (Corollary 6.3.14), and Theorem
6.5.1 implies that T itself is saturated. �

6.5.17 Examples.

1. Conversely, it is not hard to show, for C and K as above, that there always
exist two polynomials h1, h2 ∈ R[C] with K = SC(h1, h2) that satisfy the conditions
in Proposition 6.5.16. When K has no isolated points one can even find a single
polynomial h1 with these properties. When K has at least one isolated point, this is
not possible by 6.5.16. In any case, the saturated preordering P(K) of any compact
semialgebraic set K ⊆ C(R) is finitely generated (for C a non-singular affine curve).

2. For an example, consider the set K = {0} ∪ [2, 3] ⊆ R. The natural generators
(6.1.2) for K are p0 = t, p1 = t(t − 2) and p2 = 3 − t. Their product g = p0 p1 p2
satisfies K = {ξ ∈ R : g(ξ) ≥ 0}, but PO(g) fails to be saturated according to 6.5.16.
An explicit example of a polynomial h with h|K ≥ 0 but h < PO(g) is h = t, as
witnessed in the (completed) local ring of the origin.
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3. Let us re-consider the saturated preordering P(K) ⊆ R[t] of a closed semi-
algebraic set K ⊆ R. It was shown in 6.1.4 that P(K) is always finitely generated
by the natural generators for K, and that these are the essentially unique minimal
system of generators when K is unbounded. From Proposition 6.5.16 we see that
the bounded (compact) case is entirely different: P(K) can always be generated by
two polynomials, and there is no uniqueness of the generators whatsoever. When K
has no isolated points, P(K) is even generated by the product p0 · · · pm of the natural
generators alone.

Let us show that this last result doesn’t extend to non-Archimedean real closed
base fields R. Let ε > δ > 0 be two positive infinitesimals in R, and consider
K = [−1, 0]∪ [δ, ε]. The canonical generators for K are p0 = t + 1, p1 = t(t − δ) and
p2 = ε − t, their product is p = p0 p1 p2. We show that PO(p) doesn’t contain p1.
Otherwise there would be an identity p1 = σ0 + σ1 p0 p1 p2 with σ0, σ1 sos in R[t].
It follows that σ0 is divisible by p1 and hence by p2

1, so we get

1 = s0 p1 + s1 p0 p2 (6.10)

with sums of squares s0, s1 in R[t]. Let O ⊆ R be the convex hull of Z in R. We
cannot have s0, s1 ∈ O[t], since reduction modulo mO would then give 1 = s0t2 −

s1t(t + 1) in R[t], contradiction. Let c > 0 be the maximum of the absolute values
of the coefficients of σ0 and σ1. So c < O, and dividing (6.10) by c gives 0 =

s′0 p1 + s′1 p0 p2 with s′0, s′1 sums of squares in O[t]. Reduction modulo mO gives
0 = s′0t2 − s′1t(t + 1) in R[t] where s′0, s′1 are sums of squares in R[t] and at least one
of them is non-zero. This is impossible.

6.5.18 Remarks.

1. Let C be an affine curve over R that is non-singular and irreducible. When
C(R) is compact, we have seen (6.5.16) that psd = sos holds on C (i.e., for R[C]).
There are in fact many more cases when psd = sos holds, as illustrated by the
following example. Consider the plane affine curve C = V(x3 + y3 + xy + 1) ⊆ A2,
with non-singular projective model C = V(x3 + y3 + xyz + z3) ⊆ P2. Obviously C(R)
is not compact. There are three points of C on the line z = 0 (the “points at infinity”
of the affine curve C), namely P = (1 : −1 : 0) and the pair Q, Q′ of complex
conjugate points (ω : 1 : 0) and (1 : ω : 0) with ω a primitive sixth root of unity.
The curve C0 := C r {Q,Q′} is again affine (by Riemann–Roch), and contains the
original curve C as an open subcurve, namely C = C0 r {P}. Algebraically, this
means that R[C] is the localization of R[C0] in a suitable multiplicative set. Since
C0(R) is compact, psd = sos holds on C0, and therefore it holds on C as well (6.2.6).

2. The previous example can be generalized in a straightforward way. For every
irreducible non-singular affine curve C over R, there is a non-singular projective
curve C, unique up to isomorphism, that contains C as an open and Zariski dense
subset. If at least one of the finitely many points in C r C has complex residue
field, then psd = sos holds on C, exactly as in the example before. On the other
hand, if C has genus ≥ 1 and all points in C r C are R-points, it can be shown that
the psd = sos property fails on C. These results can be extended further in various
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directions, e.g. [180], [153]. Altogether, saturatedness questions on affine curves
over R are essentially well understood.

We now turn to algebraic surfaces. From the Archimedean local-global principle
and the discussion in Section 6.4, we immediately see:

6.5.19 Theorem. Let V be a non-singular affine R-variety of dimension two for
which V(R) is compact. Then psd = sos holds in R[V].

Proof. The preordering of sums of squares in R[V] is Archimedean (Theorem
5.5.3). For every maximal ideal m in R[V], the local ring R[V]m is regular of di-
mension two, so psd = sos holds in this ring (Theorem 6.4.7). Hence the theorem
follows from Corollary 6.5.4. �

6.5.20 Remarks.

1. Theorem 6.5.19 contrasts remarkably with the fact that the psd = sos property
fails for the two-dimensional polynomial ring (Theorem 2.4.9).

2. Certain singularities may be allowed in Theorem 6.5.19 without affecting the
conclusion. Indeed, the proof goes through as long as psd = sos holds in the com-
pleted local ring R̂[V]m of every maximal ideal m of R[V]. The complete list of real
analytic surface germs with this property has been determined by Fernando [67].

3. The hypothesis that V is non-singular in Theorem 6.5.19 cannot be relaxed to
Vsing(R) = ∅. For an example consider the surface V given in affine 3-space by the
equation z2− p1(x, y)p2(x, y) = 0 where p1, p2 are as in Exercise 6.5.5. Indeed, there
are no real singular points, and V(R) is compact. The polynomials p1(x, y), p2(x, y)
are non-negative on V(R), but fail to be sums of squares in R[V] by Exercise 6.5.5
and Lemma 6.3.4.

6.5.21 Remark. A prominent case to which Theorem 6.5.19 can be applied is
trigonometric polynomials. Generally, by an n-variate trigonometric polynomial we
mean a function f : Rn → R of the form

f (t1, . . . , tn) = p
(
cos(t1), sin(t1), . . . , cos(tn), sin(tn)

)
where p ∈ R[x1, y1, . . . , xn, yn] is a polynomial. The R-algebra of n-variate trigono-
metric polynomials R[cos(t j), sin(t j) : j = 1, . . . , n] is naturally isomorphic to

Tn := R[x1, y1, . . . , xn, yn]
/
〈1 − x2

j − y2
j : j = 1, . . . , n〉 � T1 ⊗R · · · ⊗R T1,

and can be seen as the ring of polynomial functions on the n-dimensional torus.
Similar as for ordinary polynomials, one may ask whether every non-negative

trigonometric polynomial can be written as a sum of squares of trigonometric poly-
nomials. This question can now be decided completely:

1. (n = 1) Every univariate non-negative trigonometric polynomial is a sum of
(two) squares of trigonometric polynomials. This is essentially the Fejér–Riesz
theorem (Proposition 2.3.1).
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2. (n = 2) Every bivariate non-negative trigonometric polynomial is a sum of
squares of trigonometric polynomials. This follows from Theorem 6.5.19, ap-
plied to the torus surface V = V(1 − x2

1 − x2
2, 1 − x2

3 − x2
4) ⊆ A4.

3. If n ≥ 3, there exist n-variate trigonometric polynomials f that are non-
negative but cannot be written as a sum of squares of trigonometric polyno-
mials. This follows from Theorem 6.1.7. To see explicit examples, one may
start with any psd homogeneous (ordinary) polynomial p(x1, . . . , xn) that is
not a sum of squares, such as the Motzkin form, and take f (t1, . . . , tn) =

p
(
cos(t1), . . . , cos(tn)

)
, cf. the proof of 6.1.7.

4. n-variate trigonometric polynomials that are strictly positive everywhere are
always sums of squares of trigonometric polynomials, regardless of the value
of n. This is a particular case of Schmüdgen’s theorem 5.5.1.

We also get saturatedness results for 2-dimensional compact semialgebraic sets.
Here is an example:

6.5.22 Theorem. Let g1, . . . , gr ∈ R[x1, x2] be irreducible polynomials such that
K = S (g1, . . . , gr) ⊆ R2 is compact. Assume the following:

(1) For i = 1, . . . , r and every ξ ∈ K ∩ Z(gi) we have ∇gi(ξ) , 0;
(2) if i , j and ξ ∈ K ∩ Z(gi, g j), then ∇gi(ξ) and ∇g j(ξ) are linearly independent;
(3) K ∩ Z(gi, g j, gk) = ∅ for any triple i, j, k of pairwise distinct indices.

Then the preordering PO(g1, . . . , gr) in R[x1, x2] is saturated.

Here, of course, ∇g =
( ∂g
∂x1
, ∂g
∂x2

)
denotes the gradient of g.

Proof. Put T = PO(g1, . . . , gr), so Sat(T ) = P(K). For any boundary point ξ of K, it
follows from conditions (1)–(3) that the local dimension of K at ξ is two. Therefore,
if f , g ∈ R[x, y] are non-zero polynomials with g|K ≥ 0 and ( f g)|K ≥ 0, then f |K ≥ 0
as well.

Let f ∈ R[x, y] be given with f |K ≥ 0, we have to show f ∈ T . By decomposing
f into irreducible factors, we may assume that f is not divisible by any of the gi,
and neither by the square of any non-constant polynomial. It follows that the set
Z( f )∩ K is finite. So it suffices to show f ∈ T̂ξ for every zero ξ of f in K (Theorem
6.5.5). So let ξ ∈ Z( f ) ∩ K. After relabelling the gi there is 0 ≤ t ≤ 2 with gi(ξ) = 0
for 1 ≤ i ≤ t and gi(ξ) > 0 for t + 1 ≤ i ≤ r. Moreover the gradients ∇gi(ξ)
(1 ≤ i ≤ t) are linearly independent. The preordering T̂ξ is generated by g1, . . . , gt,
and it is saturated by Proposition 6.4.8. So T itself is saturated by 6.5.5. �

Examples where Theorem 6.5.22 applies are (compact convex) polygons, or
more generally compact basic closed sets K ⊆ R2 whose boundary curves are
smooth and whose real pairwise intersection points are transversal (with no three
of them intersecting in a boundary point of K).

6.5.23 Remark. The aforementioned techniques can be extended to obtain saturat-
edness results for certain two-dimensional non-compact sets K, similar to what was
remarked in 6.5.18 for curves. An example is given in Exercise 6.5.7.
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Although these sets K are not compact, they are close to being compact, in the
sense that the ring BV (K) ⊆ R[V] of K-bounded polynomials has transcendence de-
gree two. For several years it had been an open question whether there exists a two-
dimensional set K ⊆ R2 whose ring of K-bounded polynomials has transcendence
degree one, and whose saturated preordering P(K) is finitely generated. In particu-
lar, the strip conjecture was discussed, according to which K = [−1, 1] × R ⊆ R2

should be such an example. In 2010, Marshall [137] succeeded in proving this con-
jecture:

6.5.24 Theorem. (Marshall) Every polynomial f ∈ R[x, y] that is non-negative on
the strip [−1, 1] × R can be written in the form

f (x, y) =

r∑
i=1

gi(x, y)2 + (1 − x2)
s∑

j=1

h j(x, y)2

with polynomials gi, h j ∈ R[x, y].

In other words, the preordering T = PO(1 − x2) in R[x, y] is saturated. Unfortu-
nately we do not have room here to include the proof.

Finally we take up the question of uniform denominators for positive (semi-)
definite forms. Using the local-global principle, we are now in a position to lift the
degree restriction that was needed in Theorem 5.5.7. We get the following general
result:

6.5.25 Theorem. Let x = (x1, . . . , xn), let h1, . . . , hr ∈ R[x] be homogeneous of even
degrees, and let

K = {ξ ∈ Rn : h1(ξ) ≥ 0, . . . , hr(ξ) ≥ 0}.

Let f , g ∈ R[x] be forms of even degree, with deg(g) > 0, and assume that f , g are
strictly positive on K r {(0, . . . , 0)}. If one of the following conditions

(1) deg(g) divides deg( f ),
(2) the interior of K is non-empty

holds, there exists N ≥ 0 and homogeneous sums of squares se ∈ R[x] (e ∈ {0, 1}r)
such that

f gN =
∑

e

se · h
e1
1 · · · h

er
r (6.11)

and such that every summand has the same degree.

6.5.26 Corollary. Given any two positive definite forms f , g ∈ R[x1, . . . , xn], there
is N ≥ 0 such that f gN is a sum of squares of forms.

6.5.27 Corollary. For any positive definite form f in R[x], there is some odd power
f 2k+1 that is a sum of squares of forms.

Proof. Apply the previous corollary with g = f 2. �
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Proof of Theorem 6.5.25. As in 5.5.7, the complement V of the hypersurface g = 0
in Pn−1 is an affine R-variety, with R[V] =

{ q
gm : q ∈ R[x] homogeneous, deg(q) =

deg(gm)
}
. Put p = x2

1 + · · · + x2
n and choose integers di, ei ≥ 0 with deg(hi pdi ) =

deg(g2ei ) (i = 1, . . . , r). The fractions Hi := hi pdi

g2ei
are regular functions on V and

K =
{
ξ ∈ V(R) : H1(ξ) ≥ 0, . . . ,Hr(ξ) ≥ 0

}
.

In particular, K is a basic closed (compact) subset of V(R). Let T ⊆ R[V] be the
preordering that is generated by H1, . . . ,Hr, and note that T is Archimedean.

First assume (1). The proof is a straightforward generalization of the proof of
Theorem 5.5.7: Let m ≥ 1 be the integer with deg( f ) = deg(gm), then ϕ := f

gm lies
in R[V] and is strictly positive on K. So ϕ ∈ T by Schmüdgen’s theorem. After
multiplication with a sufficiently high even power of g, this means an identity of the
form (6.11).

Now assume (2), so int(K) , ∅. We choose a linear form l , 0 in R[x] with
l(ξ) , 0 for some ξ ∈ int(K), and such that l doesn’t divide h1 · · · hr. Moreover
choose integers m, k ≥ 0 with deg(l2k f ) = deg(gm). Then ϕ := l2k f

gm ∈ R[V] satisfies
ϕ ≥ 0 on K. Below we’ll show ϕ ∈ T . After clearing denominators, this means an
identity

l2k f gN =
∑

e

σe · h
e1
1 · · · h

er
r

in R[x], where the σe are homogeneous sums of squares and each summand on the
right has the same degree. Each of these summands is non-negative on a neighbor-
hood of ξ, which implies that each of them is divisible by l2k (see Exercise 4.6.3).
Thus l2k divides σe for every e, so we may cancel l2k and get the desired conclusion.

To prove ϕ ∈ T we use the Archimedean local-global principle, viz. Theorem
6.5.1. For every point ξ ∈ V(C) we show that ϕ lies in Tξ, the preordering generated
by T in the local ring OV,ξ. Let ν ∈ {1, . . . , n} be an index with ξν , 0. All three
fractions

f̃ =
f

xdeg( f )
ν

, g̃ =
g

xdeg(g)
ν

, l̃ =
l
xν

lie in Oξ, and g̃ is a unit in Oξ. By definition we have ϕ = l̃2k f̃ g̃−r. To prove ϕ ∈ Tξ
it therefore suffices to show that f̃ and g̃ lie in Tm. Both are strictly positive on the
basic closed constructible subset of Sper(Oξ) that is associated with Tξ, since f and
g are > 0 on K. Therefore f̃ , g̃ ∈ Tm by Corollary 6.3.7, and the proof is complete.

ut

For three homogeneous variables, even more is true:

6.5.28 Theorem. Let g ∈ R[x1, x2, x3] be an arbitrary positive definite form. Then
for any non-negative form f ∈ R[x1, x2, x3], there exists an integer N ≥ 1 such that
f gN is a sum of squares of forms.

Proof. Consider the proof of Theorem 6.5.25, case (2), for n = 3 and K = R3,
and choose l, k, m as there. The fraction ϕ =

l2k f
gm ∈ R[V] is psd on V(R), and it
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suffices to show that ϕ is sos in R[V]. But this is true (Theorem 6.5.19) since V is a
non-singular affine surface and V(R) is compact. �

6.5.29 Remark. In fact, even the singular conic g = x2
1+x2

2 is a uniform denominator
in the above sense: For every psd form f = f (x1, x2, x3) in R[x1, x2, x3] there exists
N ≥ 1 such that the form f gN is sos [107]. This seems surprising at first since g has
(projectively) a real zero. The proof rests on the cylinder theorem [189], according
to which the psd = sos property holds for the ring R[x, y, z]/〈1 − x2 − y2〉. Note that
this theorem is a sharpening of Marshall’s strip theorem (Theorem 6.5.24).

Exercises

6.5.1 Let n ≥ 1 and 0 ≤ r ≤ n. Put K = {ξ ∈ Rn : ξ1 ≥ 0, . . . , ξr ≥ 0} and let f ∈ R[x] =

R[x1, . . . , xn] with f (0) = 0 satisfy the boundary Hessian conditions at the origin with re-
spect to x1, . . . , xr. Show that f > 0 on (U ∩ K) r {0} for some neighborhood U of the
origin.

6.5.2 Consider the plane affine curve C over R with equation

x4 + y4 = x2 − y2.

Does psd = sos hold in R[C]? If not then find an explicit element of R[C] that is psd but not
sos.

6.5.3 Same as Exercise 37, but for the curve

x4 + y4 = x2 + y2.

6.5.4 Consider the plane affine curve C = V(x4 + y2 − x3). The curve C has a cusp singularity at
the origin, and C(R) is compact. We prove that the preordering of all psd polynomials on C
is not finitely generated. Write P = { f ∈ R[x, y] : f ≥ 0 on C(R)}. Let m = 〈x, y〉 ⊆ R[x, y],
the maximal ideal at the origin O = (0, 0). For f ∈ R[x, y] let ω( f ) = sup{n ≥ 0: f ∈ mn},
the vanishing order of f at O.

(a) If f ∈ P has ω( f ) = 1, show that there are a, b ∈ R with f ∈ ax + by +m2 and a > 0.
(b) Conversely, show for every b ∈ R that there exists f ∈ P with f ∈ x + by +m2.
(c) Use (a) and (b) to prove that the preordering P is not finitely generated.

6.5.5 Let p1, p2 ∈ R[x, y] be irreducible polynomials for which the plane affine curves Ci = V(pi)
(i = 1, 2) are non-singular, let T = PO(p1 p2) and K = S(p1 p2). We assume that K is
compact and S(−p1,−p2) = ∅, and that C1(C) ∩ C2(C) , ∅. Find examples of such pairs
p1, p2, then prove for any such pair:

(a) T is Archimedean and p1, p2 ∈ Sat(T );
(b) p1, p2 ∈ Tm for every maximal ideal m of R[x, y] with residue field R;
(c) p1, p2 < T .

Hint: To show (b), the arguments in the proof of Theorem 6.5.1 are helpful.

6.5.6 Prove Corollary 6.5.13.

6.5.7 Consider the preordering T = PO(x, 1 − x, y, 1 − xy) in R[x, y] with associated set K =

S(T ) ⊆ R2. Show that T is saturated, although K has dimension two and is not compact.
Hint: The preordering PO(u − u2, v − v2) ⊆ R[u, v] is saturated. Use this to prove the claim
via a suitable substitution of variables.
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6.5.8 Let R be a real closed field. Show that every quadratic module in the power series ring R[[t]]
is a preordering.

6.5.9 Let finitely many points P1, . . . , Pm be given on the unit sphere in Rn, and let K be their
convex hull. Let g1, . . . , gr be linear polynomials such that K = S(g1, . . . , gr). Show that
f = 1 −

∑n
i=1 x2

i is contained in the preordering generated by g1, . . . , gr.

6.6 Stability

An important question for applications is the study of degree bounds in weighted
sos representations of polynomials. Quite a bit is known, and we will only scratch
on the surface.

6.6.1 Let n ≥ 1 and x = (x1, . . . , xn), and write Σ = ΣR[x]2 in the following.
Let M = QM(g1, . . . , gr) be a finitely generated quadratic module in R[x], and put
g0 = 1. For d ≥ 0 let us write (temporarily)

Σd(g1, . . . , gr) :=
{ r∑

i=0

sigi : si ∈ Σ, deg(sigi) ≤ d for i = 0, . . . , r
}
. (6.12)

Clearly Σd(g1, . . . , gr) ⊆ M∩R[x]≤d is an inclusion of convex cones that will usually
be strict, and M =

⋃
d≥0 Σd(g1, . . . , gr). For every d, the cone Σd(g1, . . . , gr) is semi-

algebraic as a subset of the finite-dimensional vector spaceR[x]≤d. Indeed, it follows
from Corollary 2.1.17 that every sum of squares si in (6.12) can be written as a sum
of at most

(
n+k

n

)
many squares where k = b d

2 c. So Σd(g1, . . . , gr) is the image of a

polynomial map RN → R[x]≤d, for N = (r + 1)
(

n+k
n

)
.

6.6.2 Definition. Let M = QM(g1, . . . , gr) as before. A stability bound for M (with
respect to the system g1, . . . , gr of generators) is a map ϕ : N→ N with the property
that M ∩ R[x]≤d ⊆ Σϕ(d)(g1, . . . , gr) holds for every d ≥ 1.

6.6.3 Remark. Assume that a stability bound ϕ as in Definition 6.6.2 exists and is
known. Then it is possible, for a given polynomial f , to test membership of f in
M effectively. If deg( f ) = d, this means that one can—in principle—check whether
there exist sums of squares si with f =

∑r
i=0 sigi and deg(si) ≤ ϕ(d)− deg(gi) for i =

0, . . . , r. As will be discussed in Chapter 8 in more detail (Section 8.4 and Examples
8.3.4), this is the feasibility question for an explicit semidefinite program. Under
mild assumptions, this question can be decided efficiently, at least if the degrees are
not too big.

The existence of a stability bound 6.6.2 depends only on the quadratic module
M, and not on the generators chosen. This is a consequence of the next lemma:

6.6.4 Lemma. Let g1, . . . , gr ∈ R[x] and M = QM(g1, . . . , gr), and let g ∈ M.
If there exists a stability bound for M with respect to the system g1, . . . , gr, g of
generators, there also exists one with respect to g1, . . . , gr.
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Proof. The converse is clear anyway. Let ψ : N → N be a stability bound with
respect to g1, . . . , gr, g. Choose a representation g = σ0 + σ1g1 + · · · + σrgr of g,
with σi ∈ Σ, and let e = max{deg(σigi) : i = 0, . . . , r}. Note that e ≥ deg(g). We
claim that ϕ(d) := ψ(d) + e− deg(g) is a stability bound for g1, . . . , gr. Indeed, given
f ∈ M with deg( f ) ≤ d, there is an identity f = s0 + sg + s1g1 + · · · + srgr with
s, si ∈ Σ and deg(sg), deg(sigi) ≤ ψ(d). So

f =

r∑
i=0

(si + sσi)gi. (6.13)

Since deg(sigi) ≤ ψ(d), deg(sg) ≤ ψ(d) and deg(sσigi) ≤ deg(s) + e, each summand
in (6.13) has degree at most ψ(d) + e − deg(g). �

6.6.5 Definition. A finitely generated quadratic module M in R[x] is stable if a sta-
bility bound exists for M with respect to some (equivalently, any) finite system of
generators.

6.6.6 Examples.

1. The quadratic module QM(1− t2) in R[t] is stable, with stability bound ϕ(d) =

d + 1 (Exercise 6.6.1).
2. Let M ⊆ R[x1, . . . , xn] be a finitely generated quadratic module such that S(M)

contains a non-empty open cone in Rn. Then M is stable with stability bound ϕ(d) =

d (Exercise 6.6.2).
3. Stengle [203] analyzed the following example. Consider the polynomial f =

1 − t2 in R[t]. For every ε > 0, the preordering T = PO( f 3) in R[t] contains f + ε,
according to Theorem 5.5.1. But when we represent f + ε as an element of T , the
degrees of the summands necessarily explode as ε → 0. Stengle proved that there
exists a constant c > 0 such that, in every identity f + ε = p + q f 3 with p, q sos,
one has deg(p) > cε−1/2.

4. Looking for an analogue of the stability property in commutative algebra,
one might ask: Given an ideal I = 〈p1, . . . , pr〉 in the polynomial ring k[x] =

k[x1, . . . , xn] over a field, when does there exist a function ϕ : N→ N with

I ∩ k[x]≤d ⊆ p1k[x]≤ϕ(d) + · · · + prk[x]≤ϕ(d)

for all d? The answer is, always, and this is an easy consequence of the theory of
Gröbner bases.

6.6.7 It is easy to generalize the notion of stability from polynomial rings to finitely
generated R-algebras A, without the need to fix a system of generators of A. A
quadratic module M = QM(g1, . . . , gr) in A is called stable, if for every finite-
dimensional linear subspace U of A there exists a finite-dimensional linear subspace
W of A with

M ∩ U ⊆ (ΣW2) + (ΣW2)g1 + · · · + (ΣW2)gr,

with ΣW2 denoting the set of sums of squares of elements from W. For the polyno-
mial ring A = R[x], this definition is clearly equivalent to the one given in 6.6.5. The
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proof of Lemma 6.6.4 carries over to this more general setup without difficulty, so
the definition just given is independent of the system g1, . . . , gr of generators of M.

6.6.8 Lemma. Let A be a finitely generated R-algebra and M a finitely generated
quadratic module in A. If I is an ideal of A with I ⊆ supp(M), then M is stable (in
A) if and only if M/I is stable (in A/I).

Proof. The “only if” part is directly clear. For the converse let I = 〈h1, . . . , hs〉. Let
g1, . . . , gr be a generating system of M such that the ±h j are among the gi. For any
linear subspace V ⊆ A let

Σg(V) := (ΣV2) + (ΣV2)g1 + · · · + (ΣV2)gr.

Let U ⊆ A be a subspace, dim(U) < ∞. Since M/I is stable by assumption, there is
a subspace W ⊆ A with dim(W) < ∞ such that M ∩ U ⊆ Σg(W) + I. Let L ⊆ A be a
subspace with dim(L) < ∞ and with U +Σg(W) ⊆ L. Then M∩U ⊆ (I∩L)+Σg(W).
Let V ⊆ A be a subspace with 1 ∈ V , dim(V) < ∞ and with I ∩ L ⊆ g1V + · · ·+ gsV .
Since

giv = gi

(1 + v
2

)2
− gi

(1 − v
2

)2
,

and since {±h1, . . . ,±hs} ⊆ {g1, . . . , gr}, we get I ∩ L ⊆ Σg(V). Hence M ∩ U ⊆
Σg(V) + Σg(W) ⊆ Σg(V + W). �

By the lemma, there is no loss of generality if we restrict our discussion of stable
quadratic module to the polynomial ring R[x] (instead of coordinate rings R[V] of
affine varieties V).

6.6.9 There is an alternative characterization of stable quadratic modules that is
both useful and instructive. We need a few notational preparations. If R is a real
closed field, a subset M of R[x] = R[x1, . . . , xn] will be called locally semialgebraic
if, for every finite-dimensional linear subspace U of R[x], the subset M ∩ U of U
is semialgebraic. If in addition M is contained in some finite-dimensional subspace
U, we say that M is a semialgebraic subset of R[x].

We generalize base field extension (Definition 4.1.7) from semialgebraic sets
to locally semialgebraic sets, as follows. If M is a locally semialgebraic subset of
R[x] and R ⊇ R is a real closed overfield, let the set MR ⊆ R[x] be defined by
MR ∩ UR = (M ∩ U)R for every finite-dimensional R-subspace U ⊆ R[x]. Here
UR = U ⊗R R denotes the R-subspace of R[x] spanned by U. Clearly, MR is a locally
semialgebraic subset of R[x].

Now let M = QM(g1, . . . , gr) be a quadratic module in R[x], and put g0 = 1 as
usual. For k ≥ 1 let Mk = g0Σ≤k + · · ·+grΣ≤k. This is a semialgebraic subset of R[x],
so we may consider its extension (Mk)R to R ⊇ R. The union of these extended sets
(Mk)R, over k ≥ 1, coincides with the quadratic module MR[x] that is generated by
M in R[x]. In other words, we have

MR[x] =
⋃
k≥1

(Mk)R.
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When the quadratic module M is stable, the subset M of R[x] is locally semialge-
braic. The converse is not true, as we will see.

6.6.10 Proposition. For every finitely generated quadratic module M in R[x], the
following are equivalent:

(i) M is stable;
(ii) for every real closed field extension R ⊇ R, the quadratic module MR[x] gener-

ated by M in R[x] is a locally semialgebraic subset of R[x];
(iii) M is a locally semialgebraic subset of R[x], and MR = MR[x] holds for every

real closed extension R ⊇ R.

To prevent confusion we remark (again) that MR ⊆ R[x] is the base field ex-
tension of the locally semialgebraic set M ⊆ R[x] from R to R, while MR[x] is the
quadratic module generated by M in R[x].

Proof. We fix a generating system g1, . . . , gr of M and use the notation Mk (k ≥ 1)
introduced in 6.6.9 above.

(i) ⇒ (iii): Given a subspace U ⊆ R[x] with dim(U) < ∞, there is m ≥ 1 with
M ∩U = Mm ∩U, since M is stable. In particular, M ∩U is a semialgebraic set. For
R ⊇ R we have MR[x] = MR since

MR[x] ∩ UR =
⋃
k≥1

(Mk)R ∩ UR =
⋃
k≥1

(Mk ∩ U)R = (Mm ∩ U)R = MR ∩ UR

for every U as before. The implication (iii) ⇒ (ii) is obvious. To see (ii) ⇒ (i) let
U ⊆ R[x], dim(U) < ∞. For every real closed field R ⊇ R we have

MR[x] ∩ UR =
⋃
k≥1

(Mk)R ∩ UR =
⋃
k≥1

(Mk ∩ U)R, (6.14)

and this subset of UR is R-semialgebraic since MR[x] is a locally semialgebraic set
by hypothesis (ii). Consider the countable ascending union

M ∩ U =
⋃
k≥1

(Mk ∩ U)

of semialgebraic sets in U. We have to show that M ∩ U = Mk ∩ U for some
k ≥ 1. From Exercise 1.6.6, recall that R has a real closed field extension S that is
ℵ1-saturated. Since the countable union

⋃
k≥1(Mk ∩ U)S is an S -semialgebraic set,

the saturatedness property implies that it this set is covered by finitely many sets
(Mk ∩U)S . In other words, there is k ≥ 1 with (Mi ∩U)S = (Mk ∩U)S for all i ≥ k.
This means Mi ∩ U = Mk ∩ U for i ≥ k, and so M ∩ U = Mk ∩ U. �

6.6.11 Examples.

1. For every real closed field R and every semialgebraic set M ⊆ Rn, the saturated
preordering P(M) ⊆ R[x] is a locally semialgebraic set in R[x]. Indeed, if we fix
a degree d, the intersection P(M) ∩ R[x]≤d can be described by an R-formula in
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the coefficients of the polynomials, therefore it is a semialgebraic set by Tarski’s
theorem. If n = 1, we see from this remark and from Proposition 6.6.10 that, for
every closed semialgebraic set M ⊆ R, the saturated preordering P = P(M) in R[t]
is stable. Indeed, P is generated (as a preordering) by the natural generators for M,
and the same is true over any real closed field R ⊇ R (Proposition 6.1.4(a)).

2. If C ⊆ An is any affine non-singular curve over R and K ⊆ C(R) is any
compact semialgebraic set, it can be shown [186] that the saturated preordering
P(K) is stable. This result is much harder to prove, at least when the curve is not
rational.

3. Let K ⊆ Rn be a compact semialgebraic set of dimension two whose boundary
is sufficiently regular, for instance a polytope or a disk in the plane, or the 2-sphere in
R3. It was proved in Section 6.5 that the saturated preordering P(K) of K is finitely
generated. But these preorderings are known not to be stable. This will be shown
below in the case where K ⊆ R2 (Corollary 6.6.23).

The main goal for this section is to prove that Archimedean quadratic modules
are never stable, as long as their associated basic closed set has dimension at least
two. (A full proof will only be given for dimension ≥ 3.) In this context it is useful
to introduce an auxiliary topology on the polynomial ring (see also Example B.5.3):

6.6.12 Definition. If V is an R-vector space of at most countable dimension, define
a topology τ on V as follows: A subset M ⊆ V is τ-open if and only if M ∩ U is
open in U for every finite-dimensional linear subspace U of V (with respect to the
Euclidean topology on U). We will refer to the topology τ as the canonical topology
on V .

6.6.13 Remarks.

1. From the definition it is clear that, with respect to τ, every linear form V → R
is continuous, and every linear subspace of V is closed.

2. In particular, we may consider the canonical topology τ on the polynomial
ring R[x] = R[x1, . . . , xn] (or more generally, on any finitely generated R-algebra).
For every set S ⊆ Rn, the saturated preordering P(S ) in R[x] is τ-closed, since for
every ξ ∈ Rn the evaluation map ϕξ : R[x]→ R, p 7→ p(ξ) is continuous.

3. Given a general subset M of R[x], say locally semialgebraic, it is usually a
difficult task to describe the closure M of M with respect to the canonical topology.
Although clearly M =

⋃
d≥1 M ∩ R[x]≤d holds since the right hand set is closed, it is

not clear in general how to describe M∩R[x]≤d, for given d. In this respect, closures
of stable quadratic modules are better behaved, as will now be shown.

We start with two useful lemmas of general nature.

6.6.14 Lemma. For any ring A and any ideal I ⊆ A we have 1 +
re√I ⊆ I + ΣA2.

Proof. Recall that 1
2 ∈ A is a general hypothesis. For every a ∈ A and every n ≥ 1,

one sees by induction that
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n − a +
4a2n

22n+1 ∈ ΣA2. (6.15)

Indeed, for n = 1 this is the identity 1 − a + a2

4 = (1 − a
2 )2, and the inductive step

follows from

n + 1 − a +
4a2n+1

22n+2 =
(
n − a +

4a2n

22n+1

)
+

(
1 −

2a2n

22n+1

)2
.

If a ∈ re√I then −a2m ∈ I + ΣA2 for some m ≥ 0, by the abstract real nullstellensatz
3.2.15. Let n = 2k be a 2-power with 2n ≥ 2m, so −a2n

∈ I + ΣA2. Applying (6.15)
to na instead of a shows that n(1 − a) ∈ I + ΣA2, and hence 1 − a ∈ I + ΣA2 since
1
2 ∈ A. �

6.6.15 Lemma. Let M be a quadratic module in a ring A, let I := supp(M) be its
support ideal. Then

√
I is an M-convex ideal, i.e. supp(M +

√
I) =

√
I.

Proof. In Proposition 5.1.17, it was proved that every minimal prime divisor p of
I is M-convex. Hence

√
I is M-convex, being an intersection of M-convex (prime)

ideals. This means supp(M +
√

I) =
√

I, see Remark 5.1.12. �

6.6.16 Proposition. Let A be a finitely generated R-algebra and let M be a finitely
generated quadratic module in A. Then

√
supp(M) ⊆ supp(M), and equality holds

if M is a preordering.

Here, of course, M denotes the closure of M in the canonical topology of A.

Proof. By Lemma 5.1.19 we have
√

supp(M) = re
√

supp(M). So Lemma 6.6.14
implies ε +

√
supp(M) ⊆ M for every real number ε > 0. Hence the closure M

contains
√

supp(M), which proves the first assertion. On the other hand we have
M ⊆ Sat(M) since Sat(M) is closed (Remark 6.6.13). In particular, supp(M) ⊆
supp(Sat(M)). If M is a preordering, supp(Sat(M)) =

√
supp(M) holds by Lemma

6.2.9, which gives the reverse inclusion in this case. �

The next theorem ensures that the closure of a finitely generated quadratic mod-
ule can be controlled, if the module is stable:

6.6.17 Theorem. Let M ⊆ R[x] be a finitely generated quadratic module which is
stable.

(a) M = M +
√

supp(M).
(b) The quadratic module M is again finitely generated and stable.

Since the essential step in the proof of (a) will be used again in Section 8.5, we
isolate it as a separate technical lemma:

6.6.18 Lemma. Let M = QM(g1, . . . , gr) ⊆ R[x] be a quadratic module, and let
I ⊆ R[x] be an M-convex radical ideal. Moreover let W1, . . . ,Wr and V be finite-
dimensional linear subspaces of R[x] with giWiWi ⊆ V for all i. Then the subset
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P = (ΣW2
1 )g1 + · · · + (ΣW2

r )gr + (I ∩ V)

of V is closed.

Proof. Here, of course, ΣW2
i denotes the set of sum of squares of elements of Wi.

Note that every element in ΣW2
i is a sum of mi = dim(Wi) many squares from Wi

(Corollary 2.1.16). For i = 1, . . . , r let Ji := (I : gi) = {p ∈ R[x] : pgi ∈ I}, an ideal
in R[x]. Consider the map

φ :
r⊕

i=1

Wmi
i → V,

(
pi j

)
1≤i≤r

1≤ j≤mi
7→

r∑
i=1

mi∑
j=1

p2
i j gi.

The map φ induces a map

φ :
r⊕

i=1

(
Wi/Wi ∩ Ji

)mi → V/V ∩ I, (6.16)

and im(φ) is the image of P ⊆ V in V/V ∩ I. We show that φ is “anisotropic”,
meaning that only the zero tuple is mapped to zero. So let p = (pi j) be a tuple in the
left hand direct sum of (6.16) for which φ(p) = 0, i.e. with

∑
i, j p2

i jgi ∈ I. Since I is

M-convex we have p2
i jgi ∈ I for all i, j, and I =

√
I implies pi jgi ∈ I, hence pi j ∈ Ji

for all i, j. We may therefore apply Lemma 2.4.7: Since the map φ is homogeneous
of degree 2, this lemma implies that the image set im(φ) is closed. Since V ∩ I ⊆ P,
this means that P is closed in V . �

Proof of Proposition 6.6.17. Put I :=
√

supp(M). Part (b) of 6.6.17 follows from
part (a), observing Lemma 6.6.8. To prove (a) it suffices, in view of Lemma 6.6.16,
to show that M + I is closed. Let 1 = g0, g1, . . . , gr be a generating system for the
quadratic module M, and let U ⊆ R[x] be a given linear subspace, with 1 ∈ U
and dim(U) < ∞. Since M is stable, there exists a linear subspace W ⊆ R[x] with
dim(W) < ∞ such that M ∩ U ⊆ (ΣW2)g0 + · · · + (ΣW2)gr, cf. 6.6.7. The ideal I is
M-convex by Lemma 6.6.15. So Lemma 6.6.18 implies that

∑
i(ΣW2)gi + (I ∩ V) is

closed (in some linear subspace V ⊇ U of finite dimension). Therefore (M + I) ∩U
is closed. Since U was arbitrary, this proves part (a). ut

6.6.19 Corollary. A finitely generated and stable quadratic module is closed if, and
only if, its support is a radical ideal.

Proof. If M is closed then supp(M) is radical by Corollary 6.6.16, even without the
assumption that M is stable. If M is stable and supp(M) is radical, then M = M by
Theorem 6.6.17. �

Here is one application:

6.6.20 Corollary. If M is a finitely generated quadratic module in R[x] for which
S(M) contains a non-empty open cone in Rn, then M is closed (and stable).
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Proof. M is stable, see Exercise 6.6.2. So Corollary 6.6.19 implies that M is closed,
since clearly supp(M) = {0}. �

Note that the corollary generalizes the closedness of the sos cone R[x]≤d in R[x]
(Proposition 2.4.6). On the other hand, Theorem 6.6.17 gives many examples of
quadratic modules for which stability fails:

6.6.21 Corollary. Let M ⊆ R[x] be a finitely generated quadratic module that is
Archimedean. If the associated basic closed set K = S(M) has dim(K) ≥ 3, then M
is not stable.

Proof. By the Archimedean positivstellensatz 5.3.1, M contains every polynomial
that is strictly positive on K. Hence the closure of M is saturated, M = P(K). Since
dim(K) ≥ 3, the saturated preordering P(K) cannot be finitely generated (Corollary
6.1.8). Therefore M cannot be stable, according to Theorem 6.6.17. �

Corollary 6.6.21 remains true for dim(K) = 2, but the proof becomes consider-
ably more technical [182]. However we can give an easily accessible proof in the
case where K is a subset of R2:

6.6.22 Theorem. Let M ⊆ R[x] = R[x1, . . . , xn] be a stable quadratic module. If
n ≥ 2, and if the basic closed set K = S(M) has non-empty interior in Rn, there
exists a polynomial p ∈ R[x] that is strictly positive on Rn and that is not contained
in M.

Proof. Fix a polynomial f ∈ R[x] with f > 0 on Rn such that f is not sos. For in-
stance, we may take f = 1 + g where g is the (inhomogeneous) Motzkin polynomial
(Example 2.2.10.1). Let M = QM(g1, . . . , gr). After a translation of the coordinate
system we may assume gi(0) > 0 for i = 1, . . . , r. Let fc(x) := f (cx) for c ∈ R,
we’ll prove that fc < M for sufficiently large c > 0. Assume to the contrary that for
arbitrarily large values c > 0 there is an identity

f (cx) =

r∑
i=0

gi(x)
Nc∑
j=1

p(c)
i j (x)2 (6.17)

(where g0 = 1). Since M is stable, there is an integer d ≥ 1 such that an identity
(6.17) exists with deg

(
p(c)

i j
)
≤ d for all i, j and c. We may assume Nc = N < ∞ for

all c (viz., N may be taken to be the number of monomials of degree ≤ d). Replacing
x by x

c we get

f (x) =

r∑
i=0

gi

( x
c

) N∑
j=1

p(c)
i j

( x
c

)2
. (6.18)

Since gi(0) > 0 for all i, there are real numbers ρ, α > 0 such that gi(u) ≥ α > 0 for
all u ∈ Rn with |u| < ρ. Hence, for any v ∈ Rn there exists c0 > 0 in R such that

sup
c>c0

sup
i, j

∣∣∣∣p(c)
i j

(v
c

)∣∣∣∣ < ∞. (6.19)
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Indeed, for c > c0 := |v|
ρ

we have
∣∣∣ v

c

∣∣∣ < ρ, so

f (v) =
∑
i, j

gi

(v
c

)
p(c)

i j

(v
c

)2
≥ α

∑
i, j

p(c)
i j

(v
c

)2
,

and hence (6.19) is at most
√

f (v)/α.
There exist finitely many points ξ1, . . . , ξk ∈ R

n such that the evaluation map
R[x]≤d → R

k, p 7→
(
p(ξ1), . . . , p(ξk)

)
is bijective. Therefore, the previous argu-

ment shows that the family of all polynomials p(c)
i j

( x
c
)

is bounded in the vector space
R[x]≤d. So there exists a sequence cν → ∞ with the property that, for any pair i, j
of indices, the sequence of polynomials p(cν)

i j
( x

cν

)
converges (coefficientwise) against

some polynomial pi j(x) ∈ R[x]≤d, for ν → ∞. Now consider identity (6.18) for
c = cν and pass to the limit ν→ ∞. It follows that

f (x) =

r∑
i=0

gi(0)
N∑

j=1

pi j(x)2.

This contradicts our choice of f , which was supposed not to be a sum of squares. �

6.6.23 Corollary. Let n ≥ 2. If M ⊆ R[x1, . . . , xn] = R[x] is a finitely generated
Archimedean quadratic module such that K = S(M) has non-empty interior in Rn,
then M is not stable.

Proof. Immediate from Theorem 6.6.22 and the Archimedean positivstellensatz
5.3.1. �

6.6.24 Corollary. Let n ≥ 2, and let K ⊆ Rn be a closed semialgebraic set that
contains a non-empty open convex cone. Then the saturated preordering P(K) does
not contain any quadratic submodule that is finitely generated and dense in P(K).

Proof. Let g1, . . . , gr ∈ P(K) and let M = QM(g1, . . . , gr). The quadratic module M
is stable by Exercise 6.6.2, and M is closed by Theorem 6.6.17 since supp(M) = {0}.
And M , P(K) by Theorem 6.6.22. �

Hilbert’s 1888 results (Theorem 2.4.9) imply that psd = sos fails in R[x] when
n ≥ 2. Corollary 6.6.24 can be seen as another generalization of this result. In
the case K = Rn, it says that the cone P = P(Rn) of psd polynomials does not
contain any preordering that is dense in P and finitely generated. This result can be
sharpened even further, see Exercise 6.6.4.

Exercises

6.6.1 Let M be the quadratic module generated by g = 1−t2 in the univariate polynomial ring R[t].
Show that M is stable and has stability bound ϕ(d) = d + 1 with respect to the generator g.
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6.6.2 Let M ⊆ R[x] = R[x1, . . . , xn] be a finitely generated quadratic module such that S(M)
contains a non-empty open cone in Rn. Then M is stable with stability bound ϕ(d) = d.

6.6.3 This exercise contains a partial converse to Remark 6.6.11.1.

(a) Let S ⊆ R be an infinite compact semialgebraic set. Show that the saturated preorder-
ing P(S ) is the only quadratic module in R[t] that is finitely generated and stable and
satisfies S(M) = S .

(b) Show that (a) fails if S is a finite set, e.g. S = {0}.

Hint for (a): Proposition 5.5.14.

6.6.4 Let n ≥ 2, let P = P(Rn) be the cone of all psd polynomials in R[x] = R[x1, . . . , xn],
and let 2d = 6 (if n = 2) or 2d = 4 (if n ≥ 3), respectively. Show that P is “very non-
finitely generated” as a preordering, in the following sense: Given any finite number of psd
polynomials g1, . . . , gr ∈ P, let T = PO(g1, . . . , gr). Then show for any k ≥ 2d that T∩R[x]≤k
is not dense in P ∩ R[x]≤k. (Hint: It suffices to prove this for k = 2d.)

6.7 Notes

Proposition 6.1.4 is due to Kuhlmann, Marshall and Schwartz [115], [116]. Theorem
6.1.7 is proved in [178]. Lemma 6.2.17 is essentially the “basic lemma” from [116].
The proofs of Theorem 6.4.1 and Corollary 6.4.2 are taken from Artin’s original
paper [5]. Otherwise, the results from Sections 6.3 and 6.4 are mostly taken from
Scheiderer [179], some with simplified proofs. Theorem 6.4.5 about sums of squares
in k[[x, y]] was proved before for k = R by Bochnak and Risler [27] (for the ring of
convergent power series, and using analytic arguments).

According to Delzell [50], the existence of bad points was first noted by Straus
in a 1956 letter to Kreisel. The fact that the bad locus B( f ) of a polynomial has
codimension ≥ 3 was proved by Delzell [50].

Theorem 6.5.11 is due to Marshall [135], improving on a previous weaker ver-
sion of Scheiderer [181]. Theorems 6.5.19 and 6.5.22 are from [183], as well as
Theorem 6.5.28. Theorem 6.5.25 is from [184], and the results on stability in Sec-
tion 6.6 are mostly taken from [182]. Concrete upper degree bounds were proved
by Schweighofer [194] and Nie–Schweighofer [147]. Recently there has been con-
siderable progress on improving these bounds, and also explicit lower bounds have
been obtained. We refer to [199] for results in this direction and for an overview.



Chapter 7
Sums of Squares on Projective Varieties

The question whether non-negative polynomials can be expressed as sums of
squares will now be examined in the context of projective real varieties. Every form
f = f (x0, . . . , xn) of even degree takes a well-defined sign at any real point of pro-
jective space Pn. For any projective R-variety X ⊆ Pn, and any even number 2d,
we can therefore consider the convex cone PX,2d of non-negative forms of degree
2d on X. It is evident that this cone contains the cone ΣX,2d of sums of squares of
forms of degree d. The central result in this chapter presents a complete classifica-
tion of all irreducible projective R-varieties X with Zariski dense R-points, and all
even degrees 2d, such that PX,2d = ΣX,2d holds. Assuming that X is not contained
in a hyperplane is not a serious restriction, and neither is the assumption 2d = 2.
Under these conditions, every non-negative quadratic form on X is a sum of squares
of linear forms on X if, and only if, X is a variety of minimal degree.

7.1 Varieties of minimal degree

7.1.1 Let X ⊆ Pn be a projective R-variety, with homogeneous vanishing ideal
I(X) ⊆ R[x] = R[x0, . . . , xn] and homogeneous coordinate ring R[X] = R[x]/I(X).
Recall that the ring R[X] is graded, its d-th graded piece being equal to

R[X]d = R[x]d
/
I(X) ∩ R[x]d, d ≥ 0.

Let f ∈ R[X] be homogeneous of degree d, let ξ ∈ X(R), say ξ = [u] where 0 , u ∈
Rn+1 is an affine representative of ξ. The value f (u) depends on u, and not just on ξ,
unless f (u) = 0. But when d = deg( f ) is even, the sign of f (u) is independent of u,
and we’ll write f (ξ) > 0, f (ξ) = 0 or f (ξ) < 0 in this case, depending on whether
sign f (u) is 1, 0 or −1, respectively. Notation f (ξ) ≥ 0 or f (ξ) ≤ 0 has the obvious
meaning for d even. For all d ≥ 0 it is clear that

PX,2d := { f ∈ R[X]2d : f ≥ 0 on X(R)}

259
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is a convex cone in R[X]2d. This cone is closed since { f ∈ PX,2d : f (ξ) ≥ 0} is a
closed halfspace in R[X]2d for every ξ ∈ X(R). On the other hand we may consider
the cone ΣX,2d in R[X]2d that consists of all sums of squares of elements of R[X]d.
The inclusion ΣX,2d ⊆ PX,2d is obvious, and so it is natural to ask: When is it true
that ΣX,2d = PX,2d?

Of course, this is a natural projective analogue of the question we have been pur-
suing for affine R-varieties in the previous chapters. In Section 7.2, a fairly complete
answer will be given, and we’ll see that it features some characteristic differences
to the case of affine varieties. Other than for those, there exist projective varieties
of arbitrary dimension on which ΣX,2 = PX,2 holds. In the projective setting, there
always exist degree bounds for sums of squares representations, unlike in the affine
case (cf. Section 6.6). Therefore Archimedean effects don’t play a role, and the an-
swer will be the same over any real closed field. It is just for simplicity that we are
going to work over R.

In this section we are going to discuss preparations from general algebraic ge-
ometry. Harris’ book [83], in particular chapters 18 and 19, is an excellent (though
somewhat demanding) background reading for the following. In Section 7.2 we’ll
return to the question outlined above, and prove the main results.

7.1.2 k always denotes an algebraically closed field. Let X ⊆ Pn be a non-empty
projective k-variety, with vanishing ideal I = I(X) ⊆ k[x] = k[x0, . . . , xn] and homo-
geneous coordinate ring k[X] = k[x]/I =

⊕
d k[X]d. Recall (A.6.19) that the Hilbert

polynomial PX(t) of X is the unique polynomial with rational coefficients that sat-
isfies PX(i) = dim k[X]i for all sufficiently large integers i. Let m = deg PX(t), let
c ∈ Q∗ be the leading (highest) coefficient of PX(t). Then m = dim(X), the dimen-
sion of X. By definition, the degree of X is deg(X) := c · m!. This is a positive
integer.

7.1.3 Alternatively, dimension and degree can be characterized in terms of linear
sections of X. The dimension dim(X) is the smallest number m with the property
that L ∩ X , ∅ for every linear subspace L ⊆ Pn of codimension m. The cardinality
of L ∩ X is the same for all sufficiently general (n −m)-planes L. This cardinality is
the degree deg(X) of X ([83] Lecture 18).

7.1.4 Examples. A short list of examples that are relevant for what follows:

1. If X = V( f ) ⊆ Pn is a hypersurface, where f ∈ k[x]d is without multiple
factors, the Hilbert polynomial of X is PX(t) =

(
t+n
n

)
−

(
t+n−d

n

)
= d

(n−1)! tn−1 + · · ·

Therefore deg(X) = d. Intersecting X with a sufficiently general line L ⊆ Pn gives
the same result, |L ∩ X| = d. Indeed, when u, v ∈ kn+1 are sufficiently general, the
polynomial f (tu + v) ∈ k[t] has degree d and has d different roots.

2. Any linear subspace L ⊆ Pn has degree 1, since PL(t) =
(

t+m
m

)
= tm

m! + · · · where
m = dim(L). A general linear subspace of dimension n − m intersects L in a single
point, by linear algebra.

3. If dim(X) = m, and if X1, . . . , Xr are the m-dimensional irreducible compo-
nents of X, then deg(X) =

∑r
i=1 deg(Xi).
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4. For integers n, d ≥ 1 let vd = vn,d : Pn → PN be the degree d Veronese map,
with N =

(
n+d

n

)
− 1, see A.6.11. So vd(ξ) = (ξa0

0 · · · ξ
an
n )|a|=d. The image variety

V = Vn,d = vd(Pn) is an irreducible subvariety of PN of dimension n. We calculate its
degree: If L ⊆ PN is a general n-plane, then L∩V = v(Y) where Y is the intersection
of n general hypersurfaces of degree d in Pn. Therefore deg(V) = dn by Bézout’s
theorem ([84] Thm. I.7.7, [83] Lecture 18). Alternatively, we get the degree via the
Hilbert function: Via v we have k[V]m = k[x0, . . . , xn]dm for all m ≥ 0, so

dim k[V]m =

(
dm + n

n

)
=

(dm + n) · · · (dm + 1)
n!

=
dn

n!
mn + · · ·

and again we see deg(V) = dn.

7.1.5 Cones over projective varieties: Let L′ � Pm, L � Pn−m−1 be two complemen-
tary linear subspaces of Pn (meaning that L ∩ L′ = ∅), let Y ⊆ L′ be a subvariety.
The cone X = CL(Y) over Y (with vertex space L) is the union of all (n − m)-planes
L ∨ y � Pn−m, where y ∈ Y . Alternatively, X = π−1(Y) where π : Pn r L → L′ is
the linear projection from L. We may choose linear coordinates in such a way that
L′ = V(xm+1, . . . , xn) and L = V(x0, . . . , xm). Then

X =
{
(x0 : · · · : xn) : x0 = · · · = xm = 0 or (x0 : · · · : xm) ∈ Y

}
If J = I(Y) ⊆ k[x0, . . . , xm] is the vanishing ideal of Y , then I(X) is the ideal gener-
ated by I in k[x0, . . . , xn]. It is easy to see that dim(X) = dim(Y) + (n − m), hence
codimPn (X) = codimPm (Y), and that deg(X) = deg(Y).

7.1.6 Definition. A projective variety X ⊆ Pn is non-degenerate if X is not contained
in any hyperplane, or equivalently, if dim k[X]1 = n + 1.

7.1.7 Proposition. If X ⊆ Pn is an irreducible and non-degenerate variety, then

deg(X) ≥ 1 + codim(X).

Proof. We give a sketch of proof. For a different argument see [83] 18.9–18.12.
The proof is by induction on codim(X) = n − dim(X), the cases codim(X) = 0, 1
being obvious. So let codim(X) > 1. For x ∈ X we consider the linear projection
π : X d Pn−1 with centre x. The closed image Y = π(X r {x}) of X is irreducible
and is non-degenerate in Pn−1. If x ∈ X is chosen general enough, the variety X is
easily seen not to be a union of lines through x. For such x, the general fibre of
π : X r {x} → Y is finite and non-empty, which implies dim(X) = dim(Y) (see e.g.
[83] Theorem 11.12).

To complete the argument let d = dim(X) and let x ∈ X be a general point as
before, so codim(Y) = codim(X) − 1. If H1, . . . ,Hd ⊆ P

n−1 are general hyperplanes
then

Y ∩
d⋂

i=1

Hi = π
(
X ∩

d⋂
i=1

(Hi ∨ x)
)
.
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If x ∈ X was chosen general enough, the intersection X ∩
⋂d

i=1(Hi ∨ x) has exactly
deg(X) many points. For such x, therefore, Y∩

⋂d
i=1 Hi has at most deg(X)−1 points,

which shows deg(Y) ≤ deg(X) − 1. We conclude

deg(X) − codim(X) ≥ (1 + deg(Y)) − (1 + codim(Y)) = deg(Y) − codim(Y),

and the right hand side is ≥ 1 by the inductive hypothesis. �

In view of Proposition 7.1.7, it is natural to make the following definition:

7.1.8 Definition. An irreducible and non-degenerate variety X ⊆ Pn has minimal
degree if deg(X) = 1 + codim(X).

7.1.9 Examples.

1. Pn is a variety of minimal degree. An irreducible hypersurface in Pn is non-
degenerate and of minimal degree if and only if it is a quadric, i.e. has degree 2.

2. If X is a cone over an irreducible and non-degenerate variety Y ⊆ Pm, then X
is non-degenerate as well, and X is of minimal degree if and only if Y is of minimal
degree (see 7.1.5).

3. Veronese embeddings give rise to more examples. Let V = vd(Pn) ⊆ PN where
n ≥ 1, d > 1 and N =

(
n+d

n

)
−1. Clearly, V is (irreducible and) non-degenerate. Since

dim(V) = n and deg(V) = dn (Example 7.1.4.4), we have

1 + codim(V) =

(
d + n

n

)
− n.

If n = 1 then 1 + codim(V) = d = deg(V). So the rational normal curve vd(P1) ⊆ Pd

is a variety of minimal degree, for every d ≥ 1. If n = 2 then

1 + codim(V) =

(
d + 2

2

)
− 2 = d2 −

(
d − 1

2

)
≤ d2 = deg(V),

with equality iff d ≤ 2. So the Veronese surface v2(P2) ⊆ P5 is of minimal degree
as well. An easy argument shows that no other Veronese varieties are of minimal
degree (Exercise 7.1.1).

7.1.10 We discuss another class of varieties. Let r ≥ 0 and d0, . . . , dr ≥ 0 be in-
tegers, and let n + 1 =

∑r
i=0(di + 1). Fix linear subspaces U0, . . . ,Ur in Pn with

dim(Ui) = di that are projectively independent (i.e. none intersects the linear span
of the others). For each index i = 0, . . . , r fix a parametrized rational normal curve
φi : P1 → Ui of degree di, i.e. let

φi(s : t) = (sdi : sdi−1t : · · · : tdi )

in suitable linear coordinates on Ui. Let X = X(d0, . . . , dr) ⊆ Pn be the union of the
r-dimensional linear subspaces φ0(y)∨ · · · ∨ φr(y), for y ∈ P1. This union is a closed
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irreducible subvariety of Pn, see below, and is called a rational normal scroll. We
have dim(X) = r + 1, except when d0 = · · · = dr = 0, in which case X = Pr.

Here are sketches of proof for the claims just made. If coordinates in Pn are
chosen suitably, each point in X has the form [u] = [u0, . . . , ur], where ui ∈ A

di+1 (i =

0, . . . , r) are such that there exist (0, 0) , (s, t) ∈ A2 and (0, . . . , 0) , (x0, . . . , xr) ∈
Ar+1 with ui = xi(sdi , sdi−1t, . . . , tdi ) for i = 0, . . . , r. So X admits an open dense
embedding Ar+1 → X ⊆ Pn, given by sending (x1, . . . , xr, t) to(

1 : t : · · · : td0 : x1 : x1t : · · · : x1td1 : · · · : xr : xrt : · · · : xrtdr
)

(7.1)

In particular, we see that X is an irreducible and k-rational variety. Moreover, it is
not hard to see that X is identified with the (projective) set of all matrices of size
2 × (n − r) of the form(

x0,0 · · · x0,d0−1 x1,0 · · · x1,d1−1 · · · · · · xr,0 · · · xr,dr−1
x0,1 · · · x0,d0 x1,1 · · · x1,d1 · · · · · · xr,1 · · · xr,dr

)
(7.2)

that have rank 1 (Exercise 7.1.3). In previous notation, the point [u] = [u0, . . . , ur] ∈
X corresponding to this matrix is given by ui = (xi,0, . . . , xi,di ) for i = 0, . . . , r. It can
be shown [64] that the vanishing ideal of X is generated by all 2 × 2 minors of this
matrix, but we won’t use this fact.

For special values of d0, . . . , dr we get familiar varieties. If r = 0 then X(d0) is
the rational normal curve of degree d0 in Pd0 . If d0 = · · · = dr = 0 then X = Pr. For
d0 = · · · = dr = 1 we get the Segre variety P1 × Pr ⊆ P2r+1 of rank one matrices of
size 2 × (r + 1). If d0, . . . , dm ≥ 1 and dm+1 = · · · = dm+s = 0 then X(d0, . . . , dm+s) is
the cone over X(d0, . . . , dm) with vertex space Ps−1.

If di ≥ 1 for all i then the scroll variety X(d0, . . . , dr) is non-singular, see Exercise
7.1.7.

7.1.11 This remark is for readers with a background in toric varieties: From the
open embedding (7.1), we see that X is the toric variety associated with the lattice
polytope

P = conv
(
{0} × [0, d0] ∪ {e1} × [0, d1] ∪ · · · ∪ {er} × [0, dr]

)
in Zr ⊕ Z = Zr+1.

7.1.12 Proposition. All rational normal scrolls are non-degenerate as projective va-
rieties, and are varieties of minimal degree. In fact, if (d0, . . . , dr) , (0, . . . , 0) then
X(d0, . . . , dr) has degree d0 + · · · + dr.

Proof. (Sketch) Let (d0, . . . , dr) , (0, . . . , 0), let X = X(d0, . . . , dr) ⊆ Pn and write
d =

∑r
i=0 di. Then dim(X) = r + 1 and n = r + d, so codim(X) = d− 1, and it suffices

to show deg(X) = d. A hyperplane H ⊆ Pn corresponds to a sequence p0, . . . , pr of
binary forms p j = p j(s, t), not all of them zero and with deg(p j) = d j ( j = 0, . . . , r).
Accordingly, the intersection H ∩ X corresponds to tuples (x0, . . . , xr; s, t) in Ar+1 ×

A2 for which
∑r

j=0 x j p j(s, t) = 0. This already shows that X is non-degenerate.
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Therefore, if H0, . . . ,Hr are r + 1 general hyperplanes in Pn, their intersection with
X corresponds to the solutions of a system of r + 1 equations

r∑
j=0

x j pi j(s, t) = 0 (i = 0, . . . , r), (7.3)

where pi j(s, t) is a general form of degree d j for all 0 ≤ i, j ≤ r. Now (7.3) can
be considered as a system of r + 1 linear equations in the unknowns x0, . . . , xr, that
depends on the parameter (s : t) ∈ P1. Therefore, the determinant of this system is a
form of degree d =

∑r
i=0 di in (s, t). For a sufficiently general choice of the pi j, there

are exactly d values of (s : t) for which the matrix becomes singular, and for these
values the matrix has corank one. This means that X ∩

⋂r
i=0 Hi has exactly d points,

for sufficiently general H0, . . . ,Hr. �

So far we have seen several examples of varieties of minimal degree (7.1.9,
7.1.12). A classical theorem due to del Pezzo and Bertini says that the list is com-
plete:

7.1.13 Theorem. An irreducible and non-degenerate variety X ⊆ Pn of minimal
degree is one of the following:

(1) A hypersurface of degree two,
(2) a rational normal scroll, or
(3) a cone over the Veronese surface v2(P2) in P5.

Unfortunately, a proof of this theorem is beyond the scope of this course. It can
be found in [64].

7.1.14 Definition. Let X ⊆ Pn be a projective variety with codim(X) = e and with
vanishing ideal I = I(X). If X is non-degenerate, the number

ε(X) :=
(
e + 1

2

)
− dim(I2)

is called the quadratic deficiency of X.

7.1.15 Proposition. Let X ⊆ Pn be an irreducible non-degenerate variety of minimal
degree. Then ε(X) = 0.

Proof. (Sketch) Let e = codim(X) and I = I(X), we have to show dim(I2) =
(

e+1
2

)
.

For this we’ll present an ad hoc argument that uses the classification 7.1.13. If X is
a cone over a non-degenerate variety Y , it is very easy to see ε(X) = ε(Y) (Exercise
7.1.8).

In each of the cases (1)–(3), there is an obvious homogeneous ideal I′ with zero
set V(I′) = X, so we have I =

√
I′. We work with I′2 instead of I2, so effectively we

only prove ε(X) ≤ 0. That is however all that will be used (in the proof of Theorem
7.2.8 below). It is in fact not hard to show that I′ = I in each case.
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If X = V( f ) is a hypersurface of degree two then I′ = I is the principal ideal
generated by f , so dim(I2) = 1 as asserted. For the Veronese surface X = v2(P2) we
have e = 3. Let I′ be the ideal generated by the six 2 × 2 minors of the matrix in
Exercise 7.1.2. These minors are linearly independent, and so dim(I′2) = 6 =

(
e+1

2

)
.

Now let X = X(d0, . . . , dr) be a rational normal scroll. The matrix (7.2) in 7.1.10 has
d0 + · · ·+dr = (n+1)− (r+1) = e+1 many columns, so its number of 2×2 minors is(

e+1
2

)
. Again, these minors are linearly independent, and so the ideal I′ they generate

satisfies the assertion. �

7.1.16 Remark. It can be shown [130] that ε(X) ≥ 0 holds for every irreducible
and non-degenerate variety X ⊆ Pn, and that moreover ε(X) = 0 if and only if X is
of minimal degree. The combination of both statements can be phrased by saying
that a variety of minimal degree, and of given codimension e, is contained in the
maximal possible number of linearly independent quadrics, namely

(
e+1

2

)
many. And

that varieties of minimal degree are characterized by this condition. In other words,
ε(X) is measuring how many independent quadrics are “missing” that contain X. We
will only use the weaker statement 7.1.15.

The following easy lemma will be used in the next section:

7.1.17 Lemma. Let X ⊆ Pn be a non-degenerate variety, let m = dim(X) and S =

k[X]. Then ε(X) = dim(S2) − (m + 1)(n + 1) +
(

m+1
2

)
.

Proof. Let e = codim(X) = n − m. We have

dim(S2) =

(
n + 2

2

)
− dim(I2) =

(
n + 2

2

)
+ ε(X) −

(
e + 1

2

)
(second equality by the definition of ε(X)), hence ε(X) = dim(S2) +

(
e+1

2

)
−

(
n+2

2

)
.

The lemma follows from rewriting this expression:(
e + 1

2

)
−

(
n + 2

2

)
=

1
2

(
(n − m + 1)(n − m) − (n + 2)(n + 1)

)
=

(
m + 1

2

)
− (m + 1)(n + 1). �

Exercises

7.1.1 Let n ≥ 1, d ≥ 2 be integers. Show that the degree d Veronese embedding vd(Pn) ⊆ P(
n+d

n )−1

of Pn is a variety of minimal degree (if and) only if n = 1 or (n, d) = (2, 2) (cf. Example
7.1.9.3).

7.1.2 Prove the following description of the Veronese surface V in P5 as a determinantal variety:
V = v2(P2) consists of all points y = (y0 : · · · : y5) for which
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rk

y0 y1 y2
y1 y3 y4
y2 y4 y5

 = 1.

7.1.3 Let r ≥ 0 and d0, . . . , dr ≥ 0, let n + 1 =
∑r

i=0(di + 1), and let X = X(d0, . . . , dr) ⊆ Pn be the
rational normal scroll as defined in 7.1.10. Show that in suitable linear coordinates xi j on Pn

(0 ≤ j ≤ di, 0 ≤ i ≤ r), X is the (projective) set of all matrices of size 2 × (n − r) of the form(
x0,0 · · · x0,d0−1 x1,0 · · · x1,d1−1 · · · · · · xr,0 · · · xr,dr−1
x0,1 · · · x0,d0 x1,1 · · · x1,d1 · · · · · · xr,1 · · · xr,dr

)
that have rank 1.

7.1.4 Let X ⊆ P4 be the linear projection of the Veronese surface V = v2(P2) ⊆ P5 from a point
p ∈ V . Show that X = X(1, 2), the scroll surface in P4. Moreover, show that X is the blowing-
up of P2 in a point.

7.1.5 Which lines are contained in a scroll surface X(a, b)?
7.1.6 Prove that a rational normal scroll of dimension > 1 is never a Veronese variety vd(Pn) with

d > 1. (Hint: First show that vd(Pn) does not contain any line if d > 1.)
7.1.7 Let r ≥ 0, let d0, . . . , dr ≥ 1 be positive integers. Show that the rational normal scroll

X(d0, . . . , dr) is a non-singular variety.
7.1.8 Let H ⊆ Pn be a hyperplane, let Y ⊆ H be a closed subvariety that is non-degenerate, and let

X ⊆ Pn be the cone over Y (with vertex some point in Pn rH). Compute the Hilbert function
of X in terms of the Hilbert function of Y . Use the result to express dimension, degree and
quadratic deficiency of X in terms of the same data for Y .

7.1.9 Let X ⊆ Pn be a non-degenerate variety of dimension m. By the Hilbert–Serre theorem
(see A.6.19), the Hilbert series HX(t) =

∑
i≥0 dim(k[X]i) ti is a rational function HX(t) =

p(t)(1 − t)m+1 where p ∈ Z[t] is a polynomial (with p(1) , 0). Show that

p(t) = 1 + codim(X)t + ε(X)t2 + (higher order terms)

(compare coefficients). In particular, the quadratic deficiency of X is the quadratic coefficient
of p(t).

7.2 Sums of squares and varieties of minimal degree

After the review of algebraic geometry background in the previous section, we now
return to varieties defined over the field R of real numbers.

7.2.1 We start by introducing a tool that is also important otherwise, the apolarity
pairing. For i = 0, . . . , n let ∂i = ∂

∂xi
, a linear differential operator on the polynomial

ring A = R[x] = R[x0, . . . , xn]. Write ∂ = (∂0, . . . , ∂n), and write ∂α = ∂α0
0 · · · ∂

αn
n

for every multi-index α = (α0, . . . , αn) ∈ Zn+1
+ . Given a polynomial f =

∑
α cαxα ∈

R[x], let f (∂) be the differential operator on A = R[x] defined by

f (∂) =
∑
α

cα∂α.

As usual, let Am denote the space of forms of degree m in A. If f is homogeneous of
degree d, then f (∂)(Am) ⊆ Am−d for m ≥ d, and f (∂)(Am) = 0 for m < d.
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Let α, β ∈ Zn+1
+ with |α| = |β| = m. One directly checks that ∂αxβ = 0 if α , β,

and that ∂αxα = α0! · · · αn! = α!. For m ≥ 0 and f , g ∈ Am, put

〈 f , g〉 :=
1

m!
f (∂)(g) =

1
m!

g(∂)( f ) = 〈g, f 〉 ∈ R

Then
Am × Am → R, ( f , g) 7→ 〈 f , g〉 = 〈g, f 〉, (7.4)

is an inner product (positive definite and bilinear) on Am, the apolarity pairing.
Division by m! is just a convenient normalization. Under this pairing, the monomials
of degree m are pairwise orthogonal, and

〈
xα, xα

〉
=

1
m!
∂α(xα) =

α!
m!

=
α0! · · · αn!

m!

holds if |α| = m. We observe an elementary but crucial property:

7.2.2 Proposition. Let m ≥ 0. Given a point u = (u0, . . . , un) in Rn+1, let lu =∑n
i=0 uixi ∈ A1 be the corresponding linear form, and let ϕu ∈ A∨m be evaluation in

u, defined by ϕu( f ) = f (u) for f ∈ Am.

(a) 〈 f , lmu 〉 = f (u) holds for all m ≥ 0 and all f ∈ Am.
(b) The linear isomorphism φ : Am → A∨m induced by the inner product (7.4) satis-

fies φ(lmu ) = ϕu for every u ∈ Rn+1.

Proof. It is enough to prove (a) when f = xi1 · · · xim is a monomial. Since ∂i(lu) = ui

(i = 0, . . . , n), the product rule gives ∂i1 · · · ∂im (lmu ) = muim · ∂i1 · · · ∂im−1 (lm−1
u ). By

induction, this implies ∂i1 · · · ∂im (lmu ) = m! ui1 · · · uim , which is assertion (a). (b) is a
direct consequence of (a). �

Now let X ⊆ Pn be a projective R-variety, with homogeneous coordinate ring
SX = R[X], and let X̂ ⊆ An+1 be the affine cone over X (A.6.10). From 7.1.1, recall
the definition of the convex cones ΣX,2d ⊆ PX,2d in SX,2d (the sos and the psd cone of
forms of degree 2d).

7.2.3 Lemma. Assume that the projective variety X has a Zariski dense set X(R) of
real points. Then ΣX,2d is closed in SX,2d for every d ≥ 0.

Proof. The homogeneous coordinate ring SX agrees with the affine coordinate ring
of the affine cone X̂. This ring is real reduced since X̂(R) is Zariski dense in X̂, cf.
Corollary 3.3.7. So the lemma is a particular case of Exercise 3.2.6. �

By arguments similar to 2.4.6, we see that both cones ΣX,2d and PX,2d are semial-
gebraic and full-dimensional, as subsets of SX,2d.

If C is a convex cone in a finite-dimensional R-vector space V , recall that the
dual cone of C is C∗ = {λ ∈ V∨ : ∀ x ∈ C λ(x) ≥ 0}. With the usual identification
(V∨)∨ = V , one has C∗∗ = C, i.e., the bi-dual C∗∗ = (C∗)∗ of C is the closure of C
(see 8.1.21).
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7.2.4 Proposition. Assume that X(R) is Zariski dense in X, let d ≥ 0. The dual cone
(PX,2d)∗ ⊆ S∨X,2d is the conic hull of all point evaluations in points u ∈ X̂(R).

Proof. For the proof write S = SX and P2d = PX,2d. Let I = I(X), so S = R[x]/I.
For u ∈ X̂(R) and p ∈ I2d we have p(u) = 0, therefore point evaluation in u induces
a linear form ψu ∈ S∨2d. The convex cone C := cone{ψu : u ∈ X̂(R)} in S∨2d satisfies
C∗ = P2d, by the definition of P2d. Hence C = P∗2d holds by cone duality, and it
remains to see that C is closed in S∨2d.

We continue to write A = R[x]. Let Q ⊆ A2d be the convex cone of all finite sums
f =

∑r
i=1(lui )

2d with u1, . . . , ur ∈ X̂(R). Each f ∈ Q is a sum of dim(A2d) =
(

n+2d
n

)
many powers (lui )

2d, by the cone version of Carathéodory’s theorem (8.1.14). Since∑
i(lui )

2d = 0 in A2d implies ui = 0 for all i, it follows from Lemma 2.4.7 that the
cone Q is closed in A2d. If φ : A2d → A∨2d is the apolarity isomorphism, Proposition
7.2.2 implies that the cone C′ := φ(Q) is generated by the ϕu, for u ∈ X̂(R). So
this cone is closed in A∨2d. Since C′ ⊆ (I2d)⊥ = (A2d/I2d)∨ = S∨2d, we may consider
C′ as a closed cone in S∨2d. This identifies C′ with C above, thereby completing the
proof. �

We record a remarkable consequence of this proof:

7.2.5 Corollary. Let X ⊆ Pn be a projective R-variety with X(R) Zariski dense in X.
For every d ≥ 0, the dual of the psd cone PX,2d ⊆ R[X]2d is linearly isomorphic to
the cone in R[x]2d that is generated by all powers (lu)2d with u ∈ X̂(R).

Proof. By the proof of 7.2.4, and using notation from there, the dual cone (PX,2d)∗

is generated by the point evaluations ψu (u ∈ X̂(R)), as a cone in S∨X,2d. Identifying
S∨X,2d with the subspace I⊥2d of A∨2d, this means that (PX,2d)∗ is linearly isomorphic to
cone{ϕu : u ∈ X̂(R)} ⊆ A∨2d. Under the apolarity isomorphism φ : A2d → A∨2d, the
latter cone is identified with cone{l2d

u : u ∈ X̂(R)} ⊆ A2d (Proposition 7.2.2). �

Here is the main result of this section:

7.2.6 Theorem. (Blekherman-Smith-Velasco) Let X ⊆ Pn be an irreducible and
non-degenerate R-variety, and assume that X(R) is Zariski dense in X. Then ΣX,2 =

PX,2 holds if, and only if, X is a variety of minimal degree.

The theorem identifies those projective varieties X (irreducible and with Zariski
dense R-points) that satisfy psd = sos in degree two. From this one can derive the
answer for all even degrees, see 7.2.17 below.

7.2.7 We first give a sketch of proof for the forward direction. So let X ⊆ Pn be
irreducible and non-degenerate, with X(R) Zariski dense in X. For a leaner notation
we write Σ2, P2 and S2 instead of ΣX,2, PX,2 and SX,2, respectively. Assuming that
X is not of minimal degree, we want to show P2 * Σ2. Since both convex cones
are closed, it is equivalent to show Σ∗2 * P∗2. By Proposition 7.2.4, the convex cone
P∗2 is generated by all point evaluations ψu ∈ S∨2 with u ∈ X̂(R). We are going
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to construct a sum of squares form f ∈ Σ2 and a non-zero element λ ∈ Σ∗2 , in
such a way that f > 0 on X(R) and λ( f ) = 0 hold. This will prove the claim,
since assuming λ =

∑
i aiψui (with 0 , ui ∈ X̂(R) and 0 < ai ∈ R) would imply

λ( f ) =
∑

i ai f (ui) > 0, contradiction. Let m = dim(X) and e = n − m = codim(X).
By assumption we have deg(X) ≥ e + 2.

The first step is to intersect X with a suitable linear subspace L ⊆ Pn of
codimension m, in order to reduce to a zero-dimensional situation. More pre-
cisely, we show that there exist linear forms h1, . . . , hm ∈ R[x] such that, writing
L := V(h1, . . . , hm) ⊆ Pn, the intersection Z := X ∩ L has the following properties: Z
is a finite set of deg(X) ≥ e + 2 many different points, which are in linearly general
position (meaning that any e + 1 of them span L projectively), and such that at least
e + 1 of them are R-rational.

To achieve this, one first shows that if H ⊆ Pn is a sufficiently general hyperplane,
the intersection H ∩ X is again non-degenerate (in H). For a proof we refer to [83]
Proposition 18.10. Moreover, by Bertini’s classical theorem ([83] Thm. 17.16 or
[84] Thm. III.8.18), the singularities of H ∩ X are contained in Xsing, when H is
chosen general enough. As long as m = dim(X) ≥ 2, the intersection H ∩ X is again
irreducible for general H, by another facet of Bertini. Since X(R) is Zariski dense in
X by assumption, there is a non-empty open set of hyperplanes H for which H ∩ X
contains a real non-singular point of X. Assume m = dim(X) ≥ 2 for a moment.
Then, by combining the statements above, we conclude that there is a non-empty
open set of hyperplanes H ⊆ Pn for which H ∩ X is non-degenerate and irreducible
and has Zariski dense R-points. (For the last claim, recall that an irreducible R-
variety with one non-singular R-point has Zariski dense R-points, Corollary 1.7.9.)

By inductively applying the step just described, we find linear forms h1, . . . , hm−1
in R[x] such that, writing L′ := V(h1, . . . , hm−1) � Pe+1, the intersection C := X ∩
L′ is an irreducible non-degenerate curve in L′ with Zariski dense R-points. Now
choose e + 1 points in C(R) that are projectively independent and hence span a
hyperplane H′ in L′. For a sufficiently general choice of these points, the intersection
Z := C ∩H′ is a finite set of deg(X) ≥ e + 2 many points in linearly general position
in L := L′ ∩ H′, of which at least e + 1 are real.

So far we have found linear forms h1, . . . , hm in R[x] such that, with L :=
V(h1, . . . , hm) � Pe, the intersection Z := X ∩ L consists of deg(X) ≥ e + 2 dif-
ferent points which are in linearly general position in L, and such that |Z(R)| ≥ e+1.
We’ll use the R-points in Z to find a linear form λ ∈ Σ∗2 r P∗2. For this we have to
distinguish two cases.

Case 1: |Z(R)| ≥ e + 2.
Let 0 , u0, . . . , ue+1 ∈ R

n+1 be such that [u0], . . . , [ue+1] ∈ Z(R). So u0, . . . , ue+1
are linearly dependent, but any e + 1 of them are linearly independent since the
points of Z are in linearly general position in L � Pe. Hence there exist non-zero
real numbers a0, . . . , ae with ue+1 =

∑e
ν=0 aνuν, and so

p(ue+1) =

e∑
ν=0

aνp(uν) (7.5)
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holds for every linear form p ∈ S1.
For ν = 0, . . . , e + 1 let ψν = ψuν ∈ S∨2 be point evaluation in uν. Given a tuple

c = (c0, . . . , ce) of positive real numbers, consider

λc :=
( e∑
ν=0

a2
ν

cν

)
·

( e∑
ν=0

cνψν
)
− ψe+1 ∈ S∨2. (7.6)

Using (7.5) we get for any p ∈ S1:

λc(p2) =

( e∑
ν=0

a2
ν

cν

)
·

( e∑
ν=0

cνp(uν)2
)
−

( e∑
ν=0

aνp(uν)
)2
. (7.7)

So λc(p2) ≥ 0 for any p ∈ S1, by Cauchy-Schwartz, and hence λc ∈ Σ
∗
2 . On the

other hand, there exists a linear form pc ∈ S1 with pc(uν) =
aν
cν

for 0 ≤ ν ≤ e, since
u0, . . . , ue are linearly independent. For this particular form, (7.7) gives λc(p2

c) = 0.
Now fix a tuple c = (c0, . . . , ce) with cν > 0, in such a way that pc does not vanish

in any point of Z(R). This is possible since aν , 0 for every ν. For such choice of c,
the quadratic form f := p2

c + h2
1 + · · · + h2

m is strictly positive on X(R). On the other
hand, f satisfies λc( f ) = 0. So λc cannot be a sum of evaluations in points of X̂(R),
which shows λc ∈ Σ

∗
2 rP∗2. This settles the proof in case 1, as sketched in the outline

at the beginning of 7.2.7.
Case 2: |Z(R)| = e + 1.
Since |Z(C)| > e+1, Z contains a pair of complex-conjugate points. So there exist

0 , u1, . . . , ue ∈ R
n+1 and 0 , v, v ∈ Cn+1 such that any e + 1 of u1, . . . , ue, v, v are

(C-) linearly independent, and such that [u1], . . . , [ue], [v], [v] lie in Z. Again using
that the points of Z are in linearly general position, there exist non-zero complex
numbers a1, . . . , ae, b, b′ with a1u1 + · · ·+aeue +bv+b′v = 0. An easy argument from
linear algebra shows that, after suitable (complex) scaling, we have a1, . . . , ae ∈ R
and b′ = b ∈ C. Putting w := −(bv + bv) = −2 Re(bv), we have 0 , w ∈ Rn and

a1u1 + · · · + aeue = w. (7.8)

From here on, the argument is very much parallel to case 1. For ν = 1, . . . , e let
ψν = ψuν ∈ S∨2, and define, for any tuple c = (c1, . . . , ce) of positive real numbers cν,

λc :=
( e∑
ν=1

a2
ν

cν

)
·

( e∑
ν=1

cνψν
)
− ψw ∈ S∨2. (7.9)

For any p ∈ S1 we get, using (7.8):

λc(p2) =

( e∑
ν=0

a2
ν

cν

)
·

( e∑
ν=0

cνp(uν)2
)
−

( e∑
ν=0

aνp(uν)
)2
. (7.10)
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We conclude λc ∈ Σ
∗
2 as before, and also the rest of the argument works as in case 1.

With this, the proof of the forward direction in Theorem 7.2.6 is complete.

Now let us look at the reverse direction. In fact we prove a stronger result here:

7.2.8 Theorem. (Blekherman-Plaumann-Sinn-Vinzant) Let X be an irreducible non-
degenerate R-variety of minimal degree, with X(R) Zariski dense in X. Then every
psd form in R[X]2 is a sum of s squares of linear forms, where s := dim(X) + 1.

Proof. If the assertion has been proved for X, it also follows for X′ = Cp(X), the
cone over X with vertex p a point (cf. 7.1.5). Indeed, let S = R[X] and S ′ = R[X′],
then S ′ = S [y] with a new variable y of degree one. Any quadratic form f ∈ S′2 on
X′ can be written f = ay2 + by + c with a ∈ R, b ∈ S1 and c ∈ S2. Clearly, if f is psd
on X′, then either a = b = 0 and c ∈ P2, or a > 0 and 4ac− b2 ∈ P2. In the first case
we are done, in the second we see from

f = a ·
((

x +
b

2a
)2

+
4ac − b2

4a2

)
that f is a sum of dim(X) + 2 = dim(X′) + 1 squares of elements in S ′, by the
assumption on X.

So we can assume that X is not a cone, therefore X is non-singular (Exercise
7.1.7). Let m = dim(X) and S = R[X]. We study the sum of squares map

σ : (S1)m+1 = S1 × · · · × S1 → S2, (g0, . . . , gm) 7→
m∑

i=0

g2
i

and want to show im(σ) = P2. The image set of σ is closed in S2, by Lemma 2.4.7
and since

∑m
i=0 g2

i = 0 implies g1 = · · · = gm = 0. The (total) derivative ofσ at a tuple
g = (g0, . . . , gm) is the linear map (Dσ)g : (S1)m+1 → S2, (h0, . . . , hm) 7→ 2

∑
i gihi.

There exist linear forms g0, . . . , gm ∈ S1 with VX(g0, . . . , gm) = ∅, see 7.1.3. The
proof of the theorem proceeds in three steps:

(1) For every tuple g = (g0, . . . , gm) ∈ (S1)m+1 with VX(g0, . . . , gm) = ∅, the
derivative (Dσ)g is surjective.

We can only sketch the proof. It can be shown (see [63] Theorem 4.2 for a proof)
that the variety X is arithmetically Cohen-Macaulay, which means that the graded
ring S is Cohen-Macaulay. In particular, this property implies that every sequence
g0, . . . , gm of non-constant homogeneous elements in S with VX(g0, . . . , gm) = ∅ is
S -regular. This latter property means that the graded ring grJ(S ) =

⊕
i≥0 Ji/Ji+1

associated with the ideal J = 〈g0, . . . , gm〉 is isomorphic to the polynomial ring
(S/J)[t0, . . . , tm]. (More precisely, the natural homomorphism from (S/J)[t0, . . . , tm]
to grJ(S ) that maps ti to the class of gi in grJ

1(S ) is an isomorphism of graded
rings.) This in turn implies that the kernel of (Dσ)g : (S1)m+1 → S2, (h0, . . . , hm) 7→
2
∑

i gihi is generated by the trivial relations (0, . . . ,−g j, . . . , gi, . . . , 0) (0 ≤ i < j ≤
m), and so it has dimension

(
m+1

2

)
. It follows that
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rk (Dσ)g = (m + 1) dim(S1) −
(
m + 1

2

)
= (m + 1)(n + 1) −

(
m + 1

2

)
.

This number is equal to dim(S2) by Lemma 7.1.17, since ε(X) = 0 (Proposition
7.1.15).

As is well-known from calculus, assertion (1) means that the map σ is locally
submersive at the tuple g. This implies, in particular, that im(σ) contains a neigh-
borhood of σ(g) in S2.

Let S sm
2 be the set of all q ∈ S2 whose zero variety VX(q) is non-singular. By

Bertini’s theorem ([83] Thm. 17.16, [84] Thm. II.8.18), S sm
2 contains a dense open

subset of S2. Let P+
2 ⊆ P2 be the open set of all quadratic forms that are strictly

positive on X(R). Then Psm
2 := P2 ∩ S sm

2 is dense in P2 since P2 is the closure of its
interior. Moreover Psm

2 ⊆ P+
2 since every real zero of a psd form q is a singularity of

VX(q) (the form vanishes of order ≥ 2 there). Altogether, Psm
2 is a dense subset of

P+
2 .

(2) The set Psm
2 is connected.

The crucial point is that the difference set P+,sing
2 := P+

2 r Psm
2 (of all strictly

positive quadratic forms q on X for which VX(q) is singular) has codimension ≥ 2
in S2. To see this, note that every such form q has at least two complex-conjugate
singular points in X. On the other hand it can be shown that the forms q ∈ S2 for
which VX(q) is singular are a hypersurface in S2, and that a Zariski dense subset of
this hypersurface consists of forms q for which VX(q) has only a single (complex)
singular point. So codim P+,sing

2 ≥ 2. Since P+
2 is connected, being an open cone, the

set Psm
2 is itself connected since it is the complement of a set of codimension ≥ 2.

We actually proved this last conclusion (Theorem 4.6.9).
(3) The set Psm

2 ∩ im(σ) is open and closed in Psm
2 , and is non-empty.

The set is relatively closed since im(σ) is closed. As mentioned before, there
exist tuples g = (g0, . . . , gm) ∈ Sm+1

1 with VX(g0, . . . , gm) = ∅. For such g, the map σ
is a submersion locally at g, by (1), and so q := σ(g) lies in the interior of im(σ). So
the set (3) is non-empty since S sm

2 is dense in S2. On the other hand, if g is a tuple
for which q = σ(g) ∈ Psm

2 , then necessarily VX(g0, . . . , gm) = ∅ since any point in
this set would be a singularity of VX(q). Locally at g, σ is therefore a submersion by
(1), and so q = σ(g) is an interior point of Psm

2 . So the set Psm
2 ∩ im(σ) is relatively

open in Psm
2 . This completes the proof of (3).

From (2) and (3) it follows that Psm
2 ⊆ im(σ). Since Psm

2 is dense in P2 and im(σ)
is closed, we conclude im(σ) = P2. Theorem 7.2.8 is proved. �

In the following we are going to make explicit what Theorem 7.2.6, together with
its quantitative refinement Theorem 7.2.8, means concretely for the three classes of
varieties X of minimal degree (Theorem 7.1.13).

7.2.9 Remark. We start with the question that Hilbert considered (and settled)
in 1888: For which pairs of integers n, d ≥ 1 is it true that the inclusion of cones
Σn,2d ⊆ Pn,2d (2.4.5) is an equality? In terms of Veronese embeddings, this means
to ask when ΣX,2 = PX,2 holds for X = Vn−1,d = vd(Pn−1). The answer found by
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Hilbert (Theorem 2.4.9) is contained in Theorem 7.2.6: Since the Veronese variety
Vn−1,d is always non-degenerate, we have equality if and only if Vn−1,d is of minimal
degree. As discussed in Example 7.1.9.3, this is true if and only if n ≤ 2 or d = 1 or
(n, 2d) = (3, 4).

The quantitative side of the question, again settled by Hilbert, is contained in
Theorem 7.2.8. Leaving away the elementary cases n ≤ 2 or 2d = 2, the remaining
hard case corresponds to the Veronese surface X = V2,2 ⊆ P

5. Hilbert’s three-squares
theorem 2.4.10 is recovered in 7.2.8: Every psd ternary form f = f (x0, x1, x2) of
degree four is a sum of three squares of quadratic forms. While in Section 2.4 we
had only proved the weaker statement that f is a sum of four squares (Proposition
2.4.11), this gap has now been closed.

We see how Hilbert’s theorem turns out to be part of a beautiful general geometric
picture. In fact, the proof of Theorem 7.2.8 that was sketched above proceeds by
mimicking (in modern language) Hilbert’s original proof for ternary quartics. The
modern viewpoint notwithstanding, it is not surprising that Hilbert’s proof was hard
for his contemporaries to accept!

Let us now try and see what Theorems 7.2.6 and 7.2.8 mean for the remaining
varieties of minimal degree.

7.2.10 Remark. Next consider quadric hypersurfaces, so let q = q(x0, . . . , xn) be a
quadratic form over R and X = V(q) ⊆ Pn. Then X irreducible means rk(q) ≥ 3, and
X(R) Zariski dense means that q is indefinite (by elementary reasoning, or also as a
particular instance of the sign-changing criterion 1.7.14). Under these assumptions,
the conclusion PX,2 = ΣX,2 of 7.2.6 is contained the following classical result. It is
used in optimization and control theory:

7.2.11 Proposition. (S -Lemma) Let A, B be real symmetric n × n matrices with B
indefinite. If x>Ax ≥ 0 holds for every x ∈ Rn with x>Bx = 0, there exists t ∈ R with
A + tB � 0.

Of course we proved this (for rk(B) ≥ 3) in Theorem 7.2.8. To give a proof along
traditional lines, we need some concepts from convexity theory (faces of convex sets
and their relative interior). They will be discussed in full detail in Section 8.1. Given
symmetric matrices A, B ∈ Symn(R), let 〈A, B〉 = tr(AB) (the trace inner product
between A and B), and write qA(x) = x>Ax (x ∈ Rn) for the quadratic form on Rn

that is associated with A.

7.2.12 Lemma. Given symmetric matrices A, B ∈ Symn(R) and real numbers a, b,
the following are equivalent:

(i) There is x ∈ Rn with qA(x) = a and qB(x) = b;
(ii) there is S ∈ Symn(R) with 〈S , A〉 = a, 〈S , B〉 = b and S � 0.

Proof. (i) ⇒ (ii) is easy: The matrix S = xx> satisfies S � 0 and 〈S , A〉 = qA(x),
〈S , B〉 = qB(x). For the converse note that qS (x) = 〈S , xx>〉. Therefore, assuming
that there exists a matrix S as in (ii), we have to prove that there exists such a matrix
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of rank one. Write Sn = Symn(R), let L := {S ∈ Sn : 〈S , A〉 = a, 〈S , B〉 = b} and
K = L ∩ Sn

+. The set K is closed, convex and non-empty, and it doesn’t contain a
line. Therefore K has an extreme point T , see Exercise 8.1.13. Let rk(T ) = r, we
show r ≤ 1. Consider U := {S ∈ Sn : ker(T ) ⊆ ker(S )}, a linear subspace of Sn of
dimension

(
r+1

2

)
. Then F := U ∩ Sn

+ is a face of Sn
+ with T ∈ relint(F) (8.2.3), and

so F ∩ L is a face of Sn
+ ∩ L = K whose relative interior contains T . Since T is an

extreme point of K we conclude F ∩ L = {T }. Now L is an affine-linear subspace of
Sn of codimension ≤ 2. Since L intersects a neighborhood of T inside U in a single
point, we must have dim(U) ≤ 2. This means r ≤ 1. �

7.2.13 Corollary. For arbitrary quadratic forms f , g ∈ R[x1, . . . , xn], the set

{( f (x), g(x)) : x ∈ Rn}

is a convex cone in R2.

Proof. Let A, B ∈ Sn be the matrices with f = qA and g = qB. Then the set in
question is the image of the cone Sn

+ under the linear map S 7→ (〈S , A〉, 〈S , B〉), by
Lemma 7.2.12. �

7.2.14 Proof of Proposition 7.2.11: Write f = qA, g = qB, and consider the open
quadrants Q = {(a, b) : a < 0, b > 0} and Q′ = {(a, b) : a < 0, b < 0} in R2. The
set M = {( f (x), g(x)) : x ∈ Rn} is a convex cone in R2, by Corollary 7.2.13. By
assumption we have (t, 0) < M for t < 0. Since M is convex, it can meet at most
one of Q and Q′. Replacing g by −g if necessary we may assume M ∩Q = ∅. From
hyperplane separation (Theorem 8.1.5(a)) it follows that there is a non-zero linear
form l(u, v) = au + bv with l ≥ 0 on M and l ≤ 0 on Q. This means that aA + bB � 0.
From l|Q ≤ 0 we see a ≥ 0 and b ≤ 0. Moreover a , 0 since otherwise M would be
contained in the lower half-plane, contradicting that g is indefinite. So a > 0, and
hence A + b

a B is positive semidefinite. ut

7.2.15 Remark. We can also see the correct number of squares on quadric hypersur-
faces, as in Theorem 7.2.8: In the S -Lemma 7.2.11, the set I = {t ∈ R : A + tB � 0}
is a compact interval since B is indefinite. If t is a boundary point of I then A + tB is
singular. Hence the quadratic form qA + tqB is a sum of n− 1 = dim(XB) + 1 squares
(note that XB is a hypersurface in Pn−1).

7.2.16 Finally, consider rational normal scrolls X = X(d0, . . . , dr), with m := r+1 =

dim(X). In this case, Theorem 7.2.8 says the following. If Q(s, t) = (qi j(s, t)) is a
symmetric m × m matrix such that qi j is a binary form of degree di + d j for all
1 ≤ i, j ≤ m, and if Q is psd (i.e. Q(s, t) � 0 for all s, t ∈ R), then the quadratic
form x>Qx is a sum of m + 1 squares of linear forms. In other words, there is an
m × (m + 1) matrix P = (pi j(s, t)) with pi j a binary form of degree di for all i, j, and
with Q = PP>.

Or, in a dehomogenized version: Let q(t, x) = q(t, x1, . . . , xm) be a polynomial in
R[t, x] that has degree ≤ 2 in the x-variables. If q is psd (on Rm+1) then q is a sum
of squares in R[t, x], and in fact, of m + 2 squares. The qualitative part is a classical
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result (Jakubović [102], Rosenblum-Rovnyak [171]), while the quantitative part is
more recent (Leep 2006, unpublished). The traditional proofs use techniques from
quadratic forms theory and are by no way easy.

7.2.17 Remark. We complement the discussion by some further remarks. Consider
irreducible R-varieties X ⊆ Pn with Zariski dense R-points. Theorem 7.2.6 identifies
those varieties X on which every psd quadratic form is a sum of squares of forms.
In fact, as already mentioned, the theorem implies the answer for all (even) degrees.
Indeed, let V = vd(X) be the image of X under the degree d Veronese map vd : Pn →

PN , and let Pr ⊆ PN be the linear subspace spanned by V . Then R[V]i = R[X]di

holds for any i ≥ 0, and in particular, for i ≤ 2. Therefore PX,2d = ΣX,2d is equivalent
to PV,2 = ΣV,2. By Theorem 7.2.6, this holds if and only if V = vd(X) is a variety of
minimal degree in Pr.

One can show ([23] Remark 4.6) that, except for X = P2 and d = 2 (the Hilbert
case of ternary quartics), this can happen with d ≥ 2 only when vd(X) is a rational
normal curve. There do indeed exist examples where this case occurs, see Exercises
7.2.1 and 7.2.2.

7.2.18 Remark. Let X ⊆ Pn be a non-degenerate irreducible projective R-variety
of minimal degree with Zariski dense R-points, and let m = dim(X). According
to Theorem 7.2.8, every psd quadratic form p on X is a sum of m + 1 squares of
linear forms on X. As in Section 2.1, every such sos representation has a Gram
matrix, which is a symmetric matrix over R whose rows and columns are indexed
by a basis of R[X]1. Similar as in 2.1.12, we consider two such representations as
(orthogonally) equivalent if they have the same Gram matrix. When the form p is
sufficiently general, one can show that the number of inequivalent representations
of p as a sum of m + 1 squares is finite, and is independent of p:

(1) When X = vd(P1) is a rational normal curve, p corresponds to a binary form
f (t1, t2) of degree 2d. Clearly, such f is a sum f = g2

1+g2
2 = (g1+ig2)(g1−ig2) of

two squares. If f is positive definite with simple complex roots, it is elementary
to see that there exist precisely 2d−1 inequivalent such representations.

(2) When X = v2(P2) is the Veronese surface in P5, p corresponds to a psd ternary
quartic f (t1, t2, t3), which is a sum f = q2

1 + q2
2 + q2

3 of three squares of quadratic
forms. If the plane curve f = 0 is non-singular, it is known [157] that there exist
precisely eight inequivalent such representations.

These examples, together with others, motivated the authors of [22] to conjecture
for arbitrary X (irreducible of minimal degree with dense R-points): If f ∈ PX,2 is
sufficiently general, there are exactly 2n−m = 2codim(X) inequivalent representations
of X as a sum of m + 1 squares. This conjecture was later proved by Hanselka–Sinn
[82].

7.2.19 Remark. An irreducible non-degenerate variety X in Pn has almost minimal
degree if deg(X) = 2 + codim(X), that is, if the degree of X is one more than the
minimal possible degree. It can be shown that such a variety X satisfies ε(X) = 1 if
it is arithmetically Cohen-Macaulay. Under this condition, and if m = dim(X) and
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X(R) is Zariski dense, Chua et al [44] showed that every sum of squares in R[X]2
is a sum of m + 2 squares. Examples to which this result applies are the Veronese
embeddings v3(P2) ⊆ P9 (of degree 9) and v2(P3) ⊆ P9 (of degree 8). Consequently,
every sos sextic form in three variables is a sum of four squares, and every sos
quartic form in four variables is a sum of five squares. These particular cases had
been proved before in a direct way [185].

7.2.20 Remark. We return to the question raised in Remark 2.4.15. The proper con-
text for this question is the theory of toric varieties. According to [23] (Section 6)
and [44] (Theorem 2.1), the following classification can be deduced from the main
results of this section:

Let P ⊆ Rn be a lattice polytope with the property that every non-negative poly-
nomial f ∈ R[x1, . . . , xn] with Newton polytope New( f ) ⊆ 2P is a sum of squares
of polynomials. Assume further that P is normal, meaning that for every integer
k ≥ 1 and every lattice point v ∈ kP, there exist lattice points v1, . . . , vk ∈ P with
v = v1 + · · · + vk. Then, up to a lattice automorphism of Zn and a translation, P is
contained in one of the following polytopes:

(1) The m-dimensional unit simplex Sm = conv(0, e1, . . . , em) ⊆ Rm;
(2) the Cayley polytope of m line segments [0, di] (with di ≥ 0), which is the convex

hull of
⋃m

i=1{ei} × [0, di] in Rm+1;
(3) the scaled 2-simplex 2S2 = conv(0, 2e1, 2e2) ⊆ R2;
(4) the free sum conv(Q × {0} ∪ {0} × ∆k−1) ⊆ Rm × Rk, where Q ⊆ Rm is one of

(1)–(3) and ∆k−1 = conv(e1, . . . , ek) ⊆ Rk.

Conversely, for each polytope P in this list it is true that every non-negative polyno-
mial f with New( f ) ⊆ 2P is a sum of squares.

The projective toric varieties associated with (1)–(3) are Pm, smooth rational nor-
mal scrolls and the Veronese surface in P5, respectively. The polytopes (4) corre-
spond to cones over these smooth varieties.

Exercises

7.2.1 Let X ⊆ P3 be the image of the morphism P1 → P3, (s : t) 7→ (s4 : s3t : st3 : t4).

(a) Show that X is not of minimal degree, and find a quadratic form on X that is psd but
not a sum of squares of linear forms.

(b) Prove that v2(X) is contained in a hyperplane of P9 and is of minimal degree in P8.
Conclude that v2(X) � v8(P1) and that P4(X) = Σ4(X).

7.2.2 Same (with different degrees) as Exercise 7.2.1, but for the image X of P1 → P4, (s : t) 7→
(s6 : s5t : s3t3 : st5 : t6).

7.2.3 Let X ⊆ Pn be an arbitrary hypersurface over R of degree at least three. Show that ΣX,2 , PX,2
in the homogeneous coordinate ring R[X] of X.

7.2.4 Let X ⊆ Pn be a union of two hyperplanes (over R). Does P2(X) = Σ2(X) hold?
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7.3 Notes

The classification of varieties of minimal degree was achieved by del Pezzo (1886)
for surfaces, and by Bertini (1907) in general. Theorem 7.2.6 was proved by
Blekherman, Smith and Velasco in 2016 and is the main result of [23]. Our proof
of the forward direction follows Proposition 3.2 in this paper. We took the converse
from Blekherman, Plaumann, Sinn and Vinzant [22], who proved the quantitative re-
finement in Theorem 7.2.8. A weaker version of the S -Lemma (Proposition 7.2.11)
was proved by Finsler [68] in 1936. The version that is known today is from 1971
and is due to Jakubović [103]. As in our presentation, his proof was based on Corol-
lary 7.2.13, which was proved by Dines [53] in 1941. A detailed survey on the
S -Lemma can be found in [154].





Chapter 8
Sums of Squares and Optimization

Since the turn of the millennium, the use of sums of squares techniques has become
an indispensable tool in polynomial optimization. This final chapter contains an in-
troduction to some of the most important concepts. We commence with an overview
of important general notions related to convexity (Section 8.1). Then spectrahedra
are introduced, together with their general properties (Sections 8.2 and 8.3). After a
quick primer on conic programming, and in particular on semidefinite programming
(Section 8.4), the key technique of moment relaxation is presented in Section 8.5. It
will become evident that fundamental results from Chapter 5 are crucial for the iter-
ation to converge. In particular, this holds for the positivstellensätze of Schmüdgen
and Putinar. The latter part of the chapter addresses the characterization of spec-
trahedral shadows, which are the feasible sets of semidefinite programming. On
the one hand we present results by Helton and Nie, establishing the existence of a
semidefinite representation for convex sets of a very general nature. On the other,
we show that prominent convex sets fail to be spectrahedral shadows. Once more,
sums of squares lie at the core of the arguments.

The recent book by Netzer and Plaumann [144] on the geometry of linear matrix
inequalities has a considerable overlap with this chapter.

8.1 Convex sets: Basic concepts and facts

There exist several excellent and comprehensive introductions to the geometry of
convex sets in general, and polyhedra in particular. We only mention the mono-
graphs by Grünbaum [77] and Ziegler [214] on polytopes, and by Webster [212]
and Barvinok [10] on general convex geometry.

In the following let V be a vector space over R of finite dimension. Recall that
V∨ denotes the dual space of linear functionals V → R.

8.1.1 For x, y ∈ V we put [x, y] = {(1 − t)x + ty : 0 ≤ t ≤ 1}, and similarly
[
x, y

[
=

[x, y]r{y},
]
x, y

]
= [x, y]r{y} and

]
x, y

[
= [x, y]r{x, y}. For n ≥ 0, the n-dimensional

279
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standard simplex is ∆n = {(t0, . . . , tn) : ti ≥ 0,
∑n

i=0 ti = 1} ⊆ Rn+1. A set K ⊆ V is
convex if [x, y] ⊆ K for any x, y ∈ K. Arbitrary intersections of convex sets are
convex. If M ⊆ V is any subset, the elements

∑n
i=0 tixi with n ≥ 0, t = (t0, . . . , tn) ∈

∆n and x0, . . . , xn ∈ M are the convex combinations of M. The set of all convex
combinations of M is conv(M), the convex hull of M. This is the smallest convex
set in V that contains M. A polytope is the convex hull of finitely many points.
A polytope is an n-simplex if it is the convex hull of n + 1 affinely independent
points.

A closed halfspace of V is a set of the form H = {x ∈ V : λ(x) ≥ c} where
λ : V → R is a non-zero linear functional and c ∈ R. An open halfspace is the
complement of a closed halfspace. Any (affine) hyperplane in V defines two closed
(and also two open) halfspaces of V . A polyhedron in V is an intersection of finitely
many closed halfspaces of V .

The affine hull aff(M) of a set M ⊆ V is the smallest affine-linear subspace of V
that contains M. So aff(M) consists of all finite sums

∑
i aixi with xi ∈ M, ai ∈ R

and
∑

i ai = 1 (the affine combinations of elements of M). The dimension of a non-
empty convex set K ⊆ V is dim(K) := dim aff(K), the linear dimension of span(K −
x) for (any) x ∈ K. The empty set has dimension −1. Convex sets of dimension
zero are points, convex sets of dimension one are non-degenerate intervals on lines
(including half-lines and full lines).

If K1, K2 are convex sets in V , their Minkowski sum K1 + K2 = {x1 + x2 : x1 ∈ K1,
x2 ∈ K2} is again a convex set.

8.1.2 Proposition. (Carathéodory) Let dim(V) = n < ∞, let M ⊆ V be any subset.
Then every element of conv(M) is a convex combination of n + 1 elements in M.

Proof. It suffices to show that any convex combination v =
∑n+1

i=0 aivi of n + 2 points
v0, . . . , vn+1 ∈ V is a convex combination of n + 1 of these points. We may assume
ai > 0 for all i. Since dim(V) = n, there is a relation

∑n+1
i=0 bivi = 0 such that∑n+1

i=0 bivi = 0 and bi > 0 for at least one index i. Put t = min
{ ai

bi
: bi > 0, i =

0, . . . , n + 1
}
. Then t > 0 and v =

∑n+1
i=0 (ai − tbi)vi. Moreover, the coefficients ai − tbi

are non-negative, they sum up to 1, and at least one of them is zero. �

Carathéodory’s bound is sharp, as one sees from taking M to be any set of n + 1
affinely independent points. As an easy consequence of 8.1.2 we record (Exercise
8.1.1):

8.1.3 Corollary. The convex hull of any compact set in V is compact. ut

8.1.4 Let K ⊆ V be a convex set. The relative interior relint(K) of K is the topo-
logical interior of K relative to the affine hull aff(K) of K. Since the convex hull of
any n + 1 affinely independent points has non-empty interior relative to their affine
hull, the relative interior of any non-empty convex set is non-empty. If x ∈ relint(K)
then

[
x, y

[
⊆ relint(K) holds for any y ∈ K. As a consequence, both relint(K) and K

are convex sets, and K is the closure of relint(K). See Exercise 8.1.3 for the proofs.
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A fundamental tool in convex geometry is separation of convex sets by hyper-
planes. We discuss two basic versions that hold in finite dimension. For extensions
to infinite dimension (Hahn–Banach theorem, Eidelheit–Kakutani theorem) we re-
fer to Appendix B and to the literature.

8.1.5 Theorem. (Hyperplane separation) Let K, K′ be convex subsets of V.

(a) Assume that relint(K) ∩ relint(K′) = ∅. Then there exist 0 , f ∈ V∨ and c ∈ R
with f ≤ c on K and f ≥ c on K′.

(b) If K is compact, K′ is closed and K ∩ K′ = ∅, there exist f ∈ V∨ and c, c′ ∈ R
with c < c′ such that f ≤ c on K and f ≥ c′ on K′.

Proof. We may assume V = Rn and K, K′ , ∅, and we start with proving (b). Since
K′ is closed there exists, for any u ∈ Rn, a unique point v ∈ K′ that is nearest to u,
by an elementary geometric argument. If moreover u < K′, then

〈v − u, u〉 < 〈v − u, v〉 ≤ 〈v − u, y〉 (8.1)

holds for every y ∈ K′. Let dK′ (x) = infy∈K′ |y − x| denote the distance function to
K′ (Remark 4.3.6.2). Since this function is continuous, it takes its minimum on the
compact set K, say in u ∈ K. Let v be the point in K′ that is nearest to u, and let
f (x) = 〈v − u, x〉. Then (8.1) says f (y) ≥ f (v) > f (u) for y ∈ K′. On the other hand,
u is the point in K that is nearest to v, so reversing the roles of u and v in (8.1) we
get f (x) ≤ f (u) for all x ∈ K. Combining both inequalities gives (b).

To prove (a), one starts by showing that there exists a nested sequence K1 ⊆

K2 ⊆ · · · of compact convex subsets of K whose union is relint(K) (Exercise 8.1.7).
Similarly, there is a nested sequence K′1 ⊆ K′2 ⊆ · · · of compact convex sets whose
union is relint(K′). By (b), there is a sequence (vi)i≥1 of unit vectors in Rn, together
with real numbers ci, such that

〈vi, x〉 < ci < 〈vi, y〉 (8.2)

for all xi ∈ Ki, yi ∈ K′i and i ≥ 1. By compactness of the sphere there is a
convergent subsequence of (vi), so we may assume that limi→∞ vi = v exists. Put
c = sup{〈v, x〉 : x ∈ K} and c′ = inf{〈v, y〉 : y ∈ K′}. Assuming c > c′ would mean
that there exist x ∈ K and y ∈ K′ with 〈v, x〉 > 〈v, y〉, giving a contradiction to (8.2)
for sufficiently large i. Therefore c ≤ c′, which proves (a). �

8.1.6 Corollary. For any set M ⊆ V, the closed convex hull of M is the intersection
of all closed halfspaces that contain M. ut

A supporting hyperplane of a set M ⊆ V is an affine hyperplane H ⊆ V with
H ∩ M , ∅, such that M is contained in one of the two closed halfspaces defined
by H.

8.1.7 Corollary. Let K ⊆ V be convex. For any point x ∈ K r relint(K), there is a
supporting hyperplane H of K with x ∈ H and K * H.
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Proof. Replacing V by aff(K) we may assume that K has non-empty interior. Apply
Theorem 8.1.5(b) to the convex sets {x} and K, to find 0 , f ∈ V∨ with f (y) ≥ f (x)
for every y ∈ K. Clearly, this implies f (y) > f (x) for y ∈ int(K), so H = {z ∈
Rn : f (z) = f (x)} is a hyperplane as required. �

8.1.8 Let K ⊆ V be a closed convex set. A non-empty convex subset F of K is a face
of K if x, y ∈ K and

]
x, y

[
∩ F , ∅ imply x, y ∈ F. The faces of K that are different

from K are called proper. Any non-empty intersection of faces of K is a face of K.
For every supporting hyperplane H of K, the intersection F = K ∩ H is a face of K.
Faces of K that arise in this way are said to be exposed. By definition, the improper
face F = K of K is also considered to be exposed. Since any face is a convex set, it
is clear what is meant by the dimension of a face. Faces of dimension zero are called
extreme points, and we use Ex(K) to denote the set of all extreme points of K. The
set Ex(K) need not be closed, not even when K is compact. See Exercise 8.1.10 for
an example. Faces of dimension one are usually called edges. Note that any face of
a face of K is a face of K, but that an exposed face of an exposed face of K need not
be an exposed face of K (Exercise 8.1.12). An important fact is:

8.1.9 Proposition. If K ⊆ V is closed and convex, then F = aff(F) ∩ K holds for
any face F of K.

For the proof see Exercise 8.1.11. As an immediate consequence, note that every
face of K is closed. Moreover:

8.1.10 Corollary. For every proper face F , K of K we have dim(F) < dim(K). ut

8.1.11 Corollary. Let K ⊆ V be closed and convex. For every x ∈ K there is a
unique face F of K with x ∈ relint(F). This F is the smallest face of K that contains
x. It is called the supporting face of x.

Proof. If F is a face of K and x ∈ relint(F), it is immediate that F is the smallest
face that contains x, i.e. that F ⊆ F′ for every other face F′ of K with x ∈ F′.
Given a point x ∈ K r relint(K), it therefore remains to find a face F of K with
x ∈ relint(F). By Corollary 8.1.7 there exists a supporting hyperplane H ⊆ V of
K with x ∈ K. Hence K ∩ H is a proper (exposed) face of K that contains x, and
dim(K∩H) < dim(K). If x ∈ relint(K∩H) we are finished, otherwise continue with
K ∩ H. After finitely many steps we have found a face F of K with x ∈ relint(F). �

8.1.12 Corollary. If K ⊆ V is closed and convex, the union of all proper faces
F , K of K is the relative boundary K r relint(K) of K. ut

8.1.13 Theorem. Let K ⊆ V be a compact convex set. Then K is the convex hull of
its extreme points: K = conv(Ex(K)).

Proof. The convex set K′ = conv(Ex(K)) is contained in K, and we use induction
on dim(K) to show K′ = K. Clearly we may assume int(K) , ∅. Given x ∈ ∂K,
there is a proper face F of K with x ∈ F (8.1.12). Since F is compact convex with
dim(F) < dim(K), we have F = conv(Ex(F)) by the inductive hypothesis. This
implies F ⊆ K′ since Ex(F) ⊆ Ex(K), and so K′ contains the boundary of K. But it
is obvious that conv(∂K) = K, and so K′ = K. �
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Theorem 8.1.13 generalizes to compact convex sets K in arbitrary locally convex
vector spaces, where however it becomes necessary to take the closure of the convex
hull, so K = conv(Ex(K)). This is the famous Krein–Milman theorem (Appendix B,
Theorem B.9).

8.1.14 By a convex cone in V we mean a convex set C ⊆ V with 0 ∈ C such that
tx ∈ C for every x ∈ C and t ≥ 0. In view of this property, the condition that C is
convex may be replaced by C + C ⊆ C. We often simply speak of cones when we
mean convex cones. The conic hull of a set M ⊆ V , denoted cone(M), is the smallest
convex cone that contains M. It consists of all conic combinations

∑n
i=1 aixi (with

ai ≥ 0, n ≥ 1) of elements xi ∈ M. If dim(V) = n < ∞, Carathéodory’s theorem
for cones says that every element of cone(M) is a conic combination of n (instead
of n + 1) elements of M. The affine hull of a convex cone is its linear hull, so
aff(C) = span(C) = C − C. The cone C is pointed if C ∩ (−C) = {0}. Note that
the closure C of a convex cone C is again a convex cone. The relative interior of C
is usually not a convex cone by our conventions, since 0 < relint(C) unless C is a
linear subspace of V . The Minkowski sum C1 + C2 of two convex cones C1, C2 is
again a convex cone.

If the convex cone C is closed, every face of C is again a convex cone. The small-
est face of C is C ∩ (−C), sometimes called the support of C. Obviously, extreme
points of C are not of interest. If x ∈ C is such that x , 0 and the half-line R+x is
a face of C, then R+x is called an extreme ray of C. The cone analogue of Theorem
8.1.13 states that every closed and pointed convex cone C ⊆ V is the Minkowski
sum of its extreme rays. This can either be proved in a similar way as 8.1.13, or can
be deduced from 8.1.13.

We continue to assume that the R-vector space V has finite dimension. The next
proposition, together with the subsequent lemma, is often useful:

8.1.15 Proposition. Let C ⊆ V be a closed convex cone and let f : V → W be a
linear map of finite-dimensional vector spaces. If C ∩ ker( f ) = {0}, the image cone
f (C) is closed in W.

Equivalently, we have to show that the convex cone C + ker( f ) is closed in V .
This follows from the next lemma:

8.1.16 Lemma. Let C1, . . . ,Cr ⊆ V be closed convex cones in V, and assume that
x1 + · · · + xr = 0 with xi ∈ Ci (i = 1, . . . , r) implies x1 = · · · = xr = 0. Then the
convex cone C1 + · · · + Cr is closed as well.

Proof. We may assume V = Rn. It suffices to prove the case r = 2. Assuming that
C1 + C2 fails to be closed, we show that C1 ∩ (−C2) , {0}. By assumption there
are sequences (xν)ν≥1 in C1 and (yν)ν≥1 in C2, as well as a point z ∈ Rn, such that
xν + yν → z and z < C1 + C2. Both sequences (xν) and (yν) are unbounded since
otherwise, after passing to a subsequence, both sequences would converge, giving
z ∈ C1 + C2, a contradiction. Again after passing to a suitable subsequence, we have
xν/|xν| → x where |x| = 1, and x ∈ C1 since C1 is closed. Moreover xν + yν → z
implies that xν

|xν |
+

yν
|xν |

converges to 0. Therefore yν
|xν |
→ −x, and hence −x ∈ C2. �
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8.1.17 Proposition. Every finitely generated convex cone is closed.

Proof. Let C = cone(v1, . . . , vr) ⊆ V , we argue by induction on r. When r = 1 it
is obvious that C is closed. Assuming that the assertion has been proved for cones
generated by r elements, let v ∈ V and C′ = C + R+v. If −v < C then C′ is closed
by Lemma 8.1.16. So assume that −v ∈ C, and so C′ = C + Rv. Let π : V → V/Rv
denote the quotient map. The cone π(C′) = π(C) in V/Rv is generated by r elements,
so it is closed by the inductive hypothesis. This means that C′ is closed in V . �

To a large extent, the study of convex sets K in Rn is equivalent to the study
of convex cones C in Rn+1. The step from K to C is formalized by the concept of
homogenization of convex sets, that we now introduce.

8.1.18 Let K ⊆ V be a non-empty convex set. The recession cone of K, denoted
rc(K), is the set of all u ∈ V for which K + R+u ⊆ K. This is a convex cone, which
is closed if K is closed (Exercise 8.1.15). Let Kc = cone({1} × K) = {(t, tx) : t ≥ 0,
x ∈ K}, a convex cone in R×V . We define the homogenization of K to be the convex
cone

Kh := Kc +
(
{0} × rc(K)

)
= Kc ∪

(
{0} × rc(K)

)
in R×V (check the right hand equality!). When K = ∅ we put Kc = Kh = {(0, 0)} ⊆
R × V . It is an easy exercise to show dim(Kh) = 1 + dim(K) for any convex set K
(Exercise 8.1.16). Homogenization of convex sets commutes with taking closures:

8.1.19 Proposition. Let K ⊆ V be a convex set. Then Kc is dense in (K)h, and
therefore in Kh as well. Moreover we have (K)h = Kh. In particular, Kh is closed if
K is closed.

Proof. We start by proving the last claim, so let K be closed. Since rc(K) is closed
(Exercise 8.1.15), it suffices to consider a convergent sequence tν(1, xν) → (t, u)
in R × V with tν > 0 and xν ∈ K for all ν. Either t = limν→∞ tν > 0, then u

t =

limν→∞
tνxν
tν

= limν→∞ xν, so u
t ∈ K since K is closed, and hence (u, t) ∈ Kc ⊆ Kh.

Otherwise t = 0, and then u ∈ rc(K) holds by Exercise 8.1.15(iii).
Obviously, Kc is dense in (K)c. To prove that Kc is dense in (K)h, it therefore

suffices to show that {0} × rc(K) is contained in the closure of Kc. Let u ∈ rc(K).
By Exercise 8.1.15 there exist sequences (xν)ν in K and tν → 0 in R+, such that
tνxν → u. For every index ν choose x′ν ∈ K with |x′ν − xν| < 1. Then tνx′ν → u as
well, so we may assume that xν ∈ K for all ν. Now the sequence tν(1, xν) lies in Kc

and converges against (0, u).
Since Kc ⊆ Kh, the density assertion just proven implies (K)h ⊆ Kh. The reverse

inclusion is obvious since (K)h is closed. �

8.1.20 Corollary. The homogenization operator K 7→ Kh induces a bijective corre-
spondence between the closed convex sets K , ∅ in V and the closed convex cones
C in R+ × V with C * {0} × V.

The inverse map sends C to its “dehomogenization” Cd = {x ∈ V : (1, x) ∈
C}. Note how the correspondence is formally analogous to the correspondence in
algebraic geometry between closed subvarieties of affine and projective space.
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Proof. It only remains to show that (Cd)h = C, when C is a closed convex cone in
R+ × V with C * {0} × V . This means to show, for any u ∈ V , that u ∈ rc(Cd) if
and only if (0, u) ∈ C. The “if” direction being obvious, let u ∈ rc(Cd) and choose
x ∈ Cd. Then (1, x + tu) ∈ C for all t > 0. Dividing by t and letting t → ∞ shows
(0, u) ∈ C since C is closed. �

8.1.21 We need to discuss the concepts of duality and polarity for convex sets. Let
M ⊆ V be a set. The convex cone that is dual to M is

M∗ = { f ∈ V∨ : f (x) ≥ 0 for all x ∈ M}.

This is a closed convex cone in V∨, the dual linear space of V . By canonically identi-
fying V∨∨ = (V∨)∨ with V , the bi-dual convex cone M∗∗ := (M∗)∗ is a closed convex
cone in V that contains M. From hyperplane separation 8.1.5, it follows immedi-
ately that M∗∗ = cone(M), the closure of the conic hull of M. In other words, the
closed conic hull of M is the intersection of all closed linear halfspaces of V that
contain M. In particular, C∗∗ = C holds for every closed convex cone C.

We give several examples that illustrate the importance of dual cones.

8.1.22 Example. Let linear functions f1, . . . , fr ∈ V∨ on V be given. The dual of
the cone C = {v ∈ V: fi(v) ≥ 0} in V is C∗ = cone( f1, . . . , fr), the convex cone
generated by f1, . . . , fr in V∨. Indeed, the convex cone D := cone( f1, . . . , fr) ⊆ V∨

satisfies D∗ = C, by the definition of C. Since D is closed by Proposition 8.1.17, we
get D = C∗ by cone duality.

In a different but equivalent formulation, this statement is known as Farkas’
Lemma, see Exercise 8.1.21.

8.1.23 Example. For M ⊆ Rn a non-empty set, let PM = { f ∈ R[x]≤1 : f |M ≥ 0}
denote the cone of linear polynomials that are non-negative on M. Identifying a
linear polynomial a0 +

∑n
i=1 aixi with its vector of coefficients (a0, . . . , an), we see

that PM is the dual cone of Mc = cone(1 × M) ⊆ R × Rn. Let K = conv(M), then
the cone Mc = Kc is dense in the homogenization Kh of K (Proposition 8.1.19).
Therefore both cones have the same dual cone. In other words, the closed convex
cones PM = PK and (Kh)∗ are naturally (linearly) isomorphic. This also gives a
second characterization of Kh, in the case when K ⊆ Rn is non-empty, closed and
convex:

Kh =
⋂
f∈PK

{
u = (u0, . . . , un) ∈ R × Rn : f h(u) ≥ 0

}
Here f h denotes the homogenization of the linear polynomial f , as in Definition
2.4.3.

8.1.24 Corollary. Let f , f1, . . . , fr ∈ R[x] = R[x1, . . . , xn] be linear polynomials
such that the polyhedron K := {u ∈ Rn : f1(u) ≥ 0, . . . , fr(u) ≥ 0} is non-empty. If
f ≥ 0 on K, there exist a0, . . . , ar ≥ 0 in R with f = a0 + a1 f1 + · · · + ar fr.

Proof. By Example 8.1.23, the homogenization of K is given by
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Kh =
{
u = (u0, . . . , un) ∈ Rn+1 : u0 ≥ 0, f h

i (u) ≥ 0 for i = 1, . . . , r
}
.

Now apply Example 8.1.22 to Kh, and dehomogenize again. �

8.1.25 Example. For another natural occurrence of dual cones, fix integers n, d ≥ 0.
Recall that Pn,2d is the convex cone of all positive semidefinite (psd) forms of degree
2d in R[x] = R[x1, . . . , xn]. Let Vn,2d denote the image of the affine Veronese map

ψn,2d : Rn → RN , u = (u1, . . . , un) 7→
(
uα

)
|α|=2d (8.3)

where N =
(

n+2d−1
n−1

)
is the number of monomials of degree 2d in x. An element in

the cone dual to the conic hull of Vn,2d is a tuple (cα)|α|=2d of real numbers such
that

∑
α cαuα ≥ 0 for all u ∈ Rn. In other words, cone(Vn,2d)∗ = Pn,2d naturally. By

duality, therefore, (Pn,2d)∗ is (linearly) isomorphic to the closure of the conic hull
of Vn,2d. Since this conic hull is in fact closed (Exercise 8.1.19), we have (Pn,2d)∗ �
cone(Vn,2d), the convex cone generated by the affine Veronese variety.

There is a second remarkable interpretation of the dual cone (Pn,2d)∗, that we
already saw in Corollary 7.2.5. Let Qn,2d ⊆ R[x]2d denote the cone of all sums of
2d-th powers of linear forms, and let R[x]2d × R[x]2d → R, ( f , g) 7→ 〈 f , g〉 be the
apolarity pairing (see 7.2.1).

8.1.26 Proposition. A form f ∈ R[x]2d lies in Qn,2d if and only if 〈 f , p〉 ≥ 0 for every
p ∈ Pn,2d.

Proof. This follows from the key property of the pairing (Proposition 7.2.2), which
says

〈 f , (lu)2d〉 = f (u) (8.4)

for every f ∈ R[x]2d and every linear form lu =
∑n

i=1 uixi. By (8.4) we have f ∈ Pn,2d

if and only if 〈 f , g〉 ≥ 0 for every g ∈ Qn,2d. This means that Pn,2d is linearly iso-
morphic to the dual cone of Qn,2d. By dualizing, and since Qn,2d is closed (Exercise
8.1.19), it follows that (Pn,2d)∗ � Qn,2d. �

In view of Example 8.1.25, this means:

8.1.27 Corollary. The convex cones Pn,2d and Qn,2d are naturally duals of each
other, via the apolarity pairing. There is a natural linear isomorphism Qn,2d �
cone(Vn,2d) of convex cones, given by (lu)2d 7→

(
uα)|α|=2d. ut

In Corollary 7.2.5, we even proved a version of 8.1.27 relative to any projective
R-variety X ⊆ Pn−1 (with Zariski dense R-points). The dual cone of the sums of
squares cone Σn,2d will be discussed in the next section (Example 8.2.6.8).

We briefly mention the concept of polar dual sets, which is the inhomogeneous
version of cone duality:

8.1.28 Definition. The polar dual of a set M ⊆ V is Mo = { f ∈ V∨ : ∀ x ∈ M
f (x) ≥ −1}. This is a closed convex subset of V∨, and 0 ∈ Mo.
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As usual, we identify Moo = (Mo)o with a subset of V∨∨ = V . The bi-polar dual
of a set is described as follows:

8.1.29 Proposition. Let M ⊆ V be a set, and let K = conv(M ∪ {0}). Then Mo = Ko

and Moo = K. In particular, Moo = M if and only if M is closed and convex and
contains the origin.

Proof. Equality Mo = Ko is immediate, and K ⊆ Koo is trivial. Conversely let v ∈ V ,
v < K. By hyperplane separation 8.1.5 there exist f ∈ V∨ and c ∈ Rwith f |K ≥ c and
f (v) < c. If c = 0 we can assume f (v) < −1, by scaling f with a suitable positive
factor. Otherwise c < 0 since 0 ∈ K. Then we may scale f with − 1

c > 0 and get
f |K ≥ −1, f (v) < −1. In either case we have f ∈ Ko and v < Koo, which proves
Koo ⊆ K. �

8.1.30 Remarks.

1. The polar dual of a set M ⊆ Rn is Mo = {u ∈ Rn : 〈u, x〉 ≥ −1 for all x ∈ M}.
Using the notation PM = {p ∈ R[x] : deg(p) ≤ 1, p|M ≥ 0} from 8.1.23, we see that
Mo is naturally identified with {p ∈ PM : p(0) = 1}.

2. In particular, when M = K is convex and non-empty, the polar dual Ko is an
affine section of the dual of the homogenization of K, namely Ko = (Kh)∗∩ (1×Rn),
see 8.1.23. Together with the previous remark, this shows how the study of polar
duals of sets can be reduced to the study of duals of convex cones.

3. See Exercises 8.1.17 and 8.1.18 for some more basic properties of polar dual
sets.

Finally in this section, we mention the main theorem on polyhedra.

8.1.31 Let P ⊆ V be a polyhedron, say P =
⋂r

i=1{x ∈ V : fi(x) ≥ 0}, where fi(x) =

λi(x) − ai with 0 , λi ∈ V∨ and ai ∈ R (i = 1, . . . , r). For each i, the hypersurface
Hi = {x ∈ V : fi(x) = 0} is either a supporting hyperplane of P, or else Hi ∩ P = ∅.
If x ∈ P, let I = I(x) = {i ∈ [r] : fi(x) = 0}, the set of indices that are active
at x. It is easy to see that the supporting face of x is PI := P ∩

⋂
i∈I Hi, and that

aff(PI) =
⋂

i∈I Hi (Exercise 8.1.22). Hence every face of P has the form PI for some
subset I ⊆ [r]. In particular, a polyhedron has only finitely many faces, and they are
all exposed.

Every compact polyhedron P is the convex hull of its set Ex(P) of extreme points
(Theorem 8.1.13). Since Ex(P) is a finite set, compact polyhedra are polytopes.
Conversely, every polytope is a polyhedron. This is part of the following general
main theorem on polyhedra:

8.1.32 Theorem. (Minkowski, Weyl, Motzkin) A subset P ⊆ V is a polyhedron if,
and only if, P is the Minkowski sum of a polytope K and a finitely generated convex
cone C.
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In other words, a subset K ⊆ V is a polyhedron if and only if

K = conv(v1, . . . , vr) + cone(w1, . . . ,wr)

for suitable finitely many vectors vi, w j ∈ V . As a consequence of the theorem, note
in particular that a convex cone is finitely generated if and only if it is the intersection
of finitely many closed linear halfspaces. For this reason, finitely generated cones
are often referred to as polyhedral cones.

An important feature of Theorem 8.1.32 is that its proof is constructive, by the
Fourier–Motzkin elimination process. Theorem 8.1.32 won’t be used in this book,
and so we don’t include its proof. It can be found in any textbook on polyhedra,
such as [77] or [214].

8.1.33 Remark. Using Theorem 8.1.32, it is not hard to verify the following per-
manence properties of polyhedra (Exercise 8.1.23): The class of polyhedra is closed
under forming finite intersections, finite Minkowski sums and affine-linear images
or preimages. Dual cones and polar dual sets of polyhedra are again polyhedra. The
closed convex hull of any finite union of polyhedra is again a polyhedron.

Exercises

Let V always be a finite-dimensional vector space over R.

8.1.1 Show that the convex hull of any compact subset of Rn is compact. Give an example of a
closed set in R2 whose convex hull fails to be closed.

8.1.2 Show that a closed and pointed convex cone contains no affine line.
8.1.3 Let K ⊆ Rn be a convex set.

(a) Given x ∈ relint(K) and y ∈ K, show that
[
x, y

[
⊆ K. Conclude that

[
x, y

[
is contained

in relint(K).
(b) Both relint(K) and K are convex.

8.1.4 Let C ⊆ V be a convex cone, and let C∗ ⊆ V∨ be the dual cone of C.

(a) Show that supp(C∗) = span(C)⊥. In particular, dim(C) + dim supp(C∗) = dim(V).
(b) Conclude that C∗ is pointed if and only if C has non-empty interior, and that C∗ has

non-empty interior if and only if the closure of C is pointed.

8.1.5 Let C ⊆ V be a closed convex cone, and let f , 0 be a boundary point of the dual cone
C∗ ⊆ V∨. Show that f (u) = 0 for some point u , 0 in C.

8.1.6 Let S ⊆ Rn be a non-empty set, let PS = { f ∈ R[x]≤1 : deg( f ) ≤ 1, f |S ≥ 0}. Show that the
closed convex hull of S is naturally identified with an affine-linear section of the dual cone
P∗S .

8.1.7 Let K ⊆ Rn be a convex set. Show that there exists a nested sequence K1 ⊆ K2 ⊆ · · · of
compact convex sets whose union is relint(K).

8.1.8 If K ⊆ V is compact and convex, show that every supporting hyperplane of K contains an
extreme point of K.

8.1.9 A real matrix is doubly stochastic if all its entries are non-negative, and if all row and column
sums are equal to one. Show that the doubly stochastic n × n matrices form a polytope Bn
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whose extreme points are the n! permutation matrices (having exactly one entry 1 in every
row and column and otherwise only zeros). Bn is called the Birkhoff polytope.

Hint: Let A be the affine hull of Bn. Show that dim(A) = (n − 1)2, and that Bn consists of
all matrices in A with non-negative entries. Argue by induction on n and use Exercise 8.1.22,
to conclude that every extreme point of Bn is a permutation matrix.

8.1.10 In R3 let S = {(a, b, 0) : a2 + b2 = 1} and u = (1, 0, 1), v = (1, 0,−1). Show that the convex
hull of the set S ∪ {u, v} is compact, but that the set of its extreme points is not closed. On
the other hand, show for every closed convex set K in R2 that Ex(K) is closed.

8.1.11 Let K ⊆ V be a closed convex set, let F be a face of K.

(a) If a convex combination
∑

i ai xi of points xi ∈ K lies in F, and if ai > 0 for all i, show
that xi ∈ F for all i.

(b) F = aff(F) ∩ K. In particular, every face of K is closed.

Hint for (b): To prove that x ∈ aff(F)∩K lies in F, write x as an affine combination of points
of F and separate positive and negative coefficients.

8.1.12 Let K ⊆ Rn be a closed convex set.

(a) Show that any non-empty intersection of exposed faces of K is an exposed face of K.
(b) Show that every maximal proper face of K is exposed.
(c) Give an example of a closed convex set K ⊆ R2 and of faces F′ ⊆ F of K, such that F

is an exposed face of K and F′ is an exposed face of F, but F′ is not exposed as a face
of K.

8.1.13 Let K be a non-empty and closed convex subset of V . Show that K has an extreme point
if and only if K contains no line. (To prove “⇐”, consider a non-empty face of minimal
dimension.)

8.1.14 Give an example of a closed convex cone C ⊆ R3 and a linear map f : R3 → R2 such that
the cone f (C) in R2 is not closed.

8.1.15 Let K ⊆ V be a closed convex set, K , ∅. For u ∈ V , show that any of the following
conditions is equivalent to u ∈ rc(K):

(i) u + K ⊆ K;
(ii) x + R+u ⊆ K for some x ∈ K;

(iii) there are a sequence (xn) in K and a sequence (tn) in R+ such that tn → 0 and tn xn → u.

Conclude that the recession cone rc(K) is closed, and that rc(K) , {0} if and only if K is
unbounded.

8.1.16 For any convex set K, show that its homogenization Kh satisfies dim(Kh) = 1 + dim(K).

8.1.17 Let n ≥ 1, and let Br(0) = {x ∈ Rn : |x| ≤ r} be the closed ball of radius r around the origin.

(a) Show that Br(0)o = B1/r(0).
(b) Prove that M = B1(0) is the only set in Rn with Mo = −M.

8.1.18 Let M ⊆ Rn be a set. Show that the polar dual Mo is bounded if and only if 0 is an interior
point of Mo. Conclude that the polar dual operator K 7→ Ko maps the set K := {K ⊆ Rn : K is
compact, convex and 0 ∈ int(K)} to itself, and that Koo = K for every K ∈ K.

8.1.19 For n, m ≥ 1 let Qn,m ⊆ R[x1, . . . , xn]m = R[x]m be the convex cone of all (finite) sums of
m-th powers of linear forms in R[x]. Let Vn,m be the image of the Veronese map Rn → RN ,
u 7→ (uα)|α|=m.

(a) By expanding (
∑n

i=1 ui xi)m, show that Qn,m and cone(Vn,m) are linearly isomorphic.
(b) Show that Qn,m − Qn,m = R[x]m. Conclude that Qn,m has non-empty interior in R[x]m,

and Qn,m = R[x]m if m is odd. (Hint: Exercise 5.1.5)
(c) If m ≥ 4 is even and n ≥ 2, show that the inclusion Qn,m ⊆ Σn,m is proper.
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8.1.20 Let P ⊆ Rn be a non-empty polyhedron, let f be a linear polynomial that is bounded below
on P. Then f takes its minimum on P.

8.1.21 Prove Farkas’ Lemma (cf. Example 8.1.22): Given a matrix A ∈ Mn×r(R) and a vector
b ∈ Rn, exactly one of the following two statements holds:

(1) There is u ∈ Rr with Au = b and u ≥ 0;
(2) there is v ∈ Rn with A>v ≥ 0 and b>v < 0.

(Here an inequality x ≥ y or x > y between tuples is understood componentwise.)

8.1.22 Let P =
⋂m

i=1{ξ ∈ R
n : fi(ξ) ≥ 0} be a polyhedron, where fi ∈ R[x] are non-constant

linear polynomials. For ξ ∈ P let I(ξ) = {i ∈ [m] : fi(ξ) = 0}, corresponding to the set of
inequalities that are active at ξ. Prove:

(a) The supporting face of ξ in P is F := P ∩
⋂

i∈I(ξ){u ∈ Rn : fi(u) = 0};
(b) dim(F) ≥ n − |I(ξ)|.

8.1.23 Using the Minkowski-Weyl-Motzkin theorem 8.1.32, show that the class of polyhedra is
closed under forming finite intersections, finite Minkowski sums, and under forming the
polar dual set or the dual convex cone. The closed convex hull of a union of two polyhedra
is again a polyhedron.

8.2 Spectrahedra

Since real symmetric matrices will be present almost everywhere in this chapter, we
introduce a convenient short notation: The space of symmetric n × n matrices over
R will be denoted Sn := Symn(R).

8.2.1 We start with some basic facts on the psd symmetric matrix cone. As is well-
known from linear algebra, every symmetric matrix A ∈ Sn can be diagonalized
over R and has pairwise orthogonal eigenspaces. In other words, there exists an or-
thogonal matrix U ∈ O(n), together with real numbers a1, . . . , an ∈ R, such that
UAU> = diag(a1, . . . , an). Recall that A is called positive semidefinite (psd for
short), denoted A � 0, if ai ≥ 0 for all i. We are going to study the convex cone

Sn
+ :=

{
A ∈ Sn : A � 0

}
of all psd symmetric matrices By either Remark 1.3.25.2 or Exercise 1.3.1, Sn

+ is
a basic closed semialgebraic set whose interior consists of the matrices A that are
(strictly) positive definite, denoted A � 0. Note also that Sn

+ ∩ (−Sn
+) = {0}, so the

cone Sn
+ is pointed.

An important tool is the trace inner product, defined on Mm×n(R) by 〈A, B〉 :=
tr(AB>) = tr(A>B). This is a Euclidean inner product (positive definite symmetric
bilinear form) which is invariant under the left and right action of the orthogonal
group. Indeed, 〈UAV>,UBV>〉 = 〈A, B〉 holds for A, B ∈ Mm×n(R) and U ∈ O(m),
V ∈ O(n). We consider the restriction of this inner product to the space Sn of sym-
metric n × n matrices. If a1, . . . , an ∈ R are the eigenvalues of A ∈ Sn, note that
〈A, A〉 =

∑n
i=1 a2

i . An important property of the psd matrix cone is its self-duality:
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8.2.2 Proposition. The cone Sn
+ in Sn is self-dual with respect to the trace inner

product. That is, for A ∈ Sn one has

A ∈ Sn
+ ⇔ 〈A, B〉 ≥ 0 for all B ∈ Sn

+.

Moreover, for A, B ∈ Sn
+ one has 〈A, B〉 = 0⇔ AB = 0⇔ BA = 0.

Proof. Given A, B ∈ Sn
+, diagonalize the matrices to see that there exist symmetric

matrices
√

A,
√

B with (
√

A)2 = A and (
√

B)2 = B. So the cyclic invariance of the
trace gives

〈A, B〉 = tr
(
(
√

A)2(
√

B)2) = tr
(√

A · (
√

B)2 ·
√

A
)

= 〈
√

A
√

B,
√

A
√

B〉 ≥ 0. (8.5)

This proves Sn
+ ⊆ (Sn

+)∗. The opposite inclusion is immediate from diagonalizing a
given matrix A ∈ (Sn

+)∗. Moreover, if A, B � 0 satisfy 〈A, B〉 = 0, then (8.5) implies√
A
√

B = 0, hence also AB = 0. �

8.2.3 The faces of the cone Sn
+ are in natural bijective correspondence with the

linear subspaces U of Rn, as follows. Given U, let FU = {A ∈ Sn
+ : im(A) ⊆ U},

where im(A) denotes the linear subspace of Rn spanned by the columns of A. It is
easy to see that FU is a face of Sn

+, and conversely, that every non-empty face of
Sn

+ has the form FU for a unique linear subspace U ⊆ Rn. Moreover all faces of Sn
+

are exposed, see Exercise 8.2.2 for the proofs. Note that FU is linearly isomorphic
to Sd

+ where d = dim(U). The supporting face of a matrix A ∈ Sn
+ is Fim(A). The

extreme rays of Sn
+, i.e. the one-dimensional faces, are the rays spanned by psd rank

one matrices, which are the rays R+vv> with 0 , v ∈ Rn.

8.2.4 Another important device from linear algebra is the Schur complement. Sup-
pose we are given a symmetric matrix of size (m + n) × (m + n) that is written in
block form

M =

(
A C

C> B

)
with A ∈ Sm, B ∈ Sn and C ∈ Mm×n(R). Assume that det(A) , 0. Then the matrix

S = B − C> · A−1 ·C

in Sn is called the Schur complement of M (with respect to A). The matrix M is pos-
itive semidefinite if and only if both A and S are positive semidefinite, and likewise
for positive definite. The easy proofs can be found in any textbook on linear algebra.

While polyhedra (that do not contain a line) are exactly the affine-linear slices of
positive orthants Rn

+, up to linear isomorphism, we will now consider affine-linear
slices of psd matrix cones Sn

+. Let always V be anR-vector space of finite dimension.

8.2.5 Definition. A set S ⊆ V is a spectrahedron if there are a linear map f : V →
Sd and a matrix A ∈ Sd (for some d ≥ 1) such that

S =
{
x ∈ V : A + f (x) � 0

}
.
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8.2.6 Examples. Here are first examples and properties of spectrahedra.

1. Spectrahedra in Rn are the sets that can be written in the form

S =
{
x ∈ Rn : A0 + x1A1 + · · · + xnAn � 0

}
(8.6)

where A0, . . . , An are real symmetric matrices of some common size d × d. The
expression

A0 + x1A1 + · · · + xnAn � 0 (8.7)

is called a linear matrix inequality, frequently abbreviated LMI, in the variables
x1, . . . , xn, and (8.6) is called an LMI representation of the spectrahedron S . By
definition, therefore, the spectrahedron S in (8.6) is the solution set, often called
feasible set, of the LMI (8.7). The terminology comes from semidefinite optimiza-
tion, which is the task of optimizing linear functions over solution sets of LMIs.
We’ll say more on semidefinite optimization in Section 8.4. Every affine-linear slice
L∩Sd

+ of the psd matrix cone (with L ⊆ Sd an affine-linear subspace) is a spectrahe-
dron. Conversely, a spectrahedron is linearly isomorphic to such a slice if and only
if it doesn’t contain a line (Exercise 8.2.1).

2. Every spectrahedron S is a closed convex set in its surrounding vector space.
In fact, the set S is basic closed since the psd matrix cone has this property (8.2.1).
From the definition it is clear that the class of spectrahedra is stable under taking lin-
ear preimages, translations, finite intersections and direct products. A spectrahedron
that is at the same time a convex cone is often called a spectrahedral cone.

3. Spectrahedra generalize polyhedra: Every polyhedron is the feasible set of an
LMI that consists of diagonal matrices.

4. Every closed ball in Euclidean n-space is a spectrahedron. In a homogeneous
setting, the Lorentz cone

Ln =

{
(x0, . . . , xn) ∈ Rn+1 :

√
x2

1 + · · · + x2
n ≤ x0

}
is a spectrahedral cone, since it can be described by the LMI

x0 x1 x2 · · · xn

x1 x0 0 · · · 0
x2 0 x0 · · · 0
...

...
. . .

...
xn 0 0 · · · x0


� 0,

as one sees immediately using a Schur complement argument.
5. A correlation matrix is a psd matrix A = (ai j) ∈ Sn

+ with all diagonal entries
equal to one. The set En ⊆ Sn

+ of all n× n correlation matrices is a compact spectra-
hedron in

(
n
2

)
-dimensional space. For n = 3, E3 is called the elliptope and looks like

an “inflated tetrahedron”:
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In fact, the vertices and the edges of the standard regular tetrahedron are faces of the
elliptope E3 (Exercise 8.2.7).

6. Let x = (x1, . . . , xn) and let d ≥ 1. Given a polynomial f ∈ R[x] of degree 2d,
recall (2.1.6) that a Gram matrix of f is a symmetric matrix of size N =

(
n+d−1

d

)
,

with rows and columns indexed by the monomials xα of degree |α| ≤ d, whose
image under the linear Gram map γ : SN → R[x]≤2d is f . The set G+

f of all psd
Gram matrices of f is therefore a spectrahedron, the Gram spectrahedron of f .
Its elements correspond in a 1–1 fashion to the representations of f as a sum of
squares, up to orthogonal equivalence (Corollary 2.1.13). By Exercise 2.1.9, the
Gram spectrahedron of f is always compact.

7. For any choice of complex Hermitian d × d matrices A0, . . . , An, the set {x ∈
Rn : A0 +

∑n
j=1 x jA j � 0} is a spectrahedron that can be described by a (“real”) linear

matrix inequality (8.7) of size 2d × 2d. This follows from Exercise 8.2.5.
8. For positive integers n, d ≥ 1 let Σn,2d be the cone of all sums of squares forms

of degree 2d in R[x1, . . . , xn]. The dual cone Σ∗n,2d of Σn,2d is a spectrahedral cone.
Quite a bit more generally, let A be any R-algebra and let U ⊆ A be any linear
subspace of finite dimension. Put V = UU (the subspace spanned by all products of
two elements from U), and let ΣU2 ⊆ V be the convex cone of all sums of squares
of elements of U. Then the dual cone (ΣU2)∗ ⊆ V∨ is spectrahedral. Indeed, given
a linear form λ : V → R, let βλ : U × U → R denote the bilinear form defined by
βλ(u, u′) = λ(uu′). Then, by definition, we have λ ∈ (ΣU2)∗ if and only if βλ � 0.
Since the map V∨ → S 2U∨, λ 7→ βλ is linear, this shows the claim. For example, if
U = span(1, t, . . . , td) ⊆ R[t], the dual cone (ΣU2)∗ consists of all psd real Hankel
matrices 

a0 a1 · · · ad

a1 a2 · · · ad+1
...

...
...

ad ad+1 · · · a2d

 � 0.

For another prominent example of spectrahedra we need to elaborate a bit more.
The following (up to and including the proof of 8.2.9) may be skipped, except for
the first lemma (8.2.11) which will later be used again in another example.
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8.2.7 Definition. Let V be a vector space over R with dim(V) < ∞, let G ⊆ GL(V)
be a compact group of matrices. The G-orbitope of a vector v ∈ V is the convex hull
O(v) = OG(v) of the G-orbit Gv = {gv : g ∈ G} in V .

8.2.8 When G is a finite group, G-orbitopes are polytopes. A prominent example
are permutahedra. They arise from the action of the symmetric group G = Sn on
V = Rn by permutation of the coordinates. Another example is the Birkhoff polytope
Bn of doubly stochastic n × n matrices (Exercise 8.1.9). Here the symmetric group
G = Sn acts on V = Mn(R) from the left by permutation of the rows, and Bn is the
Sn-orbitope of the identity matrix I = In.

Let us consider the conjugation action (S , A) 7→ S AS > = S AS −1 of the orthog-
onal group O(n) = {S ∈ GLn(R) : S S > = I} on symmetric matrices A ∈ Sn. The
corresponding orbitope of A ∈ Sn is called the Schur–Horn orbitope of A.

8.2.9 Theorem. Let A ∈ Sn, and let KA = conv{S AS > : S ∈ O(n)} be the Schur–
Horn orbitope of A. Then KA is a spectrahedron.

8.2.10 The proof requires several steps, some of which we’ll only quote without
proof. Given a symmetric matrix A = (ai j) ∈ Sn, let λA = (λ1, . . . , λn) with λ1 ≥

· · · ≥ λn be the tuple of eigenvalues of A in descending order. Moreover let D(A) =

(a11, . . . , ann) ∈ Rn denote the diagonal of A. For any vector v ∈ Rn let Π(v) be
the permutahedron of v, i.e. the convex hull in Rn of all the permutations of the
coordinates of v.

8.2.11 Lemma. For every A ∈ Sn and every S ∈ O(n) we have D(S AS >) ∈ Π(λA).

Proof. We may assume A = diag(λ) with λ = (λ1, . . . , λn). Let S = (si j) and X =

S AS > = (xi j), then

xii =

n∑
j,k=1

si jδ jkλ jsik =

n∑
j=1

s2
i jλ j.

So D(X) = Mλ where M = (s2
i j). The matrix M is doubly stochastic, so M ∈ Bn.

Since Bn is a polytope whose extreme points are the permutation matrices (Exercise
8.1.9), it suffices to prove Mλ ∈ Π(λ) in the case where M is a permutation matrix.
But then Mλ is a permutation of λ, and so the assertion is obvious. �

8.2.12 Theorem. (Schur, Horn) Let λ, w ∈ Rn be given. There exists a symmetric
matrix X ∈ Sn with eigenvalues λ1, . . . , λn and with diagonal D(X) = w if, and only
if, w ∈ Π(λ).

Proof. The easier direction “⇒” was just proved in Lemma 8.2.11, and is due to
Schur (1923). The converse was proved by Horn in 1954, see [97]. We omit the
proof. �

8.2.13 Another bit is needed for the proof of Theorem 8.2.9, namely the description
of permutahedra by linear inequalities. Given v, w ∈ Rn, let σ, τ ∈ Sn be permuta-
tions satisfying
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vσ(1) ≥ · · · ≥ vσ(n) and wτ(1) ≥ · · · ≥ wτ(n).

One says that w is majorized by v, denoted w E v, if
∑n

i=1 vi =
∑n

i=1 wi and

wτ(1) + · · · + wτ(k) ≤ vσ(1) + · · · + vσ(k)

holds for k = 1, . . . , n. With this notation one has:

8.2.14 Proposition. Π(v) = {w ∈ Rn : w E v} for every v ∈ Rn.

Proposition 8.2.14 is due to Rado (1952). The proof is elementary but not obvi-
ous, and can be found in [10] (p. 257), for example.

Proof of Theorem 8.2.9. Let A ∈ Sn, let λA = (λ1, . . . , λn) be the ordered tuple
of eigenvalues of A. By Theorem 8.2.12, a matrix X ∈ Sn lies in KA if and only
D(X) ∈ Π(λ). By 8.2.14, this is equivalent to the condition that tr(X) = tr(A), and
that the sum of any k eigenvalues of X is at most λ1 + · · ·+λk, for every k = 1, . . . , n.
For k from 1 to n let Vk := Λk(Rn), the k-th exterior power of Rn. If v1, . . . , vn is any
linear basis of Rn, the wedge products vi1 ∧ · · · ∧ vik with 1 ≤ i1 < · · · < ik ≤ n form
a basis of Vk. In particular, dim(Vk) =

(
n
k

)
. Any matrix X ∈ Mn(R) induces a linear

endomorphism Lk(X) of Vk via

Lk(X) : v1 ∧ · · · ∧ vk 7→

k∑
j=1

v1 ∧ · · · ∧ (Xv j) ∧ · · · ∧ vk,

and the map X 7→ Lk(X) is clearly linear. Moreover, if X is symmetric then so is
Lk(X) (with respect to the standard basis of Vk consisting of the wedge products ei1∧

· · · ∧ eik of the canonical basis vectors). Therefore, if µ1, . . . , µn are the eigenvalues
of X, the operator Lk(X) has exactly the eigenvalues µi1 + · · · + µik where 1 ≤ i1 <
· · · < ik ≤ n. In summary, the Schur–Horn orbitope of A can be described as

KA =
{
X ∈ Sn : tr(X) = tr(A)

}
∩

n−1⋂
k=1

{
X ∈ Sn : (λ1 + · · · + λk) idVk − Lk(X) � 0

}
.

This is clearly a spectrahedron, and it can be represented by a linear matrix inequal-
ity of size 2 +

∑n−1
k=1

(
n
k

)
= 2n. ut

8.2.15 Remarks. After this series of examples, we now start recording properties of
spectrahedra in general.

1. Let S ⊆ V be a non-empty spectrahedron, given as S = {x ∈ V : A + f (x) � 0}
for some linear map f : V → Sd and some matrix A ∈ Sd. The recession cone of S
(see 8.1.18) is rc(S ) = f −1(Sd

+), since for A ∈ Sd
+ and B ∈ Sd one has A + tB � 0

for all t ≥ 0 ⇔ B � 0. Hence rc(S ) is a spectrahedral cone. This also shows that
every spectrahedral cone C in V has the form C = ϕ−1(Sm

+ ) for some m and some
linear map ϕ : V → Sm. In particular, spectrahedral cones in Rn can be represented
by homogeneous LMIs.
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2. Let S ⊆ Rn be a spectrahedron, given as the solution set of a linear matrix in-
equality A0 +

∑n
i=1 xiAi � 0 with A0, . . . , An ∈ Sd. Consider the extended symmetric

(block) matrices

A′0 :=
(
1 0
0 A0

)
, A′i :=

(
0 0
0 Ai

)
(i = 1, . . . , n)

in Sd+1, together with the spectrahedral cone C = {(x0, x) ∈ R × Rn : x0A′0 +∑n
i=1 xiA′i � 0} in Rn+1. If S , ∅, we claim that C = S h, the homogenization of

S . Indeed, the intersection of C with the hyperplane x0 = 0 is the recession cone of
S , by the previous remark, while C intersected with x0 = 1 is S . So C = S h fol-
lows from the description of S h in 8.1.18. As a consequence, we see that a convex
set K ⊆ Rn is a spectrahedron if and only if its homogenization Kh ⊆ Rn+1 is a
spectrahedral cone.

3. Neither linear images nor polar duals or dual cones of spectrahedra are usually
spectrahedra any more. Examples will be given in the next section (see 8.3.3 and
8.3.14).

In 8.2.3 it was noted that all faces of the psd matrix cone are exposed. This fact
carries over to arbitrary spectrahedra:

8.2.16 Proposition. Let g : V → Sd be an affine-linear map, let S = g−1(Sd
+) be the

corresponding spectrahedron in V. Every face of S has the form

FU(S ) = {x ∈ S : im g(x) ⊆ U}

where U is a linear subspace of Rd. Every face of S is exposed.

For a given face F of S , there will usually be many different choices of a sub-
space U ⊆ Rd with FU(S ) = F. The assertions in Proposition 8.2.16 follow from
the description of the faces of Sd

+ in 8.2.3, together with the following general ob-
servation:

8.2.17 Lemma. Let g : Rn → Rm be an affine-linear map, let K ⊆ Rm be a closed
convex set. The faces of g−1(K) are precisely the non-empty preimages g−1(F) where
F is a face of K. If F is an exposed face of K, then g−1(F) is an exposed face of
g−1(K).

See Exercise 8.2.4 for the easy proof.
If S = g−1(Sd

+) is a spectrahedron as in Proposition 8.2.16, and if x ∈ V is a point
for which the matrix g(x) is positive definite, then x lies in the interior of S . This
remark has the following converse (statement (b)):

8.2.18 Proposition. Let S ⊆ V be a spectrahedron, given as S = g−1(Sd
+) where

g : V → Sd is an affine-linear map.

(a) If there exists u ∈ V such that g(u) � 0, interior and boundary of S are given as
int(S ) = {x ∈ V : g(x) � 0} and ∂S = {x ∈ S : det g(x) = 0}, respectively.
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(b) Conversely, if u is an interior point of S , there exists an affine-linear map
h : V → Sr with r ≤ d such that S = h−1(Sr

+) and h(u) is the identity matrix Ir.
(c) If S is a spectrahedral cone, the map h in (b) may be chosen to be linear.

Proof. We may assume u = 0 in (a) and (b).
(a) Since u = 0 we can write g(x) = A + f (x) with f : V → Sd linear and A � 0.

Every x ∈ V with g(x) � 0 lies in int(S ), therefore ∂S ⊆ {x ∈ V : det g(x) = 0}.
On the other hand, let x ∈ S with det g(x) = 0, and let 0 , v ∈ Rd be a vector with
g(x)v = 0, which means f (x)v = −Av. For every t > 0 we have〈

v, g((1 + t)x)v
〉

=
〈
v, g(x)v + t f (x)v

〉
= t〈v, f (x)v〉 = t〈v,−Av〉 < 0,

since A � 0 implies 〈v, Av〉 > 0. So g((1 + t)x) has a negative eigenvalue for every
t > 0, hence cx < S for c > 1. This shows x ∈ ∂S .

(b) Let again u = 0, so we have S = g−1(Sd
+) with g(x) = A + f (x) and A � 0.

After a linear base change in Rd we may assume A =
(

Ir 0
0 0

)
where r = rk(A). Write

f (x) as an (r, d − r) block matrix

f (x) =

(
f1(x) f3(x)

f3(x)> f2(x)

)
where the matrices f1(x), f2(x), f3(x) depend linearly on x. So

g(x) =

(
I + f1(x) f3(x)

f3(x)> f2(x)

)
.

By assumption, this matrix is psd for every x ∈ V in a neighborhood of 0. In par-
ticular, f2(x) � 0 for x near 0, which implies f2(x) ≡ 0 since f2 is linear. Therefore
f3(x) ≡ 0 as well, and we see that S = h−1(Sr

+) for the map h(x) = I + f1(x).
(c) By Remark 8.2.15.1, we may assume that the map g is linear. Given an interior

point u of S , we have g(u) =
(

Ir 0
0 0

)
after base change in Rd, and the matrix g(u)+g(x)

is psd for x ∈ V in a neighborhood of 0. As in (b), this implies g(x) =
(

g1(x) 0
0 0

)
, and

so S = g−1
1 (Sr

+). �

A linear matrix inequality A(x) = A0 +
∑n

i=1 xiAi � 0 is said to be strictly feasible
if there exists ξ ∈ Rn with A(ξ) � 0.

8.2.19 Remark. Let S ⊆ Rn be a spectrahedron with non-empty interior, and let X =

∂aS ⊆ An be its algebraic boundary. From Remark 4.6.14, recall that X is the Zariski
closure of the topological boundary of S , and that X is a hypersurface with Zariski
dense R-points, except when S = Rn. By 8.2.18(b), there exists a linear matrix
polynomial A(x) = A(x1, . . . , xn) whose feasible set is S , and such that det A(x)
does not vanish identically. From 8.2.18(a) we see, for any such A(x), that X = ∂aS
is contained in the hypersurface det A(x) = 0, and that X(R) ∩ int(S ) = ∅: The
algebraic boundary of S does not meet the interior of S .

The most important property of spectrahedra is the following one, even though it
is easy to prove:
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8.2.20 Proposition. Let S ⊆ Rn be a spectrahedron, let u be an interior point of
S , and let g ∈ R[x] be a polynomial with ∂aS = V(g). Then, for every v ∈ Rn, the
univariate polynomial g(u − tv) ∈ R[t] is real-rooted.

Proof. By Proposition 8.2.18(b), S can be described by a linear matrix inequality
A(x) � 0 satisfying A(u) = I. Since det A(x) vanishes identically on ∂aS (Remark
8.2.19), it suffices to show that every zero of the polynomial det A(u − tv) is real.
Since A(u + x) = I + L(x) with some homogeneous linear matrix polynomial L(x),
we have det A(u−tv) = det(I−tL(v)). This is the inverse characteristic polynomial of
L(v), its roots are therefore the inverses of the non-zero eigenvalues of the symmetric
matrix L(v). In particular, all roots of this polynomial are real. �

8.2.21 Definition. A set K ⊆ Rn is rigidly convex with respect to an interior point
u of K, if there exists a polynomial p ∈ R[x] with p(u) , 0 and with the following
properties:

(1) K is the closure of the connected component of {ξ ∈ Rn : p(ξ) , 0} that contains
u;

(2) for every v ∈ Rn, the univariate polynomial p(u − tv) ∈ R[t] is real-rooted.

Observe that condition (2) requires that any real line through the point u meets
the hypersurface p = 0 in real points only. It is not at all obvious from the definition,
but every rigidly convex set is actually convex. See Remarks 8.2.26 below.

8.2.22 Corollary. Every spectrahedron in Rn is rigidly convex with respect to any
of its interior points.

Proof. Let S ⊆ Rn be a spectrahedron, let u be an interior point of S . By Proposition
8.2.18 we can write S = {ξ ∈ Rn : A(ξ) � 0} where A(x) is a linear matrix polyno-
mial that satisfies A(u) = I. Then the conditions in Definition 8.2.21 are satisfied for
the polynomial p(x) = det A(x). Indeed, from the proof of Proposition 8.2.20 we see
that p(u − tv) is real-rooted for every v ∈ Rn. And since the boundary of S satisfies
∂S = {ξ ∈ S : p(ξ) = 0} by 8.2.18(a), the interior of S is a connected component of
{ξ ∈ Rn : p(ξ) , 0}. �

8.2.23 Remark. Let K ⊆ Rn be an arbitrary set that is rigidly convex with respect
to a point u ∈ int(K), and let p ∈ R[x] be a polynomial as in 8.2.21. Clearly, K is
connected and semialgebraic, and is the closure of its interior. Assuming K , Rn, the
algebraic boundary ∂aK of K is a hypersurface by Remark 4.6.14, say ∂aK = V(g)
with a polynomial g ∈ R[x]. We may assume that g has no repeated factors. Clearly,
p vanishes on the boundary of K, therefore p is a multiple of the polynomial g.
In particular, property (2) in 8.2.21 implies that g(u − tv) is real rooted for every
v ∈ Rn. Moreover, the connected component that contains u is the same for {ξ ∈
Rn : p(ξ) , 0} and for {ξ ∈ Rn : g(ξ) , 0}. Together, this means that properties (1)
and (2) remain true when the polynomial p is replaced by g. Therefore, condition (2)
may be rephrased by saying that every (real) line through u intersects the algebraic
boundary of K in R-points only.
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8.2.24 Examples.

1. The (real locus of the) plane affine curve f (x, y) = 0, with f = 8x4 + 2x3y +

8y4 + 12x3 − 3xy2 − 3x2 − xy − 12y2 − 5x + 1, consists of two nested ovals (left
picture):

K

The curve f (x, y) = 0

K

The tv-screen x4 + y4 = 1

Since the curve f = 0 has degree four, the closed interior K of the inner oval is
rigidly convex, with respect to any of its interior points.

2. Being rigidly convex is quite restrictive, as a property of convex sets. For ex-
ample, consider the convex set K = {x ∈ R2 : x2d

1 + x2d
2 ≤ 1} where d ≥ 1. The

algebraic boundary of K is the irreducible curve x2d
1 + x2d

2 = 1 of degree 2d. Any
line through the interior of K intersects this curve (transversally) in two R-points
only. Therefore, as soon as 2d ≥ 4, there exist non-real intersection points, and so
K is not rigidly convex (and not a spectrahedron). For 2d = 4, the set K has been
dubbed the “tv-screen” in the literature.

8.2.25 Definition. A homogeneous polynomial f ∈ R[x1, . . . , xn] is hyperbolic with
respect to e ∈ Rn if f (e) , 0, and if f (te − v) is real-rooted for every v ∈ Rn. The
(closed) hyperbolicity cone of f (with respect to e) is

Ce( f ) = {v ∈ Rn : f (te − v) , 0 for t < 0}.

8.2.26 Remarks.

1. Let C ⊆ Rn be a spectrahedral cone, represented by a homogeneous LMI
C = {v ∈ Rn : A(v) � 0}, where A(x) =

∑n
i=1 xiAi satisfies A(e) � 0 for some point

e ∈ Rn. Then the form f (x) = det A(x) is hyperbolic with respect to e, and C is the
hyperbolicity cone Ce( f ) of f . Indeed, all roots t of det A(te − v) are non-negative if
and only if A(v) � 0, i.e. v ∈ C.

2. Hyperbolic forms are a fascinating object of current research. Unfortunately
we do not have room in this course to go any deeper into the subject, but at least
some remarks are in order. The notion of hyperbolic forms originates in the study
of partial differential operators, and goes back to work of Petrovskii and Gårding,
see [71]. Since the early 2000s, hyperbolic forms have moved into the focus of real
algebraic geometry, of algebraic combinatorics (in particular, matroid theory) and
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of optimization. From the definition it is not obvious at all, but Gårding [70] proved
that if the form f is hyperbolic with respect to e ∈ Rn, the hyperbolicity cone Ce( f )
is a closed convex cone. Moreover, Ce( f ) is the closure of the connected component
of {v ∈ Rn : f (v) , 0} that contains e.

3. Hyperbolic forms and their hyperbolicity cones are related to rigidly convex
sets in the following way. Let the set K ⊆ Rn be rigidly convex with respect to
u ∈ Rn, and let g ∈ R[x] be the polynomial (unique up to scaling) without multiple
factors whose zero set is the algebraic boundary ∂aK of K. Remark 8.2.23 shows
that the homogenization f = gh of g is a form in R[x0, . . . , xn] that is hyperbolic
with respect to e = (1, u) = (1, u1, . . . , un) ∈ Rn+1. Moreover, K coincides with the
“affine part” of the hyperbolicity cone Ce( f ), namely K = {v ∈ Rn : (1, v) ∈ Ce( f )}.
In other words, the rigidly convex sets in Rn are just the affine hyperplane sections
of hyperbolicity cones in Rn+1. In view of these facts it is usually more convenient to
study rigidly convex sets in a homogeneous setting, via hyperbolic forms and their
hyperbolicity cones.

4. Every hyperbolicity cone, and hence also every rigidly convex set, is a basic
closed set (Exercise 8.2.15). This generalizes the corresponding property of spec-
trahedra (Example 8.2.6.2).

When A(x) = A(x1, . . . , xn) is a homogeneous linear (symmetric) matrix polyno-
mial with A(e) � 0 for some e ∈ Rn, we have seen that the form f (x) = det A(x) is
hyperbolic with respect to e, and that Ce( f ) is the spectrahedral cone described by
the LMI A(x) � 0. For forms in three variables there is a strong converse:

8.2.27 Theorem. (Helton–Vinnikov) Let f ∈ R[x1, x2, x3] be a form of degree d ≥ 1
that is hyperbolic with respect to e = (1, 0, 0) and satisfies f (e) = 1. Then there exist
symmetric matrices A, B ∈ Sd such that f (x1, x2, x3) = det(x1I + x2A + x3B).

Theorem 8.2.27 had been conjectured by Peter Lax in 1958. The question was
open for more than 40 years, until it was settled by Helton and Vinnikov in the
early 2000’s. A purely algebraic proof was later given by Hanselka. In view of the
remarks in 8.2.26, Theorem 8.2.27 implies that every rigidly convex set in the plane
R2 is a spectrahedron.

For more than three variables, an easy parameter count shows that a general hy-
perbolic form cannot be written as a symmetric linear determinant (this is already
true for hyperbolic quadratic forms, Exercise 8.2.14). To what extent there might
be a generalization of Theorem 8.2.27 to four or more variables is an intriguing
question that is still open. Several candidate versions have been discussed, and dis-
missed again, over the years. Today, the following is widely considered to be a likely
generalization:

8.2.28 Conjecture. (Generalized Lax Conjecture) Every hyperbolicity cone is spec-
trahedral.

If the conjecture is true, it implies that rigidly convex sets and spectrahedra are
the same in all dimensions. See [211] for an overview of partial results in this direc-
tion, and see [144] for an excellent introduction with much more details.
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Exercises

8.2.1 Let V be a finite-dimensional vector space over R, let S ⊆ V be a spectrahedron. Show that
S is linearly isomorphic to an affine-linear slice of the psd matrix cone Sd

+ (for some d ≥ 0)
if, and only if, S contains no line.

8.2.2 If U ⊆ Rn is a linear subspace, let FU = {A ∈ Sn
+ : im(A) ⊆ U}.

(a) Show for A, B ∈ Sn
+ that im(A + B) = im(A) + im(B) and ker(A + B) = ker(A)∩ ker(B).

(b) Prove that U 7→ FU is a lattice isomorphism from the lattice of linear subspaces of Rn

onto the lattice of all non-empty faces of Sn
+.

(c) Show that every face of Sn
+ is exposed.

8.2.3 Let S = L∩Sn
+ be a spectrahedron, where L is an affine-linear subspace of Sn. For every face

F of S , show that there is an integer r = r(F) ≥ 0 such that rk(x) = r for every x ∈ relint(F).
We call r(F) the rank of the face F. Show also that r(F′) < r(F) whenever F′ is a proper
face of F.

8.2.4 Give the proof of Lemma 8.2.17.

8.2.5 Let Hn = {B ∈ Mn(C) : B = B
>
}, the R-linear space of Hermitian n × n matrices.

(a) For B ∈ Hn put Re(B) = 1
2 (B+ B) and Im(B) = 1

2i (B−B). Then Re(B) is real symmetric
and Im(B) is real skew-symmetric, so the real 2n × 2n matrix

B′ :=
(
Re(B) −Im(B)
Im(B) Re(B)

)
is symmetric.

(b) If a1, . . . , an are the eigenvalues of B, show that B′ has the eigenvalues a1, a1, . . . , an, an.
Deduce that Hn

+ = {B ∈ Hn : B � 0} is linearly isomorphic to a linear section of the cone
S2n

+ .
(c) Define the (Hermitian) trace inner product on Mm×n(C), and prove similar properties as

in Proposition 8.2.2.

8.2.6 Determine the faces of the Hermitian psd matrix cone Hn
+ (see Exercise 8.2.5).

8.2.7 Let E = {x ∈ R3 : A(x) � 0} be the elliptope, where

A(x) =

 1 x1 x2
x1 1 x3
x2 x3 1


(a) Show that E =

{
x ∈ R3 : |x|2 ≤ min{3, 1 + 2x1 x2 x3}

}
.

(b) Determine the faces of E of positive dimension.
(c) Show that the algebraic boundary V of E is a rational surface, and find a rational

parametrization of V .

8.2.8 (A closed convex set that is not basic closed) Let a > 0, let B, B′ ⊆ R2 be the circles with
radius 1 and centre ±(a, 0), and let K be the convex hull of B ∪ B′. Show that K is (closed
but) not basic closed, as follows. Assume that K = S(g1, . . . , gr) for suitable polynomials
gi ∈ R[x, y], and let f = (x − a)2 + y2 − 1 be the equation of one of the two circles.

(a) Show that f divides one of the gi with odd multiplicity.
(b) Why does this contradict the assumption K = S(g1, . . . , gr)?

8.2.9 Show that the (compact and basic closed) set K = S(x4 + y4 + x2y2 − x2 − y2) in the plane
is convex, but that the algebraic boundary of K intersects the interior of K. (Compare with
Remark 8.2.19.)
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8.2.10 Let L ⊆ Sn be a linear subspace and let C = L ∩ Sn
+. If a matrix A ∈ C spans an extreme ray

of C, show that the image im(A) of A is minimal in the following sense: Every matrix B ∈ L
with im(B) ⊆ im(A) is a scalar multiple of A.

8.2.11 Let n ≥ 1, let S = L∩Sn
+ where L is an affine subspace of Sn of codimension k, and assume

that the spectrahedron S is non-empty. Prove that S contains a matrix whose rank r satisfies
r2 + r ≤ 2k. (Hint: S contains an extreme point (why?).)

8.2.12 Use Exercise 8.2.11 to sharpen and generalize Corollary 2.1.16 as follows: Let A be an R-
algebra, let U be a finite-dimensional linear subspace of A and let UU denote the subspace
generated by the products u1u2 (u1, u2 ∈ U). Then every sum of squares of elements of U is
a sum of ⌊

−1 +
√

8m + 1
2

⌋
such squares, where m = dim(UU).

8.2.13 Let f ∈ R[x1, . . . , xn] be a quadratic form of rank r. Show that f is hyperbolic with respect
to some point e ∈ Rn if, and only if, the Sylvester signature of f is ±(r − 2).

8.2.14 Let f ∈ R[x1, . . . , xn] be a quadratic form of rank at least 4. Show that there do not exist
symmetric 2 × 2 matrices A1, . . . , An with f (x) = det(x1A1 + · · · + xnAn).

8.2.15 Let the form f ∈ R[x0, . . . , xn] be hyperbolic with respect to e ∈ Rn+1, and assume f (e) > 0.
Prove that the closed hyperbolicity cone of f is given by

Ce( f ) = {v ∈ Rn : ∂i
e f (v) ≥ 0, i = 1, . . . , deg( f )}

In particular, the set Ce( f ) is a basic closed. (Here ∂e denotes the (first) partial derivative in
direction e, i.e. ∂e =

∑n
j=0 e j

∂
∂x j

.)

8.2.16 Let n = 2k ≥ 0 be even, and let K be the convex hull of {(t, t2, . . . , tn) : t ∈ R} in Rn. Show
that the closure of K is a spectrahedron, described by the linear matrix inequality

1 x1 · · · xk
x1 x2 · · · xk+1
...

...
xk xk+1 · · · x2k

 � 0.

Moreover show either that K is closed, or exhibit a point in K r K. What changes when
n = 2k + 1 is odd? (Hint: Use Examples 8.1.23 and 8.2.6.8)

8.3 Spectrahedral shadows

8.3.1 Definition. Let V be an R-vector space of finite dimension, and let K ⊆ V be a
set. A semidefinite representation of K is a pair ( f , g) of affine-linear maps f : W →
V , g : W → Sd (where d ≥ 1 and W is some vector space of finite dimension)
such that K = f (g−1(Sd

+)). If K has a semidefinite representation, K is said to be
a projected spectrahedron, or a spectrahedral shadow. By definition, therefore, the
spectrahedral shadows are precisely the linear images of spectrahedra.

8.3.2 Remarks.

1. A set K ⊆ Rn is a spectrahedral shadow if, and only if, it can be written in the
form
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K =
{
x ∈ Rn : ∃ y ∈ Rm A + M(x) + N(y) � 0

}
(8.8)

where m ≥ 0 and

A + M(x) + N(y) = A +

n∑
i=1

xiMi +

m∑
j=1

y jN j (8.9)

(with A, Mi, N j ∈ Sd) is a linear (symmetric) matrix polynomial of some size d × d
in the variables x = (x1, . . . , xn) and y = (y1, . . . , ym). A representation of the form
(8.8) is also called a lifted LMI representation of K.

2. By the Tarski–Seidenberg projection theorem, and since linear images of con-
vex sets are convex, every spectrahedral shadow is a convex semialgebraic set. Be-
yond this, there are no other general properties of spectrahedral shadows that are
obvious. But we will see in Section 8.7 that the class of spectrahedral shadows is
much more restricted.

8.3.3 Examples. Here are first examples of spectrahedral shadows:

1. For d ≥ 2, the convex set K = {x ∈ R2 : x2d
1 + x2d

2 ≤ 1} fails to be a spectrahe-
dron (Example 8.2.24.2). But K is a spectrahedral shadow. Indeed, the following is
an explicit semidefinite representation in case 2d = 4:

K =

{
x ∈ R2 : ∃ y ∈ R2 s.t.

(
y1 x1
x1 1

)
� 0,

(
y2 x2
x2 1

)
� 0,

(
1 + y1 y2

y2 1 − y1

)
� 0

}
.

Of course, the three LMIs of size 2 × 2 can be combined into a single LMI of size
6 × 6. In Example 8.5.23, an explicit semidefinite representation of K will be given
for all d ≥ 1.

2. Other than spectrahedra, their shadows need not be closed. For example, con-
sider the set K ⊆ R2 that consists of all x ∈ R2 for which there is y ∈ R with1 + x1 x2 1

x2 1 − x1 0
1 0 y

 � 0. (8.10)

Then K = {x : x2
1 + x2

2 < 1} ∪ {(1, 0)}. Indeed, K is the set of points x in the closed
unit disk for which there exists y > 0 making the determinant of (8.10) non-negative.
This says y(1 − |x|2) ≥ 1 − x1. If |x| < 1, there clearly exists such y, but when |x| = 1
this only holds if x = (1, 0).

3. It is easy to see that the class of spectrahedral shadows is closed under form-
ing finite intersections or Minkowski sums, finite direct products, and under taking
linear images or preimages (Exercise 8.3.1). Other permanence properties will be
proved below.

8.3.4 Examples.

1. More examples of spectrahedral shadows arise from sums of squares cones.
For any n and d, the cone Σn,≤2d in R[x]≤2d = R[x1, . . . , xn]≤2d is a spectrahedral
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shadow. An explicit semidefinite representation is given by the Gram matrix con-
struction (Proposition 2.1.7): f ∈ R[x]≤2d is a sum of squares if, and only if, there is
a psd symmetric matrix S , whose rows and columns are indexed by the monomials
of degree ≤ d, such that f = X>S X where X is the vector of these monomials. In
particular, a univariate polynomial f ∈ R[t]≤2d is sos if and only if there exists a
symmetric (d + 1) × (d + 1) matrix S � 0 with f = (1, . . . , td) · S · (1, . . . , td)>.

2. The generalization to cones of weighted sums of squares is immediate, if we
impose bounds on the degrees of the summands: Given polynomials g1, . . . , gr in
R[x] = R[x1, . . . , xn] and an integer k ≥ 1, the set of all f ∈ R[x]≤k which admit a
representation f =

∑r
i=1 sigi with sums of squares si ∈ R[x] and deg(sigi) ≤ k for

all i, is a spectrahedral shadow.
3. The previous remarks also generalize in a different direction: If A is an ar-

bitrary R-algebra and U ⊆ A is a finite-dimensional linear subspace, the sos cone
ΣU2 in UU (cf. Example 8.2.6.8) is a spectrahedral shadow. Indeed, if u1, . . . , un is
a linear basis of U, the linear map

φ : Sn → UU, (ai j) 7→
n∑

i, j=1

ai juiu j

satisfies φ(Sn
+) = ΣU2, since φ(ww>) =

(∑
i wiui

)2 for w ∈ Rn.

8.3.5 Lemma. A convex cone that is a spectrahedral shadow is a linear image of a
spectrahedral cone.

Proof. We may assume C = f (S ) where f : W → V is a linear map and S ⊆ W is
a spectrahedron with 0 ∈ S . The homogenization S h of S is a spectrahedral cone
in R × W, by Remark 8.2.15.2. The linear map f ′ : R × W → V , f ′(t,w) = f (w)
satisfies f ′(S h) = f (S ). Indeed, “⊇” is obvious since w ∈ S implies (1,w) ∈ S h and
f ′(1,w) = f (w). To prove “⊆”, recall that elements in S h either have the form (t, tw)
where t > 0 and w ∈ S , or else (0,w) where w ∈ rc(S ). If w ∈ S and t ≥ 0 then
f ′(t, tw) = t f (w) ∈ C = f (S ) since C is a cone. Since 0 ∈ S , we have rc(S ) ⊆ S ,
and so f ′(0,w) = f (w) ∈ f (S ) for every w ∈ rc(S ). �

8.3.6 Proposition. If K ⊆ V is a spectrahedral shadow, the same is true for the
conic hull cone(K) of K.

Proof. We may assume V = Rn and

K =
{
x ∈ Rn : ∃ y ∈ Rm A +

n∑
i=1

xiMi +

m∑
j=1

y jN j � 0
}

where A, Mi, N j ∈ Sd for some d. Let C be the set of x ∈ Rn for which there are
y ∈ Rm and s, t ∈ R such that sA +

∑n
i=1 xiBi +

∑m
j=1 y jC j � 0 and(

s xi

xi t

)
� 0 (i = 1, . . . , n). (8.11)
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We claim that C = cone(K). Indeed, C is a convex cone that contains K, so
cone(K) ⊆ C is clear. Conversely let (x, y, s, t) ∈ Rn × Rm × R × R be such that
the above LMIs are satisfied. If s > 0 then x

s ∈ K and hence x ∈ cone(K). If s = 0
we have x = 0, since otherwise there would not be any t ∈ R satisfying the LMIs
(8.11). Hence x ∈ cone(K) is true in this case as well. �

8.3.7 Proposition. If K1, K2 ⊆ V are spectrahedral shadows, the convex hull of
K1 ∪ K2 is a spectrahedral shadow as well.

Proof. Write Kc
i = cone({1} × Ki) ⊆ Rn+1 (i = 1, 2) as in 8.1.18. Then Kc

1, Kc
2

are shadows by Proposition 8.3.6. Hence the same is true for their Minkowski sum
Kc

1 + Kc
2 (Exercise 8.3.1). Since conv(K1 ∪ K2) = {x ∈ Rn : (1, x) ∈ Kc

1 + Kc
2}, this

implies the assertion, see again Exercise 8.3.1. �

8.3.8 Proposition. Let C ⊆ V be a spectrahedral cone. Then the dual cone C∗ in V∨

is a linear image of a spectrahedral cone.

Let U = C ∩ (−C), and let W = C − C be the linear hull of C in V . Replacing
V by W/U and C by C/U is harmless, so we may assume that C is pointed and
has non-empty interior in V . Using Proposition 8.2.18, it then suffices to prove the
following more explicit version:

8.3.9 Proposition. Let V ⊆ Sd be a linear subspace, let C = V ∩ Sd
+. Assume

that V contains a matrix A0 that is positive definite. Then the natural linear map
φ : Sd → V∨ satisfies φ(Sd

+) = C∗.

Proof. φ is the map B 7→ φB ∈ V∨ defined by φB(A) = 〈A, B〉 (B ∈ Sd, A ∈ V). For
B ∈ Sd

+ and A ∈ C we have φB(A) = 〈A, B〉 ≥ 0, so the inclusion φ(Sd
+) ⊆ C∗ is

clear. Moreover, if B ∈ Sd
+ satisfies φB = 0, then in particular 〈A0, B〉 = 0, which

implies B = 0 since A0 � 0 (Proposition 8.2.2). This shows ker(φ)∩Sd
+ = {0}, and so

the image cone φ(Sd
+) is closed in V∨ by Proposition 8.1.15. To prove the remaining

inclusion C∗ ⊆ φ(Sd
+), it therefore suffices to show the dual inclusion φ(Sd

+)∗ ⊆ C.
For this let A ∈ φ(Sd

+)∗, so A ∈ V is a matrix that satisfies 〈A, B〉 ≥ 0 for every
B ∈ Sd

+. But then A � 0 since Sd
+ is self-dual, and therefore A ∈ C. �

8.3.10 Corollary. If C ⊆ V is a convex cone which is a spectrahedral shadow, the
dual cone C∗ is a spectrahedral shadow as well.

Proof. By Lemma 8.3.5 there are a spectrahedral cone D ⊆ W and a linear map
f : W → V with C = f (D). The dual cone D∗ ⊆ W∨ is a spectrahedral shadow by
Proposition 8.3.8. On the other hand, C∗ = ( f ∨)−1(D∗) where f ∨ : V∨ → W∨ denotes
the linear map dual to f . So the claim follows using Exercise 8.3.1. �

8.3.11 Corollary. If K ⊆ V is a spectrahedral shadow, the same is true for the cone
(Kh)∗ (dual of the homogenization of K), and for the polar dual Ko of K. It is also
true for Kh if K is closed.
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Proof. The cone Kc is dense in Kh (Proposition 8.1.19), so (Kh)∗ = (Kc)∗ =

cone(1 × K)∗, which is a shadow by Propositions 8.3.6 and 8.3.10. If K is closed
then Kh is closed as well (8.1.19), and so Kh = (Kh)∗∗ is a shadow. The polar dual
Ko is an affine section of (Kh)∗ (Remarks 8.1.30), which gives the assertion for Ko.�

8.3.12 Corollary. The closure of any spectrahedral shadow is again a spectrahedral
shadow.

Proof. We may assume that K ⊆ Rn is a spectrahedral shadow that contains the
origin. Then K = Koo (8.1.29), which is a shadow by 8.3.11. �

Netzer [143] has shown that removing certain families of faces from a spectra-
hedral shadow gives again spectrahedral shadows (cf. also Exercise 8.3.4). In par-
ticular, he proved that the relative interior of every spectrahedral shadow is again a
spectrahedral shadow.

8.3.13 Example. Let Σn,2d be the cone of sos forms of degree 2d in n variables,
a spectrahedral shadow by Example 8.3.4. For 2d = 2, the cone Σn,2 is self-dual
(isomorphic to the psd matrix cone), and hence is spectrahedral. However as soon
as 2d ≥ 4 (and n ≥ 2), Σn,2d has non-exposed faces, so it is not a spectrahedron
(Proposition 8.2.16). To see this, note that the form x2d

1 generates an extreme ray in
Σn,2d by Exercise 3.5.1(a). Assume that this ray is exposed, which means assume
that there is a linear form λ ∈ Σ∗n,2d satisfying

λ(p2) = 0 ⇔ p ∈ Rxd
1

for all forms p of degree d. Consider the form pt = xd−2
1 (tx2

1 − x2
2) where t is a real

parameter. From λ(x2d−2
1 x2

2) > 0 and from

λ(p2
t ) = λ

(
x2d−4

1 x4
2
)
− 2t λ

(
x2d−2

1 x2
2
)

we see λ(p2
t ) < 0 for sufficiently large t > 0, a contradiction. To summarize:

8.3.14 Proposition. For all n and d, the sos cone Σn,2d is a spectrahedral shadow,
and its dual (Σn,2d)∗ is a spectrahedron. If n ≥ 2 and 2d ≥ 4, the cone Σn,2d has
non-exposed faces and is not a spectrahedron. ut

Exercises

8.3.1 Let V, W be real vector spaces of finite dimension, let f : W → V be a linear map. For any
spectrahedral shadow K in V , show that the preimage f −1(K) is a spectrahedral shadow in
W. The class of spectrahedral shadows is stable under finite intersections, Minkowski sums
and direct products.

8.3.2 Consider the set K = {x ∈ R3
+ : x1 x2 x3 ≥ 1}. Show that K is not a spectrahedron, but that K

is a linear image of a spectrahedron that is described by three LMIs of size 2 × 2.
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8.3.3 Generalize Exercise 8.3.2 to show: For every n ≥ 1 and any integers k1, . . . , kn ≥ 1, the set
{x ∈ Rn

+ : xk1
1 · · · x

kn
n ≥ 1} is a spectrahedral shadow.

8.3.4 Let K ⊆ Rn be a closed set that is a spectrahedral shadow, and let F be a face of K. Show that
the difference set K r F is a spectrahedral shadow as well. (Hint: First do the case where K
is a spectrahedron.)

8.4 A (very) brief introduction to semidefinite programming

A semidefinite program, often abbreviated SDP, is the task of optimizing a linear
function over a spectrahedron. Under mild assumptions, semidefinite programs can
be solved in polynomial time, up to any prescribed accuracy. They have numer-
ous applications from a wide range of areas, including optimization, discrete and
combinatorial mathematics, geometry, signal processing, electrical engineering and
others.

To introduce semidefinite programs, we start by discussing the setting of conic
programming, which is more general. Every conic program has a dual conic pro-
gram, whose dual in turn is the original program. In the usual formulation, the com-
plete symmetry between primal and dual problem gets somewhat hidden. Therefore
we prefer to start with a formulation that is entirely symmetric. After that we’ll pass
to the standard setup.

Many excellent textbooks and survey articles are available that provide way more
background on theoretical or practical aspects of conic programming in general,
or of semidefinite optimization in particular. See for example (in historical order)
[213], [16], [108], [30], [142], [11], [4], [123], to mention just a few standard refer-
ences.

8.4.1 Let V be a finite-dimensionalR-vector space and C ⊆ V a closed convex cone.
As usual let V∨ denote the dual vector space and C∗ ⊆ V∨ the dual convex cone, and
write 〈x, y〉 for the natural pairing between x ∈ V and y ∈ V∨. Further let v ∈ V and
w ∈ V∨ be given, let U ⊆ V be a linear subspace, and let U⊥ = {y ∈ V∨ : ∀ u ∈ U
〈u, y〉 = 0} be the subspace of V∨ that is orthogonal to U. With this data we associate
the primal program

p∗ = inf 〈x,w〉 s.t. x ∈ C ∩ (v + U), (P)

which means the problem of minimizing the linear function w on V (the (primal)
objective function) over the set C ∩ (v + U) ⊆ V . Likewise, the dual program

p′∗ = inf 〈v, y〉 s.t. y ∈ C∗ ∩ (w + U⊥) (P′)

is the problem of minimizing v, considered as a linear function on V∨, over the set
C∗∩ (w+U⊥) ⊆ V∨. We point out that both primal and dual program are of the same
form, and that the dual of the dual problem is again the original primal problem.
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8.4.2 Usually, one of (P) or (P′) is written as the task of maximizing (instead of
minimizing) a suitable linear function. If we let y = w − z in (P′), then p′∗ becomes

inf{〈v,w − z〉 : z ∈ U⊥, w − z ∈ C∗} = 〈v,w〉 − sup{〈v, z〉 : z ∈ U⊥ ∩ (w −C∗)}

Thus we may consider the dual problem in the form

d∗ = sup 〈v, y〉 s.t. y ∈ U⊥ and w − y ∈ C∗, (D)

getting
d∗ = 〈v,w〉 − p′∗.

It is common to consider (P) and (D) above as the pair of primal and dual problem,
and we will adopt this convention in what follows.

The subset K := C ∩ (v + U) of V is closed and convex and is called the set of
feasible points for the primal program (P). The program (P) is feasible if K , ∅,
and is strictly feasible if K contains an interior point of C. A point x ∈ K is optimal
for (P) if 〈x,w〉 = p∗. Dually, the set S := U⊥ ∩ (w − C∗) of feasible points for (D)
is closed and convex in U⊥. The dual program (D) is feasible (or strictly feasible) if
S , ∅ (or if w − S contains an interior point of C∗, respectively). An optimal point
for (D) is a point y ∈ S with 〈v, y〉 = d∗.

The general duality theory of conic programs is summarized in the following
theorem:

8.4.3 Theorem. Let K and S be the sets of feasible points for (P) and (D), respec-
tively.

(a) (Weak duality) For every x ∈ K and y ∈ S one has 〈v, y〉 ≤ 〈x,w〉. Therefore
d∗ ≤ p∗, and the duality gap ∆ := p∗ − d∗ is non-negative and satisfies ∆ =

inf
{
〈x,w〉 − 〈v, y〉 : x ∈ K, y ∈ S

}
.

(b) Given x ∈ K and y ∈ S , equality 〈x,w〉 = 〈v, y〉 holds if and only if x is optimal
for (P) and y is optimal for (D).

(c) Assume that (P) is strictly feasible. Then (D) is feasible if and only if (P) is
bounded, i.e. p∗ , −∞. If this holds, (D) has an optimal point and ∆ = 0.

(d) Dually, if (D) is strictly feasible, then (P) is feasible if and only if d∗ , ∞. If
this holds, (P) has an optimal point and ∆ = 0.

Assertions (c) and (d) are dual to each other and are commonly referred to as
strong duality.

Proof. To prove (a), write y = w − z with z ∈ C∗. Then 〈x, z〉 ≥ 0, hence 〈x,w〉 ≥
〈x,w〉 − 〈x, z〉 = 〈x, y〉 = 〈v, y〉, where the last equality holds since x − v ∈ U and
y ∈ U⊥. Clearly this implies the remaining assertions in (a), and it also implies (b).
We now prove (d). This will also imply (c), since (c) is dual to (d).

Thus assume that (D) is strictly feasible. From (a) it is clear that (P) can be
feasible only if (D) is bounded. Hence assume d∗ < ∞. If v ∈ U, then x = 0 lies in
K and 〈v, y〉 = 0 for every y ∈ S . So d∗ = p∗ = 0, and x = 0 is an optimal point for
(P).
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We are left with the case v < U. Consider the set H := {y ∈ U⊥ : 〈v, y〉 ≥ d∗},
which is a closed halfspace in U⊥ since v < U. Any point y in H∩ (w−C∗) = H∩S
satisfies 〈v, y〉 = d∗. If there were y ∈ H such that w − y ∈ int(C∗) (and hence
〈v, y〉 = d∗), we could find y′ ∈ U⊥ close to y such that 〈v, y′〉 > 〈v, y〉 (using v < U)
and still w−y′ ∈ C∗ holds. This would mean y′ ∈ H and 〈v, y′〉 > d∗, a contradiction.
Therefore the intersection (w − H) ∩ int(C∗) must be empty. By Theorem 8.1.5(a)
there exists a hyperplane in V∨ that separates the two convex sets, namely an element
x , 0 in V such that

sup{〈x, z〉 : z ∈ w − H} ≤ inf{〈x, µ〉 : µ ∈ C∗}. (8.12)

The right hand infimum is 0 since otherwise it would be −∞, contradicting H , ∅.
This shows that x ∈ (C∗)∗ = C, and it means that every y ∈ H satisfies 〈x,w − y〉 ≤ 0.
In other words, the closed halfspace H = {y ∈ U⊥ : 〈v, y〉 ≥ d∗} of U⊥ is contained
in {y ∈ U⊥ : 〈x, y〉 ≥ 〈x,w〉}.

This means that there is some constant c ≥ 0 for which x ∈ cv + U, and also that

〈x,w〉 = cd∗ (8.13)

in case c > 0. We claim that c = 0 leads to a contradiction. Indeed, this would mean
x ∈ U, thus implying 〈x, y〉 = 0 for every y ∈ H, and hence 〈x,w〉 ≤ 0 by (8.12).
On the other hand, the assumption that (D) is strictly feasible means that there is
y ∈ U⊥ with w − y ∈ int(C∗). Thus 〈x,w − y〉 > 0 since x ∈ C, x , 0. But 〈x, y〉 = 0,
so 〈x,w〉 > 0, contradicting 〈x,w〉 ≤ 0.

We conclude that c > 0, and so x∗ = x
c ∈ C ∩ (v + U) is a feasible point for (P).

Moreover (8.13) gives 〈x∗,w〉 = d∗. In particular, x∗ is an optimal point for (P), and
the duality gap is zero. The theorem is proved. �

8.4.4 Remark. If (P) is strictly feasible in Theorem 8.4.3, strong duality (c) gives
an a priori criterion for optimality of a feasible point x of (P). Namely, x is optimal
for (P) (if and) only if there exists a feasible point y for (D) with 〈x,w〉 = 〈v, y〉.

8.4.5 Remark. If we use coordinates, the conic program takes the following more
“concrete” form. If C, C∗ ⊆ Rn are closed convex cones dual to each other, the
primal program (P) has the form

p∗ = inf 〈x,w〉 s.t. x ∈ C and 〈x, u j〉 = b j ( j = 1, . . . ,m) (8.14)

where w, u1, . . . , um ∈ R
n and b = (b1, . . . , bm) ∈ Rm, and where we may assume

that the ui are linearly independent. The corresponding dual program (D) is

d∗ = sup 〈b, y〉 s.t. y ∈ Rm and w −
m∑

j=1

y ju j ∈ C∗. (8.15)

Indeed, choose v ∈ Rn with 〈v, u j〉 = b j for all j (such v exists by linear in-
dependence of the ui), and let U = span(u1, . . . , um)⊥ ⊆ Rn. Then any element
µ ∈ U⊥ = span(u1, . . . , um) has the form µ =

∑m
j=1 y ju j with y = (y1, . . . , ym) ∈ Rm.
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Such µ satisfies 〈v, µ〉 =
∑

j b jy j = 〈b, y〉, which in view of 8.4.2 gives the dual
program (8.15).

8.4.6 Remark. The best known instance of conic programming is linear program-
ming (LP). Here the cone in question is the positive orthant C = Rn

+, which is a
self-dual cone in Rn. A linear program may be given as p∗ = inf{〈x,w〉 : x ≥ 0,
Ax = b} where w ∈ Rn, b ∈ Rm are (column) vectors and A is a matrix of size
m × n, and where ≥ denotes componentwise inequality between two vectors. The
corresponding dual linear program is d∗ = sup{〈b, y〉 : y ∈ Rm, A>y ≤ w} (Remark
8.4.2). As a consequence of the duality theory of polyhedra, linear programs have
stronger duality properties than general conic programs:

8.4.7 Proposition. (Strong duality for LP) If a linear program (P) is feasible and
bounded (meaning that p∗ , ±∞), then the dual linear program (D) is feasible (and
bounded) as well. Moreover then, both (P) and (D) have optimal points, and the
duality gap vanishes, i.e. d∗ = p∗.

Proof. We consider the linear program p∗ = inf{〈x,w〉 : Ax = b, x ≥ 0} with dual
program d∗ = sup{〈b, y〉 : A>y ≤ w}, as in 8.4.6. Assume p∗ ∈ R, so (P) is feasible
and bounded. By Exercise 8.1.20, the infimum p∗ is a minimum, so (P) has an
optimal point x∗. Let c ≤ p∗ be a real number and let Ã =

(
A

w>

)
∈ M(m+1)×n, b̃ =(

b
c

)
∈ Rm+1. We use Farkas’ lemma (Exercise 8.1.21) twice, as follows. If c = p∗

then, since x∗ ≥ 0 satisfies Ãx∗ = b̃, this lemma implies that there is no ỹ ∈ Rm+1

with Ã>ỹ ≥ 0 and b̃>ỹ < 0. Writing ỹ =
(

y
a

)
with y ∈ Rm and a ∈ R, this means for

(y, a) ∈ Rm × R that

A>y + aw ≥ 0 implies 〈b, y〉 + ap∗ ≥ 0. (8.16)

Now let c < p∗. Since there is no x ∈ Rn with x ≥ 0 and Ãx = b̃ Farkas’ lemma
implies that there is ỹ ∈ Rm+1 with Ã>ỹ ≥ 0 and b̃>ỹ < 0. Rewriting this as before, it
means that there is (y, a) ∈ Rm ×R with A>y + aw ≥ 0 and 〈b, y〉+ ac < 0. By (8.16)
we have 〈b, y〉 + ap∗ ≥ 0, which implies a > 0 since c < p∗. Therefore A>(− y

a ) ≤ w
and 〈b,− y

a 〉 > c hold, showing that − y
a is a feasible point for (D) and that d∗ > c.

Since this argument works for every c < p∗ we conclude d∗ = p∗. Finally (D) has
an optimal point, again by Exercise 8.1.20. �

8.4.8 Remark. Semidefinite programming (SDP) is conic programming with re-
spect to the psd symmetric matrix cone Sd

+. Recall that this cone is self-dual with
respect to the trace inner product on Sn (8.2.2). A semidefinite program is usually
written in the form

p∗ = inf
X∈K
〈X, A〉, K =

{
X ∈ Sd : X � 0, 〈X, Ai〉 = bi (i = 1, . . . , n)

}
(P)

where A, A1, . . . , An ∈ Sd and b = (b1, . . . , bn) ∈ Rn, and where A1, . . . , An are
linearly independent. The dual semidefinite program is
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d∗ = sup
y∈S
〈b, y〉, S =

{
y ∈ Rn :

n∑
i=1

yiAi � A
}

(D)

Both the primal and the dual feasible set are spectrahedra. Clearly, semidefinite pro-
grams generalize linear programs, the latter corresponding to semidefinite programs
described by diagonal matrices. Note that (P) is strictly feasible if and only if K
contains a matrix X � 0, and (D) is strictly feasible if and only if

∑
i yiAi ≺ A for

some vector y ∈ Rn. Apart from the general features of conic duality 8.4.3, we point
out that if X ∈ Sd resp. y ∈ Rn are primal resp. dual feasible points, then both are
optimal if and only if 〈X, A〉 =

∑
i yi〈X, Ai〉, or equivalently, XA =

∑
i yiXAi. This is

statement 8.4.3(b), combined with the last statement in Proposition 8.2.2.
Strong duality, in the form 8.4.7 that holds for linear programs, is usually not

satisfied for semidefinite programs. A semidefinite program may be feasible and
bounded while its dual is still infeasible. Also, when both the program and its dual
are feasible, there may still be a non-zero duality gap, and/or the programs need not
have optimal points. For examples we refer to Exercise 8.4.1.

The use of semidefinite programming for polynomial optimization will be dis-
cussed in Section 8.5 in greater detail. Here we only sketch two sample applications
of SDP:

8.4.9 (The max-cut problem) Let G = (V, E,w) be a finite weighted graph. So V is a
finite set (the vertices), E ⊆

(
V
2

)
is a set of two-element subsets of V (the edges), and

wi j = w ji ≥ 0 is a non-negative real number for every edge {i, j} ∈ E. The max-cut
problem is the task of partitioning the vertices V into two disjoint subsets V1, V2, in
such a way that

γ =
∑

i∈V1, j∈V2

wi j

is maximized. For example, if G is given by

1

2

3

4 5

6

7

c

a

d

b

e

then (V1,V2) = ({a, b, e}, {c, d}) gives γ = 16, while (V1,V2) = ({a, c, d}, {b, e})
gives γ = 17. The maximum γ = 18 is achieved for (V1,V2) = ({a, c, d, e}, {b}).
The general problem of finding a maximal cut is known to be computationally hard
(technically speaking it is NP-hard).

To model the problem mathematically we assume V = {1, . . . , n}. So a partition
(V1,V2) of V can be identified with a vector x = (x1, . . . , xn) ∈ Rn satisfying x2

i = 1
for i = 1, . . . , n. Setting wi j = 0 if {i, j} < E, the partition x gives the value
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γ(x) =
1
4

∑
i, j∈V

(1 − xix j)wi j,

and this expression has to be maximized over all vectors x ∈ {1,−1}n.
A celebrated result by Goemans and Williamson [73] uses semidefinite program-

ming to give a polynomial-time approximation for this problem. Indeed, we may
write

maxcut(G) =
1
4

max
{
〈En − X,W〉 : X = (xi j) � 0, rk(X) = 1, xii = 1 ∀ i

}
(8.17)

where W = (wi j) ∈ Sn and En is the all-one matrix. Removing the rank condition
turns this into an SDP:

σ(G) =
1
4

max
{
〈En − X,W〉 : X = (xi j) � 0, xii = 1 ∀ i

}
. (8.18)

Thereby the maximum gets increased, maxcut(G) ≤ σ(G). Goemans and Williamson
proved that the increase is universally bounded by a constant factor not much bigger
than one: σ(G) ≤ c · maxcut(G) holds with c = π

2 maxθ∈R 1−cos θ
θ
≈ 1.1382. It is

easy to see that both the semidefinite program 8.18 and its dual are strictly feasible
(check this).

8.4.10 For another application of semidefinite programming, let A ∈ Sn be a sym-
metric matrix, and let λA = (λ1, . . . , λn) be the vector of eigenvalues of A, listed in
decreasing order λ1 ≥ · · · ≥ λn. We show how to find the largest eigenvalue of A by
a semidefinite program. More generally, we can determine the sum

sk(A) := λ1 + · · · + λk

of the k largest eigenvalues in this way:

8.4.11 Theorem. For every real symmetric matrix A ∈ Sn and for k = 1, . . . , n, one
has

sk(A) = max
{
tr(AX) : X ∈ Sn, tr(X) = k, 0 � X � I

}
. (8.19)

Proof. Let λ1 ≥ · · · ≥ λn be the eigenvalues of A. Neither side in (8.19) changes if
A is replaced with S AS > where S ∈ O(n). So we may assume that A = diag(λ) is
diagonal, with λ = (λ1, . . . , λn). Let K = {X ∈ Sn : tr(X) = k, 0 � X � I} be the
feasible set of the semidefinite program. Since P := E11 + · · · + Ekk lies in K and
satisfies tr(AP) = sk(A), the inequality “≤” is clear in (8.19). For the converse note
that K is compact, so the maximum in (8.19) will be taken in an extreme point of K
(Exercise 8.1.8). Let Dn ⊆ Sn be the subspace of diagonal matrices. Every extreme
point X of K is O(n)-conjugate to an extreme point Y of Dn ∩ K. Now Dn ∩ K is
a polyhedron, and hence a polytope since it is compact. It is easy to see that the
extreme points of Dn∩K are the diagonal matrices with exactly k entries one and all
other entries zero. Indeed, if X = diag(x1, . . . , xn) is an extreme point of Dn∩K then
xi ∈ {0, 1} for at least n − 1 indices i (Exercise 8.1.22), and therefore for all i. We
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conclude that the extreme points of K are the O(n)-conjugates of the matrix P, and
hence K is the convex hull of the O(n)-orbit of P under this action. In other words,
K is the O(n)-orbitope of P.

In particular, the right hand maximum in (8.19) is equal to tr(AX) for X = S PS >

with some matrix S ∈ O(n). Since tr(AX) = tr(S >AS · P), and since the diagonal
D(S >AS ) is contained in the permutahedron Π(λ) by Lemma 8.2.11, we have

tr(AX) ≤ max
I⊆[n]
|I|=k

∑
i∈I

λi =

k∑
i=1

λi = sk(A).

8.4.12 Corollary. sk(A + B) ≤ sk(A) + sk(B) for all A, B ∈ Sn and 1 ≤ k ≤ n.

Proof. Let K = {X ∈ Sn : tr(X) = k, 0 � X � I}, and let A, B ∈ Sn. By the
previous theorem there is X ∈ K with sk(A + B) = 〈A + B, X〉. On the other hand,
〈A, X〉 ≤ sk(A) and 〈B, X〉 ≤ sk(B) hold by the same theorem, which implies the
assertion. �

8.4.13 Remark. If the tuples λA and λB of eigenvalues of A and B are given, Corol-
lary 8.4.12 gives some restrictions for the possible eigenvalues of A + B. For a long
time, the question of describing, for given λA and λB, all possible eigenvalue tuples
of A + B was a famous open problem (the Horn Conjecture, 1962). The conjecture
was finally settled in the affirmative by Knutson and Tao in 1999 [110].

Exercises

8.4.1 In the following let V = Sd and C = Sd
+ with d ≥ 1. For each of the following data, consider

the semidefinite program (P): p∗ = inf{〈x,w〉 : x ∈ C∩ (v + U)}. Formulate the dual program
(D) (see Remark 8.4.8), decide for both (P) and (D) whether they are feasible or even strictly
feasible, and whether they have an optimal point, and determine the duality gap:

(a) d = 2, U = span(E11, E22), v = E12 + E21, w = E11;
(b) d = 2, U = span(E22), v = E12 + E21, w = cE22 with c ∈ R;
(c) d = 3, U = span(E11, E13 + E22 + E31), v = E22, w = E13 + E31.

8.4.2 For 1 ≤ k ≤ d, write the right hand side of (8.19) (Theorem 8.4.11) as a semidefinite program
in the standard form (P) of 8.4.1, and formulate the dual program (D) as in 8.4.2. Decide
whether (P) and/or (D) are strictly feasible, and find primal and dual optimal points as far as
they exist.

8.4.3 What optimum do you get in (8.19) (Theorem 8.4.11) if the condition tr(X) = k is replaced
by tr(X) = α for some real number 0 < α < d?

8.4.4 Let A be a real matrix of size m × n where m ≤ n, let λ1 ≥ · · · ≥ λm ≥ 0 be the eigenvalues
of AA>. Then σi(A) :=

√
λi ≥ 0 is called the i-th singular value of A (i = 1, . . . ,m). For

k = 1, . . . ,m let ||A||k := σ1(A) + · · · + σk(A), and prove:

(a) The symmetric matrix Ã =
(

0 A
A> 0

)
(of size (m + n) × (m + n)) has eigenvalues ±

√
λi

(i = 1, . . . ,m), together with the (n − m)-fold eigenvalue 0.
(b) ||A + B||k ≤ ||A||k + ||B||k holds for arbitrary A, B ∈ Mm×n(R).

(b) implies that || · ||k is a norm on the vector space Mm×n(R), called the k-th Ky Fan norm.
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8.5 Polynomial optimization via moment relaxation

We now turn to an important application of semidefinite programming, namely opti-
mization of a polynomial over a given (semialgebraic) set. A key technique for this
task is the moment relaxation approach, and we are going to describe it in detail.
Under Archimedean conditions, we will prove strong convergence results.

8.5.1 Let M ⊆ Rn be a given semialgebraic set. Optimizing a polynomial f ∈
R[x] = R[x1, . . . , xn] over M is the task of finding the infimum f ∗ := infξ∈M f (ξ) of
f over M. When the infimum is known to be a minimum (e.g. when M is compact),
one may in addition ask for an explicit optimizer, namely a point u ∈ M with f ∗ =

f (u).
In principle one could hope to proceed as follows, using semidefinite optimiza-

tion. Let f =
∑
|α|≤d cαxα with d = deg( f ), and let v : Rn → RN be the Veronese map

v(ξ) =
(
ξα

)
|α|≤d with N =

(
n+d

d

)
. Replacing the set M with its image S := v(M) ⊆ RN ,

we have linearized the objective function, since f ∗ is the infimum of the linear func-
tion

z = (zα)|α|≤d 7→
∑
α

cαzα

over S = v(M), or equivalently, over the convex hull K = conv(S ) of S . Assuming
that we know how to represent K as a spectrahedral shadow, the original problem
has been transformed into a semidefinite program, and as such can be solved.

All practical problems notwithstanding that come with such an approach, there
remains a serious theoretical issue: In general, the convex hull K = conv(S ) will
not allow any semidefinite representation. This question will be taken up in detail in
Section 8.7.

8.5.2 Instead there exists a much more manageable and explicit approach. Gener-
ally known as the moment relaxation method, it was developed around the turn of
the millennium by Lasserre, and also independently by Parrilo. The basic idea is as
follows. Using a Veronese-type argument as before, we may assume that the prob-
lem is to optimize a linear polynomial f ∈ R[x] over a semialgebraic set S ⊆ Rn,
or equivalently, over its convex hull K = conv(S ). Assuming that the set S is ba-
sic closed (which is essentially harmless), one constructs a decreasing sequence
K1 ⊇ K2 ⊇ · · · ⊇ K of convex outer approximations of K, together with an explicit
semidefinite representation for each Kd. Under suitable assumptions (see below), ev-
ery neighborhood of K contains some Kd, and under still stronger assumptions, the
convex hull K = conv(S ) even coincides with some Kd. Since each set Kd comes
with an explicit semidefinite representation, we may find f ∗(d) := infξ∈Kd f (ξ) for
each d by an explicit semidefinite program. We thus get a hierarchy of semidef-
inite programs, often referred to as the Lasserre hierarchy. Under favorable con-
ditions as above, the sequence f ∗(1) ≤ f ∗(2) ≤ · · · of their optima will converge to
f ∗ = infξ∈S f (ξ). Responsible for this are the fundamental results discussed in Chap-
ter 5, and in particular, the positivstellensätze by Schmüdgen and Putinar.

Usually, with d increasing, the complexity of the semidefinite programs in the
Lasserre hierarchy is growing rapidly. Therefore, when d is getting too large, per-
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forming a semidefinite program over Kd tends to become too expensive, or even
practically infeasible altogether. Still, moment relaxation has become an indispens-
able tool, both in practice (with many refinements and ramifications in detail), and
also for theoretical questions, as we will see.

8.5.3 Now the details. Let S ⊆ Rn be a semialgebraic set and let I ⊆ R[x] =

R[x1, . . . , xn] be the full vanishing ideal of S (or of the Zariski closure of S ). By
L = R[x]≤1 we denote the space of linear polynomials. Let g0 = 1, fix a tuple g =

(g1, . . . , gr) of polynomials in R[x] with gi ≥ 0 on S , and let U, W0, . . . ,Wr ⊆ R[x]
be linear subspaces of finite dimension such that L ⊆ U and giWiWi ⊆ U holds
for i = 0, . . . , r. For a standard choice of such U and Wi see Remark 8.5.7 below.
Consider the convex cone

PU = g0 · ΣW2
0 + · · · + gr · ΣW2

r + (I ∩ U) (8.20)

in U, where ΣW2
i denotes the cone of sums of squares of elements of Wi. Note that

PU consists of polynomials that are non-negative on S . As usual let P∗U = {µ ∈ U∨:
µ( f ) ≥ 0 for every f ∈ PU} denote the dual cone of PU , contained in the dual linear
space U∨ of U.

Comparing PU against the quadratic module M = QM(g1, . . . , gr)+ I in R[x], we
observe that PU ⊆ M∩U holds by construction. Usually this inclusion will be strict.
We are going to use the cone PU for constructing an explicit outer spectrahedral
shadow approximation KU of K = conv(S ).

8.5.4 Lemma. P∗U is a spectrahedral cone in U∨.

Proof. For every (finite-dimensional) vector space V over R, let S 2V∨ denote the
space of symmetric bilinear forms V × V → R. After fixing a basis of V , we may
identify S 2V∨ with the space of symmetric N × N matrices where N = dim(V). Any
linear form µ on U gives symmetric bilinear forms

βi(µ) : Wi ×Wi → R, (p, q) 7→ µ(pqgi)

for i = 0, . . . , r. Moreover the maps βi : U∨ → S 2W∨

i , µ 7→ βi(µ) are linear. By
definition of the dual cone we have P∗U = (I ∩ U)⊥ ∩

⋂r
i=0{µ ∈ U∨ : ∀ p ∈ Wi

µ(gi p2) ≥ 0} = (I ∩ U)⊥ ∩
⋂r

i=0{µ ∈ U∨ : βi(µ) � 0}. This shows that P∗U is a
spectrahedral cone in U∨. �

8.5.5 As before let L = R[x]≤1, let ρ : U∨ → L∨ be the restriction map between the
dual linear spaces (recall L ⊆ U), and consider the affine-linear subspaces U∨

1 :=
{µ ∈ U∨ : µ(1) = 1} of U∨ and L∨1 := {λ ∈ L∨ : λ(1) = 1} of L∨. Clearly ρ(U∨

1) ⊆ L∨1
holds. For ξ ∈ Rn let ϕξ ∈ R[x]∨ be point evaluation in ξ, i.e. ϕξ( f ) = f (ξ) for
f ∈ R[x]. Identify L∨1 with Rn via

Rn ≈
−→ L∨1, ξ 7→ (ϕξ)|L, (8.21)

and consider S ⊆ Rn as a subset of L∨1 via (8.21). Note that the map inverse to (8.21)
is λ 7→

(
λ(x1), . . . , λ(xn)

)
.
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Since P∗U is a spectrahedral cone in U∨ (Lemma 8.5.4), the intersection P∗U ∩ U∨

1
is a spectrahedron in U∨

1 ⊆ U∨. Therefore the set

KU := ρ
(
P∗U ∩ U∨

1
)

= L∨1 ∩ ρ(P∗U) (8.22)

is a spectrahedral shadow in L∨1 = Rn. By definition, KU consists of all ξ ∈ Rn for
which there exists µ ∈ U∨ with µ|PU ≥ 0 and µ( f ) = f (ξ) for all f ∈ L. Or else,

KU =
{(
µ(x1), . . . , µ(xn)

)
: µ ∈ P∗U ⊆ U∨, µ(1) = 1

}
.

Tautologically, every linear polynomial in PU is non-negative on KU .

The spectrahedral cone PU ⊆ U∨, together with its shadow KU ⊆ R
n, depends

on the choice of U, and also of the tuples g = (g1, . . . , gr) and W = (W0, . . . ,Wr).
To indicate this dependence explicitly, we temporarily write P(g,U,W) for PU and
K(g,U,W) for KU , respectively. We record:

8.5.6 Lemma. The spectrahedral shadow KU = K(g,U,W) contains the convex
hull K of S . If U′ and W′ = (W ′0, . . . ,W

′
r) are other choices of finite-dimensional

spaces satisfying the conditions in 8.5.3, and if U ⊆ U′ and Wi ⊆ W ′i hold for all i,
then K(g,U′,W ′) ⊆ K(g,U,W).

Proof. Point evaluation ϕξ in ξ ∈ S is a linear form on U that is non-negative on
PU . This shows S ⊆ KU , and therefore also conv(S ) = K ⊆ KU since KU is convex.
The second assertion is immediate from P(g,U,W) ⊆ P(g,U′,W ′). �

8.5.7 Remark. To approximate the convex hull K = conv(S ) of a basic closed set
S = S(g1, . . . , gr) in Rn, the standard choice is to put g0 = 1, to fix a degree d ≥ 1
and to let U = R[x]≤d and Wi = {p ∈ R[x] : deg(p2gi) ≤ d} (i = 0, . . . , r) in 8.5.3.
The resulting convex cone PU , that we denote by Md here, is

Md = ΣW2
0 + g1 · ΣW2

1 + · · · + gr · ΣW2
r + I≤d,

where again I is the vanishing ideal of S . The cone Md is a truncated version of
the quadratic module M = QM(g1, . . . , gr) + I, often called the truncation of M at
degree d.1 As pointed out before, the inclusion Md ⊆ M ∩ R[x]≤d will usually be
strict. Let Kd := L∨1 ∩ ρ(M∗d) as in (8.22). Increasing the degree d = 1, 2, . . . results
in a nested sequence K1 ⊇ K2 ⊇ · · · of outer approximations Kd of K, each of them
coming with an explicit semidefinite representation (Lemma 8.5.6).

Although this is the standard choice, it may be preferable to work with different
g, U and Wi, depending on the situation. This is why we allow for the greater flex-
ibility in our discussion. For a concrete example illustrating this point, see 8.5.23
below.

1 Note that, in general, Md will depend not only on M and d, but also on the choice of the generators
g1, . . . , gr of M.
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8.5.8 Remark. The spectrahedral shadow KU = K(g,U,W) in Rn is described by
a lifted LMI that is entirely explicit. To amplify this remark assume I = {0}, and
take the standard truncated quadratic module Md for some d ≥ 0, as in Remark
8.5.7, for the sake of concreteness. Let g ∈ R[x], say g =

∑
|α|≤deg(g) gαxα, put e =⌊ 1

2 (d−deg(g))
⌋
, let U = R[x]≤d and W = R[x]≤e. A linear basis for the dual space U∨

is given by the linear forms µα defined by µα(xβ) = δα,β for |α|, |β| ≤ d. Following
the proof of Lemma 8.5.4 we consider, for every µ ∈ U∨, the symmetric bilinear
form βg(µ) on W defined by

βg(µ) : W ×W → R, (p, q) 7→ µ(pqg).

Let Sα(g) denote the matrix of βg(µα) with respect to the monomial basis of W,
arranged in some fixed order. This is the matrix

Sα(g) =
(
gα−χ−η

)
|χ|, |η|≤e

since
βg(µα)(xχ, xη) = µα

(
xχ+ηg

)
=

∑
σ

gσ µα
(
xχ+η+σ) = gα−χ−η

for |χ|, |η| ≤ e. Using the abbreviations S0(g) := S(0,...,0)(g) and Si(g) := Sei (g) for
i = 1, . . . , n, the spectrahedral cone in U∨ defined by the linear map βg : U∨ → S 2W∨

is {
µ ∈ U∨ : βg(µ) � 0

}
=

{∑
|α|≤d

uαµα : uα ∈ R,
∑
|α|≤d

uαSα(g) � 0
}
.

And its projection to Rn = L∨1 is the set of ξ ∈ Rn for which there exist real numbers
uα ∈ R (1 < |α| ≤ d) with

S0(g) +

n∑
i=1

ξiSi(g) +
∑

1<|α|≤d

uαSα(g) � 0.

Denoting the left hand matrix by Sg(ξ, u), the spectrahedral shadow Kd is therefore
given as

Kd =
{
ξ ∈ Rn : ∃ uα ∈ R (1 < |α| ≤ d) with Sgi (ξ, u) � 0 (i = 0, . . . , r)

}
.

This is an explicit semidefinite representation of Kd.

8.5.9 Example. For an illustration let g0 = 1, g1 = x, g2 = x2 − y2 − x3. The basic
closed set S = S(g1, g2) in R2 (drawn in yellow below) is compact and convex, so
S = K in the previous setup:
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The blue curve shows the (boundary of the) moment relaxation K3, obtained for
degree d = 3. So U = R[x, y]≤3 here, and W0 = W1 = R[x, y]≤1 and W2 = R.
Writing a general element of U∨ as

µ = wµ1 + ξµx + ηµy + aµx2 + bµxy + cµy2 + dµx3 + eµx2y + fµxy2 + gµy3 (8.23)

with real scalars w, ξ, η, . . . , g ∈ R, the relaxation K3 consists of all points (ξ, η) ∈ R2

for which there exist real numbers a, b, . . . , f with1 ξ η
ξ a b
η b c

 � 0,

ξ a b
a d e
b e f

 � 0, a − c − d ≥ 0. (8.24)

The three inequalities in (8.24) represent the conditions βgi (µ) � 0 for i = 0, 1, 2, for
µ a linear form as in (8.23). From the drawing we see K3 , K. In fact, it is not hard
to show (Exercise 8.5.3) that Kd , K for every d ≥ 1. That is, moment relaxation
for K does not become exact at any finite level. On the other hand, we’ll see a little
later (Example 8.5.20) that a slight variation of the present approach leads easily to
an exact semidefinite representation of S .

8.5.10 Remark. Construction 8.5.5 arises from relaxing truncated moment prob-
lems. We explain this using the standard degree relaxation, as in 8.5.7. Let S ⊆
Rn be a semialgebraic set, let g1, . . . , gr ∈ R[x] with gi|S ≥ 0, and let M =

QM(g1, . . . , gr) ⊆ R[x]. A linear form λ : R[x] → R is an S -moment functional
if there exists a positive Borel measure µ on S with λ( f ) =

∫
S f dµ =: λµ( f )

for all f ∈ R[x]. In particular, it is required that all moments of µ exist, i.e.
that

∫
S

∣∣∣xα1
1 · · · x

αn
n

∣∣∣ µ(dx) < ∞ for all α ∈ Zn
+. Let M(S ) ⊆ R[x]∨ be the con-

vex cone consisting of all S -moment functionals (the moment cone of S ), and let
M1(S ) = {λ ∈ M(S ) : λ(1) = 1}, corresponding to probability measures on S . It is
not hard to see (Exercise 8.5.1) that the points in the convex hull of S are precisely
the expectations of measures in M1(S ), i.e.,

K = conv(S ) =
{(
µ(x1), . . . , µ(xn)

)
: µ ∈M1(S )

}
⊆ Rn. (8.25)

For any d ≥ 1, let Md be the truncated quadratic module, as defined in 8.5.7. We
have the obvious inclusions

M(S ) ⊆ M∗ ⊆ M∗d
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of convex cones in R[x]∨, where the first holds since
∫

S f dµ ≥ 0 for any f ∈ M and
any measure µ on S . The intersections of these cones with the monic functionals
give rise to outer approximations of K, via (8.25). The last cone corresponds to
Kd as constructed before, since Kd = {(µ(x1), . . . , µ(xn)) : µ ∈ M∗d, µ(1) = 1} by
definition.

We can only mention the important classical theorem of Haviland [85], [86]: If
S ⊆ Rn is any closed subset, then M(S ) = P(S )∗. In other words, a linear form
λ : R[x] → R is integration with respect to some measure supported on S if (and
only if) λ( f ) ≥ 0 for every polynomial f that is non-negative on S .

For d → ∞, the construction in 8.5.5 gives a nested sequence of smaller and
smaller sets Kd that all contain K = conv(S ), and that all are projected spectrahedra.
We ask, when is it true that K =

⋂
d≥1 Kd? Or even K = Kd for some d ≥ 1? To

answer these questions we take the dual point of view and study the cones Md ∩ L
of linear polynomials in the truncated modules Md. For the following discussion we
return to the general setup introduced in 8.5.3. So we fix a semialgebraic set S ⊆ Rn,
together with its convex hull K = conv(S ) and its vanishing ideal I = I(S ) ⊆ R[x].
Moreover, put g0 = 1 and fix a sequence g = (g1, . . . , gr) of polynomials that are
non-negative on S , together with linear subspaces U,W0, . . . ,Wr ⊆ R[x] satisfying
giWiWi ⊆ U for all i. Let the convex cone PU ⊆ U be defined as in (8.20), and let
KU ⊆ R

n be the resulting projected spectrahedron, see (8.22).

8.5.11 Proposition. The cone PU is closed in U.

Proof. This was proved in Lemma 6.6.18. Indeed, writing M = QM(g1, . . . , gr), the
ideal I = I(S ) is M-convex, since p + q ∈ I and p, q ∈ M imply p, q ≥ 0 on S , and
hence p, q ∈ I. So the assertion follows from Lemma 6.6.18. �

8.5.12 Lemma. The cone PU contains every linear polynomial that is non-negative
on KU , and so PU ∩ L = P(KU) ∩ L.

Proof. When S = ∅ we have I = 〈1〉, and therefore PU = U. So we may assume
that S is non-empty. Every linear polynomial in PU is non-negative on KU , see 8.5.5.
Conversely let f ∈ L be linear with f ≥ 0 on KU , we have to show f ∈ PU . Since
PU is closed, it suffices to prove that µ( f ) ≥ 0 for every linear form µ in P∗U ⊆ U∨.
Since 1 ∈ PU , note that µ(1) ≥ 0 for any such µ. We consider two cases.

1st case: If µ(1) > 0, we may scale µ to have µ(1) = 1. The point ξ :=
(µ(x1), . . . , µ(xn)) in Rn satisfies f (ξ) = µ( f ). Since ξ ∈ KU by the definition of
KU , this implies µ( f ) = f (ξ) ≥ 0.

2nd case: µ(1) = 0. Choose a point ξ ∈ S , let ϕξ be point evaluation in ξ, and
put µt := 1

t (µ + tϕξ) ∈ U∨ for t > 0. Since clearly µt ∈ P∗U and µt(1) = 1, the
point ξt := (µt(x1), . . . , µt(xn)) ∈ Rn lies in KU and satisfies µt( f ) = f (ξt). So again
µt( f ) ≥ 0, and hence µ( f ) + t f (ξ) ≥ 0. Now pass to the limit t → 0 to conclude
µ( f ) ≥ 0. �

8.5.13 Corollary. Let K be the convex hull of S , as before. Then

(a) KU =
{
ξ ∈ Rn : f (ξ) ≥ 0 for every f ∈ PU ∩ L

}
.
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(b) KU = K holds if and only if PU contains every linear polynomial that is non-
negative on S .

Proof. (a) Since KU is convex, its closure is KU =
⋂

f
{
ξ ∈ Rn : f (ξ) ≥ 0

}
, intersec-

tion over all linear f with f ≥ 0 on KU (hyperplane separation, Corollary 8.1.6). By
Lemma 8.5.12, the intersection is running over all f ∈ PU ∩ L.

(b) Both sets K ⊆ KU are convex. So their closures agree if, and only if, every
linear polynomial non-negative on S is also non-negative on KU . This exactly means
L ∩ P(S ) ⊆ PU , again by Lemma 8.5.12. �

In particular we see:

8.5.14 Corollary. Assume that S is compact. Then KU = K holds if, and only if, PU

contains every linear polynomial that is non-negative on S .

Proof. Since S compact implies K compact, this is clear from 8.5.13(b). �

Let us exploit the previous conclusions in the situation of 8.5.7 (standard degree
relaxation). We adopt the notation introduced there.

8.5.15 Proposition. Let S = S(g1, . . . , gr) ⊆ Rn with gi ∈ R[x], let K = conv(S ) as
before, and put M = QM(g1, . . . , gr) + I where I is the vanishing ideal of S . If every
linear polynomial f with f |S ≥ 0 can be approximated by linear polynomials in M,
then

K =
⋂
d≥1

Kd (8.26)

holds. Under the same assumption, if in addition S is compact, then even K =⋂
d≥1 Kd holds.

Proof. By hypothesis, L ∩ M is dense in L ∩ P(S ). The inclusion “⊆” in (8.26)
holds anyway. To prove equality, we have to show f (ξ) ≥ 0 for every f ∈ L ∩ P(S )
and every ξ ∈

⋂
d Kd. Since f ∈ L ∩ M by hypothesis, and since L ∩ M is convex,

there exists g ∈ L with f + tg ∈ M for all t > 0, see 8.1.4. Thus, for every t > 0,
there is an integer d(t) ≥ 1 with f + tg ∈ L ∩ Md(t). Since ξ ∈ Kd(t) we have
( f + tg)(ξ) = f (ξ) + tg(ξ) ≥ 0. Letting t → 0 we see f (ξ) ≥ 0, as desired. If in
addition S is compact, the last claim follows from (8.26) since K = K ⊆

⋂
d Kd. �

If S is compact in 8.5.15, the convex hull K of S is in fact approximated arbi-
trarily closely by the projected spectrahedra Kd, according to the following general
observation:

8.5.16 Proposition. If K1 ⊇ K2 ⊇ · · · ⊇
⋂

m≥1 Km = K is a sequence of convex sets
in Rn, and if K is compact and has non-empty interior, then for every ε > 0 there is
an index m ≥ 1 such that dist(K,Km) < ε.

Here dist(K,Km) means that Km is contained in an ε-tube around K, i.e. for every
η ∈ Km there is ξ ∈ K with |η − ξ| < ε.
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Proof. Choose a point u in the interior of K, and let v ∈
⋂

m Km. Then [u, v[ ⊆ Km for
all m since Km is convex (8.1.4). So [u, v[ ⊆ K, and hence v ∈ K since K is closed.
This shows that K =

⋂
m Km holds as well. For v ∈ Rn let dK(v) = min{|v−u| : u ∈ K}.

Let ε > 0, then U := {v ∈ Rn : dK(v) < ε} is an open neighborhood of K since the
map dK is continuous. Assume that Km * U for all m. Then for every m ≥ 1 there
is vm ∈ Km with dK(vm) ≥ ε. Since Km is convex, there also exists vm ∈ Km with
dK(ym) = ε. The set X := {v ∈ Rn: dK(v) = ε} is compact and satisfies X ∩ Km , ∅
for all m. Hence X∩

⋂
m Km is non-empty, being a filtering intersection of non-empty

compact sets, and so X ∩ K , ∅ by the argument at the beginning of the proof. This
is a contradiction. �

The most important case where the previous results apply is when the quadratic
module M is Archimedean:

8.5.17 Corollary. With assumptions as in 8.5.15, assume that the quadratic module
M is Archimedean. Then K =

⋂
d≥1 Kd, and every ε-tube around K contains Kd for

some d ≥ 1.

Proof. M Archimedean implies that S is compact, and hence K = conv(S ) is com-
pact as well. We may assume that K is full-dimensional in Rn. For every f ∈ P(S ),
and for every real number ε > 0, we have f + ε ∈ M by the Archimedean posi-
tivstellensatz. So the hypothesis L∩P(S ) ⊆ L ∩ M of Proposition 8.5.15 holds. The
assertion follows from this proposition and from 8.5.16. �

8.5.18 Remark. For any compact and basic closed set S ⊆ Rn, we can therefore
construct a sequence K1 ⊇ K2 ⊇ · · · of projected spectrahedra with explicit lifted
LMI representations, whose intersection is the convex hull K of S . For this take any
finite system g of polynomial inequalities that describes S , and add the inequality
r2 −

∑
i x2

i ≥ 0 if S ⊆ Br(0), to make sure that the quadratic module M generated by
the chosen inequalities is Archimedean (Putinar’s positivstellensatz 5.5.10). If there
exists d ≥ 1 with

L ∩ P(S ) ⊆ Md, (8.27)

we even have equality conv(S ) = Kd (Corollary 8.5.14). The condition K = Kd is
usually expressed by saying that the relaxation gets exact at level d. Note that con-
dition (8.27) means both a “partial saturatedness” and a “partial stability” condition
on M, each for polynomials of degree one.

8.5.19 Remark. Given a semialgebraic set S ⊆ Rn, we constructed a family of outer
approximations to the convex hull of S , see 8.5.3–8.5.5. The essential point was that
these approximations come with explicit semidefinite representations, which in turn
can be used to approximate the problem of minimizing linear functions over S by
explicit semidefinite programs. At least under a compactness assumption on S , we
proved that these approximations can be made arbitrarily close.

Instead of working in the polynomial ring R[x] and with the space L of linear
polynomials, one can take advantage of a more general approach that we briefly
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want to sketch. Let V be an arbitrary affine R-variety, let S0 ⊆ V(R) be a semialge-
braic set that we assume to be Zariski dense in V , and let L ⊆ R[V] be a linear sub-
space of finite dimension with 1 ∈ L. Given a linear basis 1, y1, . . . , yn of L, we con-
sider the Veronese-type map φ : V → An whose components are y1, . . . , yn. Working
in the coordinate ring R[V] and mimicking the procedure explained in 8.5.3–8.5.5,
it is then straightforward to construct outer approximations for the convex hull of
S := φ(S0) in Rn, which again come with explicit semidefinite representations:

Let 1 = g0, g1, . . . , gr ∈ R[V] with gi ≥ 0 on S0, and let U, Wi ⊆ R[V] be linear
subspaces of finite dimension with L ⊆ U and giWiWi ⊆ U (0 ≤ i ≤ r). Similar to
Lemma 8.5.4 and its proof, we use the linear maps

βi : U∨ → S 2W∨

i , βi(µ)(p, q) = µ(pqgi) (i = 0, . . . , r).

Extend the given basis of L to a linear basis 1, y1, . . . , yn, z1, . . . , zm of U, and denote
the corresponding dual basis of U∨ by µ1, µy1 , . . . , µzm . The projected spectrahedron
associated with this data is

KU =

{
ξ ∈ Rn : ∃ b ∈ Rm with βi

(
µ1 +

n∑
j=1

ξ jµy j +

m∑
k=1

bkµzk

)
≥ 0 (i = 0, . . . , r)

}
,

and we have φ(S0) ⊆ KU . If S0 is compact and L∩P(S0) ⊆
∑

i giΣW2
i , then relaxation

is exact as in Corollary 8.5.14, i.e. KU = conv(φ(S0)).

8.5.20 Examples.

1. To illustrate the usefulness of this generalized approach, consider again the
compact convex set S = K = S(x, x2 − x3 − y2) ⊆ R2 from Example 8.5.9. As
noted in Exercise 8.5.3, standard moment relaxation for K does not become exact
at any finite level. Responsible for this is the singularity of the boundary curve at
the origin, as already suggested by the drawing in 8.5.9. Still K is a spectrahedral
shadow, and the approach from 8.5.19 offers a cheap way of producing an exact
semidefinite representation:

Let C = V(x2 − x3 − y2) ⊆ A2, the algebraic boundary curve of K. We con-
sider the normalization of C, which is the affine line A1 together with the morphism
φ : A1 → C ⊆ A2 given by φ(t) = (1 − t2, t − t3). Let ϕ = φ∗ : R[x, y] → R[t] be
the corresponding ring homomorphism, so ϕ(x) = 1 − t2 and ϕ(y) = t − t3. Ac-
cordingly, let L = span(1, ϕ(x), ϕ(y)) ⊆ R[t]. Since ∂K = φ(I) with I = [−1, 1],
we want to express the polynomials p ∈ L with p|I ≥ 0 by weighted sums of
squares in R[t]. For this we use Exercise 6.6.1, which implies that every such p can
be written p(t) = σ0(t) + (1 − t2)σ1(t), where σ0(t), σ1(t) are sums of squares in
R[t] with deg(σ0) ≤ 4 and deg(σ1) ≤ 2. Accordingly put g0 = 1, g1 = 1 − t2 and
U = R[t]≤4, W0 = R[t]≤2, W1 = R[t]≤1, in the notation of 8.5.19. This gives the
following semidefinite representation: K consists of all points (ξ, η) ∈ R2 for which
there exist a, b ∈ R such that
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a + η 1 − ξ a
1 − ξ a b

 � 0 and
(
ξ η
η 1 − ξ − b

)
� 0.

(These are the matrices of β0(µ) and β1(µ) for the linear form µ = µ1 + ξµϕ(x) +

ηµϕ(y) + aµt3 + bµt4 in U∨, with notation as in 8.5.19.)
2. Independently from the previous approach, one can do even better for this

particular example. The convex set K is rigidly convex (with respect to any of its
interior points). Therefore, according to the former Lax conjecture, as proved by
Helton and Vinnikov (Theorem 8.2.27), K must be a spectrahedron that can be rep-
resented by a linear matrix inequality of size 3 × 3. In this concrete case, it is not
hard to find such an LMI directly, see Exercise 8.5.4.

We close with a few more examples in which we obtain explicit semidefinite
representations for given convex sets.

8.5.21 Example. Let X ⊆ A2 be the plane affine curve with equation x2−y2−x4 = 0.
The curve X is rational and can be parametrized by the circle curve C = V(u2+v2−1),
via the (normalization) map ϕ : C → X, (u, v) 7→ (u, uv). Note that ϕ(C(R)) = X(R).

The curve f (x, y) = 0 (red)
and its convex hull

To describe the convex hull of X(R), we construct relaxations with respect to the
subspace L = span(1, u, uv) of R[C]. Choose W = span(1, u, v) and U = WW =

span(1, u, v, u2, uv) in R[C], then L ⊆ U, and KW is the set of all (ξ, η) ∈ R2 with

∃ a, b ∈ R

1 ξ a
ξ b η
a η 1 − b

 � 0.

(The matrix corresponds to β(µ1 + ξµu + aµv + bµu2 + ηµuv) with respect to the basis
1, u, v of W, since v2 = 1 − u2 implies µ(v2) = 1 − b. Compare the discussion in
Remark 8.5.19.) In fact, the resulting spectrahedral shadow K coincides with the
convex hull of X(R), so this relaxation is already exact. Indeed, this follows from
Corollary 8.5.14 since L∩R[C]+ ⊆ ΣW2, either by the S -Lemma 7.2.11 or by Fejér-
Riesz 2.3.1. Note that this convex hull K is not a spectrahedron, by Remark 8.2.19.
Indeed, its algebraic boundary intersects the interior of K.

8.5.22 Example. For another example consider the cuspidal curve X ⊆ A2 with
equation x4 + y2 = x3. Again the curve is rational, with normalization ϕ : C → X,
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ϕ(u, v) =
(1 − v

2
,

u(1 − v)
4

)
where C = V(u2 + v2 − 1) as before. To describe or approximate the convex hull of
X(R), we need to do relaxation with respect to the subspace L = span(1, v, u(1− v))
of R[C]:

X

K1

The curve x4 + y2 = x3 (red)
and its first convex approximation

Using the substitution w = 1 − v we have R[C] = R[u,w]/〈u2 + w2 − 2w〉 and
L = span(1,w, uw), and the normalization map is ϕ(u,w) = ( w

2 ,
uw
4 ). For a first

approximation take W1 = span(1, u,w) and U1 = W1W1 = span(1, u,w, u2, uw).
Then L ⊆ U1 is satisfied, and KW1 is the set of (ξ, η) ∈ R2 such that

∃ a, b ∈ R

1 a ξ
a b η
ξ η 2ξ − b

 � 0.

The set K1 := KW1 is much larger than the convex hull of X(R), as shown by the
illustration. To improve the approximation we need to enlarge W1. Taking W2 =

span(1, u,w, u2, uw) and U2 = W2W2 = span(1, u,w, u2, uw, u3, u2w, u4, u3w), K2 =

KW2 is the set of (ξ, η) ∈ R2 for which real numbers a, . . . , f exist with
1 a ξ b η
a b η c d
ξ η 2ξ − b d 2η − c
b c d e f
η d 2η − c f 2d − e

 � 0.

It can be shown that this relaxation is exact, so K2 agrees with the convex hull of
C(R).

8.5.23 Example. Let m1, . . . ,mn be even positive integers, and consider the polyno-
mial f (x) = f (x1, . . . , xn) = 1 − xm1

1 − · · · − xmn
n . The set S = {ξ ∈ Rn : f (ξ) ≥ 0}

is compact and convex, and is a multi-dimensional generalization of the “tv-screen”
in 8.2.24. We construct an explicit semidefinite representation of S . For u ∈ Rn let

tu(x) =

n∑
i=1

∂ f
∂xi

(u) · (xi − ui) =

n∑
i=1

miu
mi−1
i (ui − xi),

the tangent to the level set f = f (u) at u. In particular, when f (u) = 0 then tu is
the tangent to ∂S at u, and tu ≥ 0 on S . Therefore, the cone P(S ) ∩ L of linear
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polynomials which are non-negative on S is generated by 1 and the tangents tu(x),
for u ∈ Rn with f (u) = 0. For m ≥ 1 let pm denote the binary form

pm(x, y) = xm − mxym−1 + (m − 1)ym.

Since mym−1(y − x) = ym − xm + pm(x, y), we have

tu(x) = f (x) − f (u) +

n∑
i=1

pmi (xi, ui) (8.28)

for all x, u ∈ Rn.
For every even number m > 1, the univariate polynomial pm(t, 1) = tm − mt +

(m − 1) (and hence the binary form pm(x, y) as well) is psd. Indeed, pm(t, 1) has a
double root at t = 1 and is positive for t > 0, t , 1 by Descartes’ rule of sign 1.3.12.
For t < 0 it is obvious that pm(t, 1) > 0. Therefore, the binary form pm(x, y) is a sum
of (two) squares of binary forms of degree m

2 .
With notation as in 8.5.3, consider the finite-dimensional linear subspaces of

R[x] = R[x1, . . . , xn] defined by U = span
(
xk

i : i = 1, . . . , n, k = 0, . . . ,mi
)

and
Wi = span

(
xk

i : k = 0, . . . , mi
2
)
. Moreover, let P ⊆ U be the truncated quadratic

module P = ΣW2
1 + · · · + ΣW2

n + R f . Then we have L ∩ P(S ) ⊆ ΣW2
1 + · · · + ΣW2

n ,
in view of the previous discussion. Therefore Corollary 8.5.14 gives (see Exercise
8.5.5 for full details):

8.5.24 Proposition. Let m1, . . . ,mn > 1 be even integers. A point ξ ∈ Rn satisfies
ξm1

1 + · · · + ξmn
n ≤ 1 if, and only if, there exist real numbers ci j for i = 1, . . . , n and

2 ≤ j ≤ mi, such that
c1m1 + · · · + cnmn = 1

and, writing ci0 := 1 and ci1 := ξi, the n LMIs(
ci,λ+ν

)
0≤λ,ν≤ mi

2
� 0 (i = 1, . . . , n)

(of sizes 1 + m1
2 , . . . , 1 + mn

2 ) are satisfied. ut

For example, the convex set S ⊆ R2 described by the inequality x6 + y4 ≤ 1
consists of all (ξ, η) ∈ R2 such that

1 ξ a2 a3
ξ a2 a3 a4
a2 a3 a4 a5
a3 a4 a5 c

 � 0 and

 1 η b2
η b2 b3
b2 b3 1 − c

 � 0

hold for suitable real numbers a2, a3, a4, a5, b2, b3 and c.
It has been proved [186] that the closed convex hull of every one-dimensional

semialgebraic set S in Rn has a semidefinite representation. Using a parametrization
of S by a non-singular curve, such a representation can be found by some general-
ized moment relaxation, similar to Example 8.5.21. That this is possible is a con-
sequence of a stability result, proved in [186] for compact subsets on non-singular
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affine curves C. Basically, when C(R) is compact, it comes down to the existence of
uniform degree bounds for sum of squares representations of non-negative polyno-
mials on C.

Exercises

8.5.1 Let S ⊆ Rn be a semialgebraic set. With the notation of Remark 8.5.10, prove that

conv(S ) =
{
(µ(x1), . . . , µ(xn)) : µ ∈M1(K)

}
.

In other words, the convex hull of S consists precisely of the expectations of probability
measures with support in S , all of whose moments exist.

Hint: Let K = conv(S ). To show that the right hand set is contained in K, and not just in
K, use hyperplane separation and induction on dim(K).

8.5.2 If A = (ai+ j)0≤i, j≤d is a real Hankel matrix of size (d +1)× (d +1), let A′ denote the upper left
d × d submatrix of A, so A′ = (ai+ j)0≤i, j≤d−1. The matrix A is said to be flat if rk(A) = rk(A′).
A Hankel matrix B of size (d + 2) × (d + 2) is said to be a Hankel extension of A if B′ = A.

(a) Assume that A is positive definite. Show that A has a positive definite Hankel extension.
(b) Give an example of a positive semidefinite Hankel matrix A that does not have a positive

semidefinite Hankel extension.
(c) Show that A is flat if and only if (1) A′u′ = 0 implies A

(
u′
0

)
= 0 for all u′ ∈ Rd , and (2)

there is u = (u0, . . . , ud)> ∈ Rd+1 with Au = 0 and ud , 0.
(d) Assume that A is positive semidefinite and flat. Show that A has a unique Hankel ex-

tension that is again positive semidefinite and flat.

Hint: It helps to identify A with a symmetric bilinear form on R[t]≤d .

8.5.3 For the quadratic module M = QM(x, x2 − y2 − x3) and the compact convex set K = S(M) ⊆
R2 discussed in Example 8.5.9, show that moment relaxation does not become exact in any
finite degree, i.e. show that Kd , S for all d ≥ 1. (Hint: Consider supporting hyperplanes
(lines) of K through the origin.)

8.5.4 Find a linear matrix inequality of size 3 × 3 that represents the compact convex set K from
Exercise 8.5.3. In other words, find symmetric matrices A0, A1, A2 ∈ S3 such that K =

{(x, y) ∈ R2 : A0 + xA1 + yA2 � 0}. (Hint: Writing A0 + xA1 + yA2 = (ai j(x, y)), the Ai may
be chosen in such a way that a11(x, y) = 1 and a12(x, y) = 0.)

8.5.5 Fill in the missing details for the proof of Proposition 8.5.24.

8.6 The Helton–Nie theorems

8.6.1 Projected spectrahedra are the feasible sets in semidefinite programming
(SDP). To use SDP for optimizing a linear function over a set S ⊆ Rn, one needs a
semidefinite representation of the convex hull K of S , or at least of the closure of
K. For understanding the expressive power of SDP, it is therefore essential to under-
stand the nature of spectrahedral shadows. Specifically, what properties does a set
need to have, to make it a spectrahedral shadow?
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Apart from a number of ad hoc constructions, not very much was known in this
direction before roughly 2010. Clearly, spectrahedral shadows are convex semial-
gebraic sets, but no other general restrictions are visible. In 2009 and 2010, Helton
and Nie published two long and technical papers in which they established the exis-
tence of semidefinite representations under quite general conditions. Roughly, their
results are saying that if a compact convex semialgebraic set has sufficiently regular
boundary of strictly positive curvature, it has a semidefinite representation. We are
going to prove these results in the most important cases.

8.6.2 This needs a series of preparations. The first ingredient is an Archimedean
positivstellensatz with degree bounds, and we even need it in a matrix version. First
recall the usual Archimedean positivstellensatz for polynomial rings. Let R[x] =

R[x1, . . . , xn], let g = (g1, . . . , gr) be a tuple of polynomials in R[x], let S = S(g) =

{ξ ∈ Rn : g1(ξ) ≥ 0, . . . , gr(ξ) ≥ 0} be the associated basic closed set and M =

QM(g) = Σ + g1Σ + · · · + grΣ the associated quadratic module, with Σ := ΣR[x]2.
If M is Archimedean then M contains every f ∈ R[x] with f > 0 on S , by the
results of Section 5.3. Recall also (Proposition 5.2.7) that M Archimedean means
c −

∑n
i=1 x2

i ∈ M for some constant c ∈ R.
We need a version with degree bounds, whereby we only require the existence of

such bounds. Put g0 := 1, and let

Mk =
{ r∑

i=0

sigi : si ∈ Σ, deg(sigi) ≤ k (0 ≤ i ≤ r)
}

be the truncated quadratic module for k ≥ 1, as in 8.5.7. We have Mk ⊆ R[x]≤k and
M1 ⊆ M2 ⊆ · · · ⊆

⋃
k Mk = M. In general there will exist degrees d for which

M ∩ R[x]≤d is not contained in Mk for any k. Given a polynomial f =
∑
α cαxα in

R[x], let || f || = maxα |cα|, the L1-norm of the coefficient vector of f . We are going
to prove:

8.6.3 Theorem. Let g, S , M be as above, and assume that M is Archimedean. For
every d ≥ 1 and every real number c > 0, there exists a positive integer k = k(g, d, c)
such that Mk contains every f ∈ R[x]≤d with f ≥ 1

c on S and with || f || ≤ c.

8.6.4 Let us see how to convert such a statement into coordinate-free form. Let A
be any finitely generated R-algebra, let M = QM(g) be an Archimedean quadratic
module in A where g = (g1, . . . , gr) is a finite sequence in A, and let S = XM = {α ∈
Hom(A,R) : α(gi) ≥ 0 (i = 1, . . . , r)}, the associated basic closed semialgebraic set,
see 5.2.14. We want to prove the following, thereby generalizing Theorem 8.6.3:
Given any R-linear subspace U ⊆ A with dim(U) < ∞, and any real number c > 0,
there exists an R-linear subspace V ⊆ A with dim(V) < ∞ such that the following is
true: Every f ∈ U with f ≥ 1

c on S and || f || ≤ c has a representation

f = s0 + s1g1 + · · · + srgr

with s0, . . . , sr ∈ ΣV2 (i.e., the si are sums of squares of elements of V). Here the
L1-norm || f || may be taken with respect to any fixed R-linear basis of A.
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Clearly, this statement implies Theorem 8.6.3. But it also follows from the latter:
Write A = R[x]/I with some ideal I, and observe that every finite-dimensional sub-
space of R[x] is contained in R[x]≤d for some d, and that conversely dimR[x]≤d < ∞
for every d.

8.6.5 As remarked before, we need a matrix version of Theorem 8.6.3, generalizing
Theorem 5.5.21. A matrix polynomial (of size r× s) is an r× s matrix with entries in
R[x]. Given such a matrix polynomial T = (ti j), define degree and L1-norm of T by
deg(T ) := maxi, j deg(ti j) and ||T || := maxi, j ||ti j||, respectively. Recall (2.1.3) that a
symmetric matrix polynomial T of size m ×m is called a (matrix) sum of squares if
T =

∑
ν TνT>ν for suitable m×m matrix polynomials Tν, or equivalently, if T = UU>

for some (rectangular) matrix polynomial U with m rows. We claim that Theorem
8.6.3 implies:

8.6.6 Theorem. Let g = (g1, . . . , gr), M = QM(g) ⊆ R[x] and S = S(g) ⊆ Rn be as
above, and assume that M is Archimedean. For any d, m ≥ 1 and any real number
c > 0, there exists a positive integer k = k(g, d,m, c) with the following property:
Whenever T ∈ Symm(R[x]) is such that deg(T ) ≤ d, ||T || ≤ c and T � 1

c Im on S ,
there exist matrix sums of squares T0, . . . ,Tr ∈ Symm(R[x]) with deg(Ti) ≤ k and
with

T = T0 + g1T1 + · · · + grTr.

8.6.7 Again, Theorem 8.6.6 can be stated in coordinate-free form (that we won’t
bother to make explicit). To prove 8.6.6 we go back to the proof of Theorem 5.5.21.
What we did there was to consider the commutative subring B = R[x,T ] of the ring
of matrix polynomials. The ring B is a finite extension of R[x], and the quadratic
module MB = QMB(g), generated by M in B, is Archimedean (see the proof of
5.5.21). The hypothesis T � 1

c I on S implies that T ≥ 1
c on XMB , the basic closed set

in Hom(B,R) associated with the quadratic module MB of B. Assume that Theorem
8.6.3 has been proved. Then apply the coordinate-free version 8.6.4 of this result to
the quadratic module MB in B. This gives Theorem 8.6.6, after converting back to
coordinates. As in 5.5.21, we see that the matrices Ti can in fact be chosen to be
sums of squares in the ring B, and in particular, to be sums of squares of matrices
that are polynomials in T . We leave it to the assiduous reader to write out full details.

8.6.8 To prove Theorem 8.6.6, it therefore suffices to prove Theorem 8.6.3, see the
previous discussion. Let the quadratic module M = QM(g) ⊆ R[x] be Archimedean,
fix a degree d ≥ 1 and a real number c > 0, and let S = S(g) ⊆ Rn. We put
Pd,c := { f ∈ R[x]≤d : f |S ≥ 1

c , || f || ≤ c} and note that this is a semialgebraic subset
of R[x]≤d. By the Archimedean positivstellensatz we have Pd,c ⊆ M, and therefore

Pd,c ⊆
⋃
k≥1

(
Mk ∩ R[x]≤d

)
. (8.29)

The right hand side is an ascending union of semialgebraic sets in R[x]≤d, and
we want to prove that Pd,c ⊆ Mk holds for some k ≥ 1. It is equivalent to prove
that inclusion (8.29) remains true after extending to an arbitrary real closed base
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field R ⊇ R, see Exercise 4.1.6. (A similar reasoning was used in Exercise 3.3.4, to
prove the existence of degree bounds for Hilbert 17.) This means that we have to
show: Given any real closed field R containing R, the inclusion

(Pd,c)R ⊆
⋃
k≥1

((
MR[x])

k ∩ R[x]≤d

)
holds, where MR[x] is the quadratic module in R[x] generated by g. Putting it sim-
pler, we have to show: If f ∈ R[x]≤d satisfies f ≥ 1

c on SR and || f || ≤ c, then
f ∈ MR[x].

Let O ⊆ R denote the convex hull of R in R, a valuation subring of R, and let
MO ⊆ O[x] be the quadratic module generated by g in O[x]. Then MO is Archime-
dean, as a quadratic module in O[x]. Indeed, the subring

O(MO) = { f ∈ O[x] : ∃ n ∈ N n ± f ∈ MO}

of O[x] (consisting of the MO-bounded elements in O[x], see 5.2.3) contains both
R[x] and O. Therefore O(MO) = O[x], which means that MO is Archimedean.

So we can apply the Archimedean positivstellensatz to MO. Any polynomial
f ∈ R[x] with || f || ≤ c lies in O[x], since c ∈ R. Moreover, if f ≥ 1

c on SR = {ξ ∈

Rn : gi(ξ) ≥ 0 (i = 1, . . . , r)}, then f ≥ 1
c holds on XMO ⊆ Hom(O[x],R). Indeed,

any ring homomorphism α : O[x] → R in XMO factors as O[x]
can.
−→ R[x]

u
−→ R for

some point u in XM = S . In particular we have α( f ) = f (u) > 0 for f as before. So
f > 0 on XMO , and so f ∈ MO by the Archimedean positivstellensatz 5.3.3 applied
to MO. In particular, f ∈ MR[x]. ut

8.6.9 Next we recall a few basic facts on convex functions that should be familiar
from calculus. Let K ⊆ Rn be a convex set. A function f : K → R is convex if

f
(
(1 − t)u + tv

)
≤ (1 − t) f (u) + t f (v) (8.30)

for all u, v ∈ K and 0 ≤ t ≤ 1. If strict inequality holds whenever u , v and
0 < t < 1, then f is strictly convex. The function f is (strictly) concave if − f is
(strictly) convex. A C1-function f is convex if and only if

〈∇ f (u), v − u〉 ≤ f (v) − f (u) (8.31)

holds for all u, v ∈ K. If K has non-empty interior and f is C2, then f is convex
on K if and only if the Hesse matrix of f is positive semidefinite at any point of K,
i.e. D2 f (u) � 0 for every u ∈ K. If D2 f (u) � 0 for u ∈ K then f is strictly convex
on K, the converse being false in general. For concave, the same hold with opposite
inequalities.

If f is a convex function on K, the sublevel sets {u ∈ K : f (u) ≤ c} (c ∈ R) of f
are convex. Similarly, if f is concave on K, the superlevel sets {u ∈ K : f (u) ≥ c}
are convex.
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8.6.10 Definition. A polynomial f ∈ R[x] = R[x1, . . . , xn] is said to be sos-convex
if the Hessian D2 f (x) of f , considered as a matrix polynomial, is a matrix sum of
squares. The polynomial f is sos-concave if − f is sos-convex.

8.6.11 Remarks.

1. The concept of sos-convexity for polynomials was introduced in Helton–Nie
[88]. For brevity, let us say that a polynomial f ∈ R[x] = R[x1, . . . , xn] is convex if
the function represented by f is convex on all of Rn. Every sos-convex polynomial
f is convex since D2 f � 0 on Rn. The converse is not true. A first example of a ho-
mogeneous convex polynomial that is not sos-convex appears in [1]. More explicit
examples, and a systematic study of the difference set, can be found in [2].

2. It is easy to see that every homogeneous convex polynomial is non-negative
on Rn. So it is natural to ask whether convex forms are sums of squares of forms.
Blekherman [21] proved that there exist convex forms that are not sos, in fact of any
even degree 2d ≥ 4, as long as there are sufficiently many variables. But no single
explicit example of such a form seems to be known, see also [65].

3. On the other hand, it is not hard to see that every sos-convex form is a sum
of squares of forms (Exercise 8.6.3). Together with the previously mentioned result,
this gives another proof for the existence of convex forms that are not sos-convex.
Altogether, the following chain of implications holds for homogeneous polynomi-
als:

sos-convex ⇒ sos and convex ⇒ convex ⇒ psd,

and none of them can be reverted in general.

8.6.12 Lemma. If f is a concave function on the non-empty compact convex set
K ⊆ Rn, then f has a minimizer u ∈ K which is an extreme point of K.

Proof. Let u ∈ K be a minimizer of f . By Theorem 8.1.13, u is a convex combi-
nation u =

∑r
i=0 aiui of extreme points u0, . . . , ur of K. Since f is concave we have

f (u) ≥
∑r

i=0 ai f (ui), and since u is a minimizer we have f (ui) = f (u) for any index i
with ai , 0. �

8.6.13 Lemma. Let g1, . . . , gr ∈ R[x] be such that K = S(g1, . . . , gr) is compact
and convex with nonempty interior, and assume that the gi are concave on K. If
f ∈ R[x] and u ∈ K is a minimizer of f on K, there exist real numbers bi ≥ 0 with
∇ f (u) =

∑r
i=1 bi∇gi(u) and satisfying bigi(u) = 0 for all i.

Such bi are called Lagrange multipliers. The condition bigi(u) = 0, usually re-
ferred to as complementary slackness, means that ∇ f (u) lies in the convex cone gen-
erated by the gradients at u of those gi which are active at u, meaning that gi(u) = 0.

Proof. Since K has non-empty interior, there is v ∈ K with gi(v) > 0 for all i. Let
u ∈ K be the given minimizer of f and put w = v − u. If i is an index with gi(u) = 0
then 0 < gi(v) ≤ 〈∇gi(u),w〉 since −gi is convex (see (8.31)). We may assume that
gi(u) = 0 for i = 1, . . . , p and gi(u) > 0 for i = p + 1, . . . , r. The convex cone C
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generated by ∇g1(u), . . . ,∇gp(u) in Rn is closed (Proposition 8.1.17), and we need
to show ∇ f (u) ∈ C. Assuming that this fails, there is z ∈ C∗ with 〈z,∇ f (u)〉 < 0.
Choose s > 0 so small that 〈z + sw,∇ f (u)〉 < 0. Going a little bit into direction
z + sw from u, we stay in K since 〈∇gi(u), z + sw〉 ≥ 0 for i = 1, . . . , p, and since

gi
(
u + t(z + sw)

)
= t · 〈∇gi(u), z + sw〉 + (higher order terms in t)

by expanding the left hand function into a Taylor series with respect to the variable t.
On the other hand,

f
(
u + t(z + sw)

)
− f (u) = t〈∇ f (u), z + sw〉 + (higher order terms in t)

has negative leading coefficient, and so f decreases strictly for small t > 0 along
this path. This contradicts the assumption that u was a minimizer of f on K. �

8.6.14 Recall that the moment relaxation scheme is a systematic way to find
semidefinite representations for outer approximations of convex sets. Let g =

(g1, . . . , gr) be a tuple in R[x], consider the quadratic module M = QM(g) and
its truncations Md (d ≥ 1) as before (8.6.2). Put S = S (g) and K = conv(S ). In the
previous section (8.5.4, 8.5.6) it was shown that the dual cone M∗d is a spectrahedral
cone, and that a natural linear projection Kd of {µ ∈ M∗d : µ(1) = 1} is an outer ap-
proximation of K, with an explicit semidefinite representation. Moreover, assuming
that S is compact and Zariski dense in Rn (to force supp(M) = {0}), equality K = Kd

holds if and only if Md contains every linear polynomial that is non-negative on S
(Corollary 8.5.13(b)). In this case we say that K has an exact moment relaxation (of
order d) with respect to g. We are going to employ this method.

8.6.15 Lemma. Let F ∈ SymmR[x] be a matrix polynomial that is a matrix sum of
squares, and let u ∈ Rn. Then the matrix polynomial

Gu(x) =

∫ 1

0

∫ t

0
F(u + s(x − u)) ds dt

is again a matrix sum of squares. Moreover deg(Gu) = deg(F).

Proof. Integration of matrix-valued functions is carried out entry-wise. We can as-
sume that F is a single square, i.e. F(x) = v(x)v(x)> with v(x) = (v1(x), . . . , vm(x))>

a column vector over R[x]. Let d = deg v(x), and let y = (y1, . . . , ym)> be a tu-
ple of new variables (considered as a column). We have to show that the polyno-
mial g(x, y) = y>Gu(x)y is a sum of squares of polynomials in R[x, y] (each of
them necessarily homogeneous and linear in y, compare Exercise 8.6.1). Clearly
y>F(x)y =

(∑m
i=1 yivi(x)

)2, and so

g(x, y) =

∫ 1

0

∫ t

0

( m∑
i=1

yivi(u + s(x − u))
)2

ds dt (8.32)

For i = 1, . . . ,m write vi(u+s(x−u)) =
∑d

k=0 pik(x, u) sk with polynomial coefficients
pik ∈ R[x, u], and note that
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g(x, y) =

m∑
i, j=1

d∑
k, l=0

yiy j pik(x, u)p jl(x, u)
∫ 1

0

∫ t

0
sk+l ds dt (8.33)

and
deg(F) = 2 max

i
deg vi(x) = 2 max

i,k
degx pik(x, u). (8.34)

The real (d + 1) × (d + 1)-matrix

Ad :=
(∫ 1

0

∫ t

0
sk+l ds dt

)
0≤k, l≤d

=

( 1
k + l + 1

)
0≤k, l≤d

is positive definite since z>Adz =
∫ 1

0

∫ t
0 (z0 + z1s + · · ·+ zd sd)2 ds dt > 0 for every z =

(z0, . . . , zd)> ∈ Rd+1, z , 0. So we can factor it as Ad = BB>, i.e.
∫ 1

0

∫ t
0 sk+l ds dt =∑

r bkrblr with B = (bkl). It follows that

g(x, y) =

m∑
i, j=1

d∑
k, l=0

yiy j pik p jl

∑
r

bkrblr =
∑

r

( m∑
i=1

d∑
k=0

bkryi pik(x, u)
)2

is a sum of squares as desired, with deg(Gu) = degx g(x, y) = 2 maxi,k degx(pik) =

deg(F) by (8.34). �

Let K = S(g1, . . . , gr) ⊆ Rn be a basic closed set, where g1, . . . , gr ∈ R[x] are
polynomials. For a convenient way of speaking, let us say that K = S(g1, . . . , gr)
is an Archimedean description of the set K if the quadratic module QM(g1, . . . , gr)
is Archimedean. Of course, K has an Archimedean description if and only if K is
compact.

8.6.16 Theorem. Let K ⊆ Rn be a compact and convex basic closed set with non-
empty interior, let K = S(g) with g = (g1, . . . , gr) be an Archimedean description
of K. For each i = 1, . . . , r, assume that at least one of the following two conditions
holds:

(1) gi is sos-concave, i.e. the negative Hessian −D2gi is a matrix sum of squares;
(2) gi is concave on K, and D2gi(u) ≺ 0 for every u in the closure of Z(gi)∩Ex(K).

Then K has an exact moment relaxation (8.6.14) with respect to g. In particular, K
is a spectrahedral shadow.

Recall that Z(gi) denotes the zero set of gi in Rn, and Ex(K) is the set of extreme
points of K. For convenience write g0 := 1 in the following. As a first step we prove
the following lemma:

8.6.17 Lemma. Under the assumptions of Theorem 8.6.16 there exists, for every i =

1, . . . , r, a positive integer Ni such that, for every u ∈ Ex(K), the matrix polynomial

Gi,u(x) := −
∫ 1

0

∫ t

0
D2gi(u + s(x − u)) ds dt
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in SymnR[x] can be written

Gi,u(x) =

r∑
j=0

g j(x) Si,u, j(x)

where each matrix polynomial Si,u, j(x) is a matrix sum of squares of degree ≤ Ni.

8.6.18 Suppose for a moment that Lemma 8.6.17 has been proved. Then the proof
of Theorem 8.6.16 is completed as follows. According to Corollary 8.5.14, see also
Remark 8.5.18, we have to find an integer d ≥ 0 such that the truncated quadratic
module Md contains every linear polynomial f with f |K ≥ 0. Such f has a minimizer
u ∈ K on K that is an extreme point of K (Lemma 8.6.12, note that the gi are concave
on K). By Lemma 8.6.13 we can write ∇ f (u) =

∑r
i=1 bi · ∇gi(u) with real numbers

bi ≥ 0 satisfying bigi(u) = 0 for all i. The polynomial hu(x) := f (x) − f (u) −∑r
i=1 bigi(x) satisfies hu(u) = 0, ∇hu(u) = 0 and D2hu(x) = −

∑r
i=1 biD2gi(x). By

Exercise 8.6.2, the matrix polynomial

Hu(x) :=
∫ 1

0

∫ t

0
D2hu(u + s(x − u)) ds dt (x ∈ Rn)

satisfies hu(x) = (x− u)> ·Hu(x) · (x− u). By linearity of the integral, Lemma 8.6.17
gives

Hu(x) =

r∑
i=1

bi Gi,u(x) =

r∑
i=1

r∑
i=0

big j(x) Si,u, j(x)

where the Si,u, j(x) are sos matrix polynomials of degrees ≤ N := max{N1, . . . ,Nr}.
Since f (u) ≥ 0, we see from

f (x) = f (u) +

r∑
i=1

bigi(x) + (x − u)> · Hu(x) · (x − u)

that f lies in the truncated quadratic module Mδ+N+2 where δ := maxi deg(gi). In-
deed, we have written f as a weighted sum of squares with weights 1 = g0, g1, . . . , gr,
and with each summand of degree ≤ δ + N + 2.

8.6.19 It remains to prove Lemma 8.6.17, so fix i ∈ {1, . . . , r}. First assume that gi

is sos-concave (condition (1) in 8.6.16). Then the negative Hessian −D2gi is an sos
matrix polynomial, of degree deg(D2gi) = deg(gi) − 2. By Lemma 8.6.15, the same
is true for Gi,u(x) and for any u ∈ Rn, and we are already done with this case.

Now assume that gi satisfies condition (2). Let Zi be the closure of Z(gi)∩Ex(K).
The matrix polynomial Gi,u(x) ∈ Symn(R[x]) has degx(Gi,u) = deg(gi) − 2 (Exercise
8.6.2) and depends polynomially on u ∈ Rn. If u ∈ K then D2gi(u) � 0 since gi is
concave on K, see 8.6.9. For u ∈ Zi we even have D2gi(u) ≺ 0, by assumption (2).
For u ∈ Zi and x ∈ K it follows that Gi,u(x) � 0. Indeed, w>Gi,u(v)w =

∫ ∫
w> ·

(−D2gi)(u + s(v− u)) ·w ds dt for 0 , w ∈ Rn, and the polynomial under the integral
is strictly positive for s = 0 and otherwise non-negative. By compactness of K and
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Zi, there exists ε > 0 such that Gi,u(x) � εI for all (u, x) ∈ Zi ×K. By Theorem 8.6.6
we find, for every u ∈ Zi, a weighted matrix sos representation

Gi,u(x) =

r∑
j=0

g j(x) Si,u, j(x)

where each Si,u, j ∈ Symn(R[x]) is a matrix sum of squares of degree

deg(Si,u, j) ≤ k
(
g, deg(gi) − 2, n, max{ε−1, ||Gi,u||}

)
,

and the right hand number is the integer k whose existence is guaranteed by Theorem
8.6.6. By compactness of Zi, the number ||Gi|| := max{||Gi,u|| : u ∈ Zi} is finite. So
altogether we have the uniform bound

deg(Si,u, j) ≤ k
(
g, deg(gi) − 2, n, max{ε−1, ||Gi||}

)
=: Ni

that is independent of u ∈ Zi. This completes the proof of Lemma 8.6.17, and there-
fore of Theorem 8.6.16 as well. ut

8.6.20 Remark. A function f : K → R defined on a convex set K ⊆ Rn is called
quasi-concave if, for every c ∈ R, the superlevel set {u ∈ K : f (u) ≥ c} is convex
(see Section 3.4 in [30]). If u ∈ K and f is twice continuously differentiable in
a neighborhood of u, such f satisfies v> · D2 f (u) · v ≤ 0 for every v ∈ Rn with
〈v,∇ f (u)〉 = 0 ([30] p. 101). Following [88] we consider the following stronger
property:

8.6.21 Definition. A C2-function f : U → R defined on an open set U ⊆ Rn is
strictly quasi-concave at a point u ∈ U if v> · D2 f (u) · v < 0 for every 0 , v ∈ Rn

with 〈v,∇ f (u)〉 = 0. We say that f is strictly quasi-concave (throughout) if f is
strictly quasi-concave at every point u ∈ U.

8.6.22 Examples.

1. A polynomial f ∈ R[x] is strictly quasi-concave at a point u ∈ Rn if, and only
if, the Hessian D2 f (u) is negative definite when restricted to the linear tangent space
of the level hypersurface f (x) = f (u) at u. It is not hard to see that the set of points
at which a given C2-function is strictly quasi-concave, is open (Exercise 8.6.4).

2. If a function f , defined on an open convex set U ⊆ Rn, is strictly quasi-concave
on U, then f is quasi-concave on U, i.e. all superlevel sets {u ∈ U : f (u) ≥ c} are
convex. For the proof see Exercise 8.6.5.

3. A C2-function f defined on an open interval K ⊆ R is strictly quasi-concave
if, and only if, the derivative f ′ has at most one zero u in K, and f ′′(u) < 0 if u
exists. In particular, a strictly quasi-concave function need not be concave. For an
example in dimension two, the polynomial f (x1, x2) = x1x2 is quasi-concave on the
closed positive orthant R2

+, and is strictly quasi-concave on its interior.
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8.6.23 Lemma. Given a real number c > 0, there exists a (univariate) sum of
squares h ∈ R[t] that satisfies

(1) h(t) > 0, (2) h(t) + th′(t) > 0, (3)
2h′(t) + th′′(t)

h(t) + th′(t)
≤ −c

for every t ∈ R with |t| ≤ 1.

For the proof see Exercise 8.6.7.

8.6.24 Proposition. Let K = S(g1, . . . , gr) be an Archimedean description of a com-
pact convex set in Rn, and assume that the gi are strictly quasi-concave at every
point of K. Then there exists a second Archimedean description K = S(h0, . . . , hr)
of K with h0, h1, . . . , hr ∈ QM(g), and such that D2hi ≺ 0 on K for i = 0, . . . , r.

Proof. There is a real number b > 0 such that h0 := b2 −
∑n

i=1 x2
i ∈ QM(g). By

scaling the gi we may assume that |gi(u)| ≤ 1 for |u| ≤ b. Let c > 0 be a (large)
constant, to be determined later. By Lemma 8.6.23 there exists a sum of squares
h ∈ R[t] satisfying

(1) h(t) > 0, (2) h(t) + th′(t) > 0, (3)
2h′(t) + th′′(t)

h(t) + th′(t)
≤ −c (8.35)

for every |t| ≤ 1. Using this polynomial we consider the tuple h = (h0, . . . , hr), with
h0 as before and with

hi(x) = gi(x) · h(gi(x)) (i = 1, . . . , r).

We have h0, . . . , hr ∈ QM(g) since h(t) is sos, and so K ⊆ S (h). Conversely let
u ∈ Rn with u < K. If |u| > b then h0(u) < 0. If |u| ≤ b then −1 ≤ gi(u) < 0 for some
index i ∈ {1, . . . , r}, and so hi(u) < 0. Altogether K = S(h).

Clearly D2(h0) = −2I ≺ 0 everywhere. For i = 1, . . . , r we show that D2(hi) is
negative definite on K, if c was chosen sufficiently large. Calculating the Hessian of
hi = gi · (h ◦ gi), the product rule gives

D2(hi) = (h ◦ gi) · D2(gi) +
(
∇(gi) · ∇(h ◦ gi)>

)sym
+ gi · D2(h ◦ gi).

Here gradients ∇ are considered as column vectors, and we write Msym := M + M>

for the symmetrization of a square matrix M. Further ∇(h ◦ gi) = (h′ ◦ gi) · ∇gi and
D2(h ◦ gi) = (h′′ ◦ gi) · ∇(gi)∇(gi)> + (h′ ◦ gi) · D2(gi), hence

D2(hi) = pi · D2(gi) + qi · (∇gi)(∇gi)>

with pi := (h ◦ gi) + gi · (h′ ◦ gi) and qi := 2(h′ ◦ gi) + gi · (h′′ ◦ gi). Note that pi > 0
on K, by property (2) in (8.35). Since gi is strictly quasi-concave on K, Exercise
8.6.6 implies that there exists a constant κi > 0 such that

D2gi ≺ κi · (∇gi)(∇gi)>, (8.36)
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uniformly on K. Take c > 0 in (8.35) so large that c > max{κ1, . . . , κr}, and choose
h accordingly. Then qi

pi
≤ −c ≤ −κi on K, by condition (3) in (8.35). So κi pi + qi ≤ 0

holds on K for all i, and hence D2(hi) = pi · D2(gi) + qi · (∇gi)(∇gi)> ≺ (κi pi + qi) ·
(∇gi)(∇gi)> � 0 holds on K, where ≺ follows from (8.36). Hence each of the hi is
strictly concave on K. �

As a consequence we get the following extension of Theorem 8.6.16:

8.6.25 Corollary. In Theorem 8.6.16, if we replace condition (2) by

(2’) gi is strictly quasi-concave on K

then it remains true that K has an exact moment relaxation.

Proof. Suppose that g1, . . . , gs are sos-concave and gs+1, . . . , gr are strictly quasi-
concave on K. Choose b ∈ R with b2 −

∑
i x2

i ∈ QM(g). By Proposition 8.6.24 we
may replace b2 −

∑
i x2

i , gs+1, . . . , gr by a sequence of polynomials whose Hessian
in every point of K is negative definite, without changing the basic closed set they
define. Thus we get a new Archimedean description K = S (h1, . . . , hp) (with hi ∈

QM(g)) such that each hi is either sos-concave or satisfies D2(hi)(u) ≺ 0 for every
u ∈ K. Now the hypotheses of Theorem 8.6.16 are fulfilled, and this theorem gives
the desired conclusion. �

8.6.26 Examples.

1. Let m, n > 0 be even integers. The “tv hyperscreen” {(x, y) ∈ R2: xm + yn ≤ 1}
is a spectrahedral shadow, as we saw explicitly in 8.5.24. We get this conclusion
again from Theorem 8.6.16, since g = 1− xm−yn is sos-concave. On the other hand,
neither condition (2) in 8.6.16 nor condition (2’) in 8.6.25 is satisfied, as can be seen
in the points u = (±1, 0) and u = (0,±1).

2. Let g = xayb − 1 ∈ R[x, y] with a, b ≥ 1. Calculating we find

∇g = xa−1yb−1
(
ay
bx

)
, D2g = xa−2yb−2

(
a(a − 1)y2 abxy

abxy b(b − 1)x2

)
At (x, y) , (0, 0), the linear tangent space to the level set of g is spanned by u =

(−bx, ay)>. Since u> ·D2g·u = −ab(a+b)xayb, we see that g is strictly quasi-concave
(but not concave) on the open positive quadrant. Let h = 1 − (x − 1)2 − (y − 1)2

and consider the compact convex set K = S(g, h) ⊆ R2. From condition (2’) of
Corollary 8.6.25, we see that K has an exact moment relaxation. But this example
is not covered by Corollary 8.6.16.

3. Exercise 8.6.8 shows that the conditions in Theorem 8.6.16 or Corollary 8.6.25
(sufficient for existence of an exact relaxation with respect to g) are not necessary:
K may have an exact relaxation with respect to g, even if none of these conditions
is satisfied.

4. In Exercise 8.6.9, a compact, convex and basic closed set K is considered for
which no moment relaxation gets exact with respect to any finite sequence g with
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K = S(g). Still K is a spectrahedral shadow. The example is taken from [145], and
is an instance of the following result proved there: Let g be a finite tuple in R[x]
such that the basic closed set K = S(g) ⊆ Rn is convex. If K has a face that is not
exposed, then no moment relaxation of K with respect to g is exact.

We conclude this section with another general existence result for semidefinite
representations. It is a consequence of Corollary 8.6.25.

8.6.27 Definition. Let K ⊆ Rn be a closed convex semialgebraic set with non-empty
interior, and let u ∈ ∂K.

(a) We say that u is a smooth boundary point of K if there are a polynomial g ∈ R[x]
with ∇g(u) , 0 and a neighborhood U of u in Rn, such that ∂K ∩ U = {v ∈ U:
g(v) = 0}. If every boundary point of K is smooth, we say that K has smooth
boundary.

In this situation we have K ∩U = {v ∈ U : g(v) ≥ 0}, after possibly replacing g with
−g (Exercise 8.6.11). Such a polynomial g will be called a positive inequality for K
at u.

(b) If u is a smooth boundary point and g is a positive inequality for K at u, we
say that the boundary ∂K is strictly positively curved at u if g is strictly quasi-
concave at u.

8.6.28 Examples.

1. Let K be as in the previous definition, let V = ∂aK be the algebraic boundary
of K (the Zariski closure of ∂K, 4.6.14). Then u ∈ ∂K is a smooth boundary point
of K if and only if u is a non-singular point of the hypersurface V (Exercise 8.6.11).

2. The boundary points P, P′ = (0,±1) of K1 =
(
[0, 1]× [0, 1]

)
∪{(u, v) : u2 +v2 ≤

1} ⊆ R2 are not smooth. Neither is the origin Q = (0, 0) as a boundary point of
K2 = {(u, v) : u4 + u2v2 + v4 ≤ u(u2 + v2)}, despite appearances to the contrary:

K1

P

P′

Two non-smooth
boundary points

K2Q

The curve x4 + x2y2 + y4 = x(x2 + y2)
and a non-smooth boundary point

3. Let g be a positive inequality for K in the smooth boundary point u. One
can show that convexity of K implies w> · D2g(u) · w ≤ 0 for all w ∈ Rn with
〈w,∇g(u)〉 = 0 (non-strict positive curvature of the ∂K at u), see Exercise 8.6.11.
The restriction of the symmetric bilinear form D2g(u) to ∇g(u)⊥ is called the second
fundamental form of the hypersurface g = 0 at its smooth point u.
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8.6.29 Theorem. Let K ⊆ Rn be a semialgebraic set that is compact and convex,
and assume that the boundary ∂K is smooth and strictly positively curved every-
where. Then K is a spectrahedral shadow.

Proof. For every u ∈ ∂K there are a polynomial g ∈ R[x] and a real number r > 0
with Br(u) ∩ K = {ξ ∈ Br(u) : g(ξ) ≥ 0}, and such that g is strictly quasi-concave
on Br(u) (see Exercise 8.6.4 for the latter). So K ∩ Br(u) = S(g(x), r2 − |x − u|2) is
a spectrahedral shadow for any such u and r, by Corollary 8.6.25. There are finitely
many such pairs (ui, ri) such that ∂K is covered by the balls Bri (ui). The convex hull
of

⋃
i(K ∩ Bri (ui)) contains ∂K, so it is all of K. And it is a spectrahedral shadow by

Proposition 8.3.7. �

By their results, as discussed in this section, Helton and Nie [87] were led to
conjecture that every convex semialgebraic set in Rn is a spectrahedral shadow (this
was subsequently called the Helton–Nie conjecture). Eventually it turned out that
the conjecture is false. In fact there exist plenty of prominent counter-examples, as
we shall see in the next section.

Exercises

8.6.1 Let A be a (commutative) ring, let M ∈ Symn(A), and let y = (y1, . . . , yn) be a tuple of
variables. The following two conditions are equivalent:

(i) M is a (matrix) sum of squares, i.e. there exists a matrix N over A with n columns and
with M = N>N;

(ii) the quadratic form qM(y) = y>My ∈ A[y] over A is a sum of squares of linear forms in
A[y] (we consider y as a column vector).

When the ring A is real reduced, condition (ii) may be weakened to “qM(y) is sos in A[y]”.
8.6.2 Let f ∈ R[x] = R[x1, . . . , xn] and u ∈ Rn. The matrix polynomial

F(x) :=
∫ 1

0

∫ t

0
D2 f (u + s(x − u)) ds dt

satisfies
f (x) = f (u) + (x − u)> · ∇ f (u) + (x − u)> · F(x) · (x − u),

and also deg(F) = deg( f ) − 2 unless f is constant.
8.6.3 Show that every sos-convex homogeneous polynomial in R[x] = R[x1, . . . , xn] is a sum of

squares of polynomials. (Hint: Use Exercise 8.6.2 and Lemma 8.6.15)
8.6.4 If f : U → R is a C2-function on an open set U ⊆ Rn, and if f is strictly quasi-concave in

u ∈ U, prove that f is strictly quasi-concave in a neighborhood of u.
8.6.5 Let K ⊆ Rn be a convex set, and let f ∈ R[x] be strictly quasi-concave on a neighborhood

of K in Rn. Prove that all superlevel sets {x ∈ K : f (x) ≥ c} (c ∈ R) are convex.
8.6.6 Show that a C2-function f : Rn → R is strictly quasi-concave at u ∈ Rn if and only if

D2 f (u) ≺ c · ∇ f (u)∇ f (u)> for some (positive) constant c ∈ R.
8.6.7 Give the proof of Lemma 8.6.23. Hint: The analytic function f (t) = 1

at (1 − e−at) on R
has properties (1)–(3) from Lemma 8.6.23, for some a > 0. Show that a suitable Taylor
approximation of f satisfies the lemma.
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8.6.8 Let g = (g1, . . . , g5) with g1 = y − x3, g2 = x, g3 = 1 − x, g4 = y, g5 = 1 − y in R[x, y],
and let K = S (g). Show that QM(g) is Archimedean and that the third moment relaxation
of K with respect to g is exact. But g1 is neither sos-concave, nor strictly quasi-concave in
all points of Z(g1) ∩ Ex(K).

8.6.9 Consider the basic closed set S = S(y − x3, x + 1, y − y2) in R2, and show that S is compact
and convex. Then do the following:

(a) Let g = (g1, . . . , gr) be a finite sequence in R[x, y] with S = S(g), put M = QM(g), and
assume that moment relaxation with respect to g gets exact at level d < ∞. For any real
number c > 0, show that there is b ∈ R such that c− x + by is contained in the truncated
quadratic module Md .

(b) Let N ⊆ R[x] be the image of M under the ring homomorphism R[x, y] → R[x],
p(x, y) 7→ p(x, 0). Show that the assumption in (a) implies −x ∈ N, and deduce a
contradiction. Conclude that no moment relaxation for S gets exact at any finite level.

(c) On the other hand, show that S is a spectrahedral shadow (use Exercise 8.6.8).

8.6.10 Find all boundary points of the elliptope (Exercise 8.2.7) that are not smooth.

8.6.11 Let K ⊆ Rn be a closed convex semialgebraic set with non-empty interior, and let f ∈ R[x]
be a polynomial without multiple factors and with ∂aK = V( f ).

(a) A point u ∈ ∂K is a smooth boundary point of K (Definition 8.6.27) if, and only if, u
is a non-singular point of the hypersurface V( f ) = ∂aK. In this case, one of ± f is a
positive inequality for K at u.

(b) If u is a smooth boundary point of K, and if g is a positive inequality for K at u, show
that w> · D2g(u) · w ≤ 0 holds for all w ∈ Rn with 〈∇ f (v),w〉 = 0.

Hint: Use the implicit function theorem, plus the fact that K is the closure of a union of
connected components of {ξ ∈ Rn : f (ξ) , 0}.

8.6.12 Let K ⊆ Rn be a closed convex semialgebraic set with non-empty interior, let u ∈ ∂K be a
smooth boundary point of K, and let g ∈ R[x] be a positive inequality for K at u. Show that
there exists a unique supporting hyperplane of K that contains u, and that it has the equation∑n

i=1
∂g
∂xi

(u) · (xi − ui) = 0.

8.6.13 Let C ⊆ Rn be a semialgebraic convex cone which is closed and pointed and has non-
empty interior. Let ∂aC = V( f ) ⊆ An be the algebraic boundary of C, where f ∈ R[x] =

R[x1, . . . , xn] has no multiple factors. The polynomial f is homogeneous (verify this).

(a) Let the morphism g : V( f ) → An be defined by g(x) =
(
∂1 f (x), . . . , ∂n f (x)

)
(with

∂i = ∂
∂xi

, i =, . . . , n), and let W be the Zariski closure of the image of g. Show that W is
contained in the algebraic boundary of the dual cone C∗.

(b) If ∇ f (u) , 0 for every boundary point u , 0 of C, show that ∂a(C∗) = W.
(c) Give an example of a cone C ⊆ R3 as above for which ∂a(C∗) is strictly larger than W.

Considering V( f ) as a hypersurface in Pn−1, the map g corresponds to a rational map
γ : V( f ) d Pn−1 (the Gauss map). The Zariski closure of the image of γ in Pn−1 is called
the dual variety of the projective hypersurface V( f ). The affine cone over this projective
variety is the variety W above. Loosely speaking, this exercise compares the dual variety of
the algebraic boundary of C with the algebraic boundary of the dual cone C∗.
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8.7 Convex sets that are not spectrahedral shadows

We show that there exist convex semialgebraic sets that fail to be spectrahedral shad-
ows, thereby disproving the Helton–Nie conjecture. Once more, sums of squares are
playing the key role. This section is based on [187].

8.7.1 If V is an affine R-variety and S ⊆ V(R) is a subset, we keep writing P(S ) =

{ f ∈ R[V] : f |S ≥ 0}, as in Chapter 6. If S is a subset of Rn, let PS = R[x]≤1 ∩ P(S )
(as in 8.1.23), and put PS ,0 = { f ∈ PS : f (0) = 0}. So PS is a closed convex cone in
R[x]≤1 � R

n+1, and PS ,0 consists of the homogeneous polynomials in PS . The closed
convex hull and the closed conic hull of S are respectively given by conv(S ) = {u ∈
Rn : ∀ f ∈ PS f (u) ≥ 0} and cone(S ) = {u ∈ Rn : ∀ f ∈ PS ,0 f (u) ≥ 0}, see 8.1.6.
From this we see:

8.7.2 Lemma. Let S ⊆ Rn be a set.

(a) The closed convex hull K of S is an affine-linear section of the dual cone (PS )∗.
If PS is a spectrahedral shadow then so is K, and vice versa.

(b) The closed conic hull C of S is equal to the dual cone (PS ,0)∗. If PS ,0 is a
spectrahedral shadow then so is C, and vice versa.

Proof. (a) For a linear polynomial f = a0 +
∑n

i=1 aixi let f̃ =
∑n

i=0 aixi ∈ R[x0, x]
be its degree one homogenization. By definition, (PS )∗ consists of the tuples b =

(b0, . . . , bn) in Rn+1 that satisfy f̃ (b) ≥ 0 for every f ∈ PS . Therefore K = {u ∈ Rn:
(1, u) ∈ (PS )∗}. The second part of (a) holds by Corollaries 8.3.10 and 8.3.11, since
PS = PK = (Kh)∗ by Remark 8.1.23. In (b), the first assertion is clear, and so 8.3.10
implies the second. �

Our first step is a reformulation of the spectrahedral shadow property. To this end
we define:

8.7.3 Definition. Let V be an affine R-variety, let S ⊆ V(R) be a subset and
L ⊆ R[V] a linear subspace of finite dimension. We say that S admits uniform
sos representations for L if there exists a morphism φ : X → V of affine R-varieties,
together with a linear subspace U of R[X], such that

(1) dim(U) < ∞,
(2) S ⊆ φ(X(R)),
(3) φ∗(L ∩ P(S )) ⊆ ΣU2.

Here φ∗ : R[V]→ R[X] is the ring homomorphism dual to φ. So (3) requires that
the φ-pullback of any f ∈ L with f |S ≥ 0 can be written as a sum of squares of
elements from U. In view of (2), note that every f ∈ R[V], for which φ∗( f ) is a sum
of squares in R[X], will be non-negative on S .

8.7.4 Remark. We may reformulate Definition 8.7.3 in different terms. Given a
semialgebraic set S ⊆ V(R), let A0(S ) denote the ring of all definable functions
S → R (i.e. functions with semialgebraic graph, but not necessarily continuous,
see 4.3.1). Then S admits uniform sos representations for a given finite-dimensional
linear space L ⊆ R[V] (8.7.3) if, and only if, the following holds:
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(∗) There exist finitely many definable functions h1, . . . , hN on S such that
every f ∈ L∩P(S ) can be written as a sum of squares of linear combinations
of h1, . . . , hN .

Indeed, assume that the conditions of 8.7.3 hold, so we are given a morphism of
varieties φ : X → V together with a linear subspace U of R[X] as in 8.7.3. Since S ⊆
φ(X(R)), there exists a definable section σ : S → X(R) of φ over S , by Proposition
4.5.9. If g1, . . . , gN is a basis of U then the definable functions hi = gi ◦ σ (i =

1, . . . ,N) on S satisfy condition (∗). Conversely, if h1, . . . , hN ∈ A0(S ) are given as
in (∗), let X be the Zariski closure of

graph(h1, . . . , hN) =
{(

s, h1(s), . . . , hN(s)
)
: s ∈ S

}
⊆ S × RN

in V × AN , and let φ : X → V be the natural morphism. Then hi = gi ◦ σ, where
σ : S → X(R) is the obvious section and gi ∈ R[X] is projection to the i-th compo-
nent of AN . So φ : X → V , together with the linear subspace U ⊆ R[X] spanned by
g1, . . . , gN , satisfies the conditions in Definition 8.7.3.

8.7.5 Theorem. (Scheiderer) Let S ⊆ Rn be a semialgebraic set and let K =

conv(S ) be its closed convex hull. The following are equivalent:

(i) K is a spectrahedral shadow;
(ii) S admits uniform sos representations for L1 = span(1, x1, . . . , xn) ⊆ R[x].

Similarly, the closed conic hull C = cone(S ) of S is a spectrahedral shadow if, and
only if, S admits uniform sos representations for L = span(x1, . . . , xn) ⊆ R[x].

We start by proving (ii)⇒ (i).

8.7.6 Proposition. If S ⊆ Rn is a set that admits uniform sos representations for L1
(resp. for L), then K = conv(S ) (resp. C = cone(S )) is a spectrahedral shadow.

Proof. We first give the proof for L1 and K. By assumption we have a mor-
phism φ : X → An with S ⊆ φ(X(R)) and a finite-dimensional linear subspace
U ⊆ R[X], such that φ∗( f ) ∈ ΣU2 for every f ∈ L1 = R[x]≤1 with f |S ≥ 0.
Let W := φ∗(L1) + UU, a finite-dimensional subspace of R[X], and consider the
restriction ϕ := φ∗|L1 : L1 → W of φ∗ : R[x] → R[X]. By assumption we have
ϕ(PS ) ⊆ ΣU2, or equivalently, PS ⊆ ϕ

−1(ΣU2). The opposite inclusion holds any-
way since S ⊆ X(R). So PS is the preimage of ΣU2 under the linear map ϕ. Since
ΣU2 is a spectrahedral shadow (in UU ⊆ W) by Example 8.3.4.3, and since the
class of spectrahedral shadows is closed under taking linear preimages (Exercise
8.3.1), PS is a spectrahedral shadow as well. Therefore K is a spectrahedral shadow
by Lemma 8.7.2. The proof for the closed conic hull C is identical, up to replacing
L1, PS and K by L, PS ,0 and C, respectively. �

8.7.7 Remarks.

1. Assume that the set S ⊆ Rn satisfies the conditions of Proposition 8.7.6. If
corresponding φ : X → An and U ⊆ R[X] are given explicitly, we get an explicit
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semidefinite representation of the cone PS , and therefore of the closed convex hull
of S as well. The matrices in the corresponding lifted LMI have size dim(U), as
we see from the proof of 8.7.6 and from 8.3.4.3. The construction can be seen as
generalizing the moment relaxation construction (Section 8.5), performed however
in R[X], which is a ring extension of the polynomial ring R[x].

2. It is natural to ask whether Proposition 8.7.6 remains true if the condition
dim(U) < ∞ in 8.7.3 is dropped. That is, assume that there is a morphism φ : X →
An of affine varieties with S ⊆ φ(X(R)) such that, for every f ∈ PS , the pullback
φ∗( f ) of f is a sum of squares in R[X]. We’ll see a little later (Remark 8.7.21.1) that
this weaker condition does not suffice to conclude that K is a spectrahedral shadow.

Now we prove the converse (i) ⇒ (ii) in Theorem 8.7.5, starting with the cone
version.

8.7.8 Proposition. Assume that S ⊆ Rn is a semialgebraic set for which the closed
conic hull C = cone(S ) ⊆ Rn is a spectrahedral shadow. Then S (or C) admits
uniform sos representations for L = span(x1, . . . , xn).

Proof. We may assume that Rn is affinely spanned by S . By assumption, C is the
image of a spectrahedral cone T ⊆ Rp under a linear map π : Rp → Rn, for some p
(use Lemma 8.3.5). We may assume that Rp is the linear hull of T , which implies
that T has non-empty interior. So T can be represented by a homogeneous LMI that
is strictly feasible (Proposition 8.2.18). This means, there are linear matrix pencils
M(x) =

∑n
i=1 xiMi and N(y) =

∑m
j=1 y jN j in Sd (for some m ≥ 0 and d ≥ 1) such that

T =
{
(ξ, η) ∈ Rn × Rm : M(ξ) + N(η) � 0

}
,

such that C = π(T ) where π(ξ, η) = ξ, and such that there exists (ξ, η) ∈ T with
M(ξ) + N(η) � 0.

Consider the closed subvariety X of An × Am × Symd, defined over R, whose
C-points are the triples (ξ, η, A) where A is a symmetric d × d-matrix satisfying

A2 =

n∑
i=1

ξiMi +

m∑
j=1

η jN j.

We shall denote the coordinate functions on X by(
x1, . . . , xn, y1, . . . , ym, (zµν)1≤µ,ν≤d

)
= (x, y,Z)

with zµν = zνµ for 1 ≤ µ, ν ≤ d. Let φ : X → An be the projection φ(ξ, η, A) = ξ.
Then φ(X(R)) = π(T ) = C, since a real symmetric matrix is psd if and only if it is
the square of a real symmetric matrix. Let U ⊆ R[X] be the linear subspace spanned
by the coefficient functions zµν = zνµ (1 ≤ µ, ν ≤ d) of Z. We claim that property (3)
of Definition 8.7.3 holds with these choices of φ and U.

To see this, let f =
∑n

i=1 aixi ∈ L be a linear homogeneous polynomial with f ≥ 0
on S , and hence f ≥ 0 on C. So the tuple (a, 0) = (a1, . . . , an, 0, . . . , 0) ∈ Rn × Rm

lies in the dual cone T ∗ of T . (If (ξ, η) ∈ T , then ξ ∈ C, hence 0 ≤ f (ξ) = 〈a, ξ〉 =
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〈(a, 0), (ξ, η)〉.) Since the linear matrix inequality is strictly feasible, there exists a
psd matrix B ∈ Sd

+ with ai = 〈B,Mi〉 (1 ≤ i ≤ n) and 0 = 〈B,N j〉 (1 ≤ j ≤ m).
Indeed, it was proved in Proposition 8.3.9 that T ∗ consists of all tuples(

〈B,M1〉, . . . , 〈B,Mn〉; 〈B,N1〉, . . . , 〈B,Nm〉
)

with B ∈ Sd
+. Let W = (wkl) ∈ Sd be a symmetric matrix with B = W2. Then, as an

element of R[X], φ∗( f ) is equal to

n∑
i=1

〈B,Mi〉xi +

n∑
j=1

〈B,N j〉y j =
〈
B, M(x) + N(y)

〉
= 〈W2,Z2〉 = 〈ZW,ZW〉

since 〈W2,Z2〉 = tr(W2Z2) = tr(ZW2Z) = tr((ZW)(ZW)>) = 〈ZW,ZW〉. This means
that

φ∗( f ) =

d∑
µ, ν=1

(
(ZW)µν

)2
=

d∑
µ, ν=1

(∑
k

zµkwkν

)2

is a sum of squares in R[X] of elements from the linear subspace U ⊆ R[X]. �

Here is the inhomogeneous version of Proposition 8.7.8:

8.7.9 Corollary. Let S ⊆ Rn be a semialgebraic set, let K = conv(S ) be its closed
convex hull. If K is a spectrahedral shadow then S (or K) admits uniform sos rep-
resentations for L1 = span(1, x1, . . . , xn).

Proof. Since K is a spectrahedral shadow, the same is true for the homogenization
Kh ⊆ R × Rn of K (Corollary 8.3.11). The latter is the closure of cone({1} × K) in
R × Rn (Proposition 8.1.19). By Proposition 8.7.8, {1} × K admits uniform sos rep-
resentations for span(x0, x1, . . . , xn). Dehomogenizing, we directly get the assertion
of the corollary. �

With this, Theorem 8.7.5 has been proved.

8.7.10 Examples.

1. Let S = S(g1, . . . , gr) ⊆ Rn be a basic closed set, and assume that standard
moment relaxation for the convex hull conv(S ) of S (Remark 8.5.7) is exact in high
degrees. Let R[x] ⊆ B be the ring extension arising from adjoining square roots of
g1, . . . , gr to R[x], and let φ : X → An be the morphism of affine varieties that is
dual to R[x] ⊆ B. Then the conditions of Definition 8.7.3 are satisfied for φ : X →
An, and for some subspace U ⊆ R[X] of finite dimension. Indeed, this follows
from Corollary 8.5.13(b). The semidefinite representation constructed from φ and
U agrees with the representation that was constructed with the moment relaxation
method in Section 8.5.

2. The “tv hyperscreen” K = {u ∈ R2 : u2d1
1 +u2d2

2 ≤ 1} in the plane is a spectrahe-
dral shadow, as we saw in Example 8.5.23. To verify this using Theorem 8.7.5, note
that K is the convex hull of its boundary S = ∂K. Let X ⊆ A2 be the Zariski closure
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of S , i.e. X = V( f ) with f = 1 − x2d1
1 − x2d2

2 , and let φ : X → A2 be the inclusion.
As remarked in 8.5.23, the convex cone PK = PS in L1 = R[x1, x2]≤1 is generated
by 1 together with the positive tangents tu = 2d1u2d1−1

1 (u1 − x1) + 2d2u2d2−1
2 (u2 − x2)

for u = (u1, u2) ∈ S . By identity (8.28) and the remark made after it, φ∗(tu) is a
sum squares of elements from the subspace U = span(1, x1, . . . , x

d1
1 , x2, . . . , x

d2
2 ) of

R[X]. Hence S admits uniform sos representations for L1 = span(1, x1, x2), with
these choices of X, φ and U. Of course, this reasoning generalizes to the higher-
dimensional versions of K as in 8.5.23.

Before proceeding further, we state an easy generalization that is more conve-
nient and flexible to apply. Given a finite-dimensional linear subspace L ⊆ R[x]
with linear basis p1, . . . , pm, let ϕL : Rn → Rm be the Veronese-type map de-
fined by u 7→

(
p1(u), . . . , pm(u)

)
. (A basis-free definition of ϕL would be the map

Rn → L∨ = Hom(L,R), u 7→ (ϕu : L → R, p 7→ p(u)), but for the sake of concrete-
ness we stick to the version in coordinates.)

8.7.11 Corollary. Let S ⊆ Rn be a semialgebraic set, let L ⊆ R[x] with dim(L) =

m < ∞. The closed convex hull of ϕL(S ) in Rm is a spectrahedral shadow if, and only
if, S admits uniform sos representations for L1 = L + R1. The analogous statement
for the closed conic hull holds as well, replacing L1 with L.

Proof. We do the inhomogeneous case (sketch). If S admits uniform sos represen-
tations for L1, there are φ : X → An and U ⊆ R[X] with S ⊆ φ(X(R)), dim(U) < ∞
and φ∗(L1 ∩ P(S )) ⊆ ΣU2. Then the composition ϕL ◦ φ : X → Am, together with
U, satisfies the conditions of 8.7.3 for the set ϕL(S ) in Rm and the space of linear
polynomials in Rm. So K = convϕL(S ) is a spectrahedral shadow, by the backward
implication of Theorem 8.7.5. Conversely, if K is a spectrahedral shadow in Rm,
then by the forward implication of 8.7.5 there exists φ : X → Am and U ⊆ R[X]
with dim(U) < ∞, ϕL(S ) ⊆ φ(X(R)) and φ∗( f ) ∈ ΣU2 for every f ∈ R[y1, . . . , ym]≤1
with f ≥ 0 on ϕL(S ). Consider the fibre product

Y X

An Am

ϕ′

ψ φ

ϕL

so R[Y] = R[x] ⊗R[y] R[X]. Then S ⊆ ψ(Y(R)), so ψ together with the subspace
(ϕ′)∗(U) of R[Y] satisfies the conditions of 8.7.3 for S and L1.

For both implications, the conic case is completely analogous. �

8.7.12 It may not yet be obvious, but the necessary conditions for spectrahedral
shadows that result from Proposition 8.7.8 (resp. Corollary 8.7.9) are quite restric-
tive. To see this, we use the reformulation exhibited in Remark 8.7.4.

From Section 4.5, recall the concept of Nash functions (Remark 4.5.3.3). If U ⊆
Rn is an open semialgebraic set, let N(U) ⊆ A0(U) denote the ring of all Nash
functions U → R. For u ∈ Rn let Ou = R[x]mu , the local ring at u, and let Ôu be
its completion. Then Ôu = R[[x − u]] = R[[x1 − u1, . . . , xn − un]], the ring of formal
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power series in x1 − u1, . . . , xn − un. Given any Nash function f ∈ N(U) and any
point u ∈ U, we may consider the formal Taylor series expansion of f around u, viz.

τu( f ) =
∑
α

1
α!
∂α f
∂xα

(u) · (x − u)α ∈ Ôu

(This series actually converges in a neighborhood of u, since every Nash function is
analytic. We didn’t prove this fact however, and we won’t need it.) The map

τu : N(U)→ Ôu, f 7→ τu( f )

is a ring homomorphism (in fact injective when U is connected, Exercise 4.5.14).

8.7.13 Recall that the (vanishing) order ω( f ) of a formal power series f =
∑
α cαxα

in R[[x]] is ω( f ) = inf{|α| : cα , 0}. If ω( f ) = d, the leading form of f is
L( f ) =

∑
|α|=d cαxα (compare A.4.7). To give counter-examples to the Helton–Nie

conjecture, we are going to use the easy fact that the leading form of any sum of
squares f in R[[x]] is a sum of squares of homogeneous polynomials (this was re-
marked in Example 6.1.12).

For n, d ∈ N, recall that dimR[x1, . . . , xn]≤d =
(

n+d
n

)
. Consider the Veronese

polynomial map
ϕn,d : Rn → R(n+d

n )−1, u 7→
(
uα

)
1≤|α|≤d

8.7.14 Theorem. Let S ⊆ Rn be any semialgebraic set with non-empty interior. If
n ≥ 3 and d ≥ 6, or if n ≥ 4 and d ≥ 4, the closed convex hull K of ϕn,d(S ) in
R(n+d

n )−1 fails to be a spectrahedral shadow.

Proof. Assume that K is a spectrahedral shadow. By Corollary 8.7.11 and Remark
8.7.4, there exists a finite-dimensional linear subspace U of A0(S ) such that, for
every polynomial f ∈ R[x] with f |S ≥ 0 and deg( f ) ≤ d, the function f |S is a sum
of squares of elements of U.

By Theorem 4.5.7, every definable function h : S → R is Nash on some open
dense semialgebraic subset of the interior of S . Hence there is an open non-empty
subset W of S such that all members of U are Nash on W. Choose a point u ∈ W,
and let p ∈ R[x1, . . . , xn] be a psd form of degree 6 (or 4, if n ≥ 4) that is not sos,
for example the Motzkin form or the Choi-Lam form (Examples 2.2.10). Since the
polynomial f := p(x1 − u1, . . . , xn − un) is psd on Rn and has degree deg( f ) ≤ d,
its restriction to S is a sum of squares of functions in U. Since every element of U
is Nash on a neighborhood of u, this implies that the Taylor series τu( f ) ∈ Ôu is a
sum of squares in Ôu. In particular, the leading form of τu( f ) is a sum of squares
of polynomials (cf. Example 6.1.12). Contradiction, since this leading form is f
itself. �

Using (n, d) = (3, 6), we get examples of convex non-shadows of dimension
83 =

(
9
3

)
− 1. Using (n, d) = (4, 4) gives examples of dimension 69 =

(
8
4

)
− 1.

These examples are closed convex hulls of sets of dimension at least three. We’ll
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now refine our approach and construct examples of smaller dimensions, and also
examples that are convex hulls of two-dimensional sets.

8.7.15 Let R ⊇ R be a fixed extension of real closed fields, and let B ⊆ R be the
canonical valuation ring of R, i.e. the convex hull of R in R. Let b 7→ b denote the
residue map B→ B/mB = R. If A is an R-algebra, write AR := A⊗R and AB := A⊗B
(tensor product over R), and note that AB is a subring of AR. The homomorphism
AB → A, f ⊗ b 7→ b · f will be called reduction modulo mB.

Recall that a ring A is real reduced (Definition 3.2.17) if
∑r

i=1 a2
i = 0 and

a1, . . . , ar ∈ A implies a1 = · · · = ar = 0.

8.7.16 Lemma. Let A be an R-algebra that is real reduced. If f1, . . . , fm ∈ AR are
such that f :=

∑
i f 2

i lies in AB, it follows that fi ∈ AB for all i.

Proof. There exist finitely many linearly independent elements g1, . . . , gr ∈ A such
that each fi can be written (uniquely) as fi =

∑r
j=1 ci jg j with ci j ∈ R. We have to

show ci j ∈ B for all i, j. Assume this is false, then c := maxi, j |ci j| doesn’t lie in B.
The element hi = 1

c fi lies in AB for each i, and 1
c2 f =

∑m
i=1 h2

i has coefficients in mB.

Reducing both sides modulo mB gives the identity 0 =
∑m

i=1 hi
2

in A. But hi , 0 for
at least one index i, contradicting the assumption that A is real reduced. �

Here is the key observation for the refinement:

8.7.17 Proposition. Let f ∈ R[t, x] = R[t, x1, . . . , xn] be homogeneous of even de-
gree d in (t, x), and assume that f is not a sum of squares in R[t, x]. If ε > 0 is
infinitesimal in B, the polynomial f (ε, x) ∈ B[x] is not sos in B[x]/〈x〉d+1B[x].

Proof. Here 〈x〉d+1 := 〈x1, . . . , xn〉
d+1, the (d + 1)-st ideal power of the ideal gen-

erated by x1, . . . , xn. Recall that ε infinitesimal means ε ∈ mB. Assume we have an
identity

f (ε, x) + g(x) =
∑

j

p j(x)2, (8.37)

where g(x) ∈ 〈x〉d+1B[x] and p j(x) ∈ B[x] for all j. Let the polynomial g1(x) ∈ B[x]
be defined by g1(x) = ε−(d+1)g(εx). Replacing x by εx in (8.37) and dividing by εd,
we get

f (1, x) + εg1(x) =
∑

j

ε−d p j(εx)2. (8.38)

By Lemma 8.7.16, the polynomials q j(x) = ε−d/2 p j(εx) ∈ R[x] have coefficients
in B. So we may reduce (8.38) modulo mB, thereby concluding that f (1, x) is a sum
of squares in R[x]. Since deg( f ) = d is even, this implies that f (t, x) is sos in R[t, x]
(Lemma 2.4.4), contradicting the hypothesis. �

Using Proposition 8.7.17, we get the following refined version of 8.7.14:

8.7.18 Theorem. Let p(t, x) ∈ R[t, x] = R[t, x1, . . . , xn] be a psd form that is not sos,
and let L ⊆ R[x] be a subspace with dim(L) = m < ∞ such that p(c, x + u) ∈ R + L
for all c ∈ R and u ∈ Rn. Whenever S ⊆ Rn is a semialgebraic set with non-empty
interior, the closed convex hull of ϕL(S ) in Rm fails to be a spectrahedral shadow.
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Proof. Assume false. As in the proof of Theorem 8.7.14, we use Corollary 8.7.11
to find an open non-empty semialgebraic subset W of S and a subspace U ⊆ N(W)
with dim(U) < ∞, such that f |W ∈ ΣU2 for every f ∈ R + L with f |W ≥ 0. Let
R ⊇ R be a proper real closed field extension, let B ⊆ R be the convex hull of R in
R as in 8.7.15, and choose an infinitesimal ε > 0 in R. For every f ∈ R + LR ⊆ R[x]
which is non-negative on WR ⊆ Rn, the restriction of f to WR is a sum of squares of
elements from UR = U ⊗ R, by Tarski’s transfer principle.

Let d = deg(p), and note that d is even since p is psd. Fix u ∈ W ⊆ Rn. The
polynomial

f = p
(
ε, x1 − u1, . . . , xn − un

)
∈ R[x]

lies in R + LR, in fact in B + LB, and is psd on all of Rn. So f |W ∈ Σ(UR)2. Taking
formal Taylor expansions at u, we see that f is a sum of squares in the ring Ôu ⊗ R,
where Ôu = R[[x − u]] as before. (Caution: R[[y]] ⊗ R is a proper subring of R[[y]]!)
The ring Ôu is clearly real reduced, so applying Lemma 8.7.16 we conclude that f
is a sum of squares even in the subring Ôu ⊗ B of Ôu ⊗ R. In particular, f is sos in
Ôu⊗B modulo the ideal 〈x−u〉d+1, which means that f is sos in B[x]/〈x−u〉d+1B[x].
Now we have a contradiction to Proposition 8.7.17. �

8.7.19 Remark. In Theorem 8.7.18, let L be spanned by all non-constant monomi-
als of degree at most d, where n = 2 and d ≥ 6, or n ≥ 3 and d ≥ 4 (corresponding
to the cases when Pn,≤d , Σn,≤d). For p(t, x) we can take the Motzkin form (if
n = 2) or the Choi-Lam form (if n ≥ 3). Then by 8.7.18, if S ⊆ Rn is semialge-
braic with int(S ) , ∅, the closed convex hull of ϕn,d(S ) in R(n+d

n )−1 is not a shadow.
For (n, d) = (2, 6) and (3, 4), this is a convex set of dimension 27 =

(
8
2

)
− 1 and

34 =
(

7
3

)
− 1, respectively. These dimensions are already much smaller than the

dimensions obtained from Theorem 8.7.14. Moreover, we have the following inter-
esting consequence:

8.7.20 Theorem. Let Pn,2d ⊆ R[x1, . . . , xn]2d be the cone of psd n-ary forms of de-
gree d. Then Pn,2d is a spectrahedral shadow if and only if Pn,2d = Σn,2d, i.e., if and
only if n ≤ 2 or 2d = 2 or (n, 2d) = (3, 4).

Proof. Since Σn,2d is always a spectrahedral shadow (Proposition 8.3.14), the “if”
part is clear. Conversely let (n, 2d) be such that Σn,2d , Pn,2d. Under the linear
(dehomogenization) isomorphism

R[x1, . . . , xn]2d
∼
→ R[x1, . . . , xn−1]≤2d, f (x1, . . . , xn) 7→ f (x1, . . . , xn−1, 1),

Pn,2d is mapped onto Pn−1,≤2d (Lemma 2.4.4). On the other hand, Pn−1,≤2d is
identified with the cone of linear (inhomogeneous) polynomials that are psd on
ϕn−1,2d(Rn−1) ⊆ R(n+2d−1

n−1 )−1. By 8.7.19 (and Lemma 8.7.2), this cone is not a spec-
trahedral shadow. Therefore Pn,2d isn’t one either. �

8.7.21 Remarks.
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1. Let g = 1 − x2 − y2 ∈ R[x, y] and S = S(g) ⊆ R2, the unit disk. By The-
orem 6.5.22, the preordering PO(g) in R[x, y] contains every polynomial that is
non-negative on the disk. On the other hand, for L ⊆ R[x, y] sufficiently large (e.g.
L = R[x, y]≤6), the convex hull of ϕL(S ) in Rdim(L) fails to be a spectrahedral shadow
(Remark 8.7.19). What goes wrong in the conditions of 8.7.3 is uniformity: Al-
though it is true for suitable φ : X → A2 that φ∗(L ∩ P(S )) consists of sums of
squares in R[X] (namely, when

√
g gets adjoined), there never exists a subspace

U ⊆ R[X] of finite dimension with φ∗(L ∩ P(S )) ⊆ ΣU2.
2. Refining the arguments, one can further improve on the dimension of convex

semialgebraic sets that fail to be spectrahedral shadows. For a construction that leads
to examples of dimension 12, see Exercises 8.7.2 and 8.7.3. Using a more sophis-
ticated argument, an example of dimension 11 can be constructed (Exercise 8.7.4).
That’s it at the time of writing these lines (2024), no examples of smaller dimension
are currently known.

3. For every d ≥ 2, we have seen counter-examples to the Helton–Nie conjecture
that are convex hulls of d-dimensional sets. For d = 1, no such counter-examples
exist. Indeed, the closed convex hull of any semialgebraic set S ⊆ Rn of dimension
one is a spectrahedral shadow. In the plane R2, even the full Helton–Nie conjecture
is true: Every convex semialgebraic subset of R2 (closed or not) is a spectrahedral
shadow. These results are proven in [186]. For 3 ≤ d ≤ 10 there remains an embar-
rassing gap: It is unknown whether there exists any convex semialgebraic set in Rd

that is not a spectrahedral shadow.
It also seems not to be known whether a counterexample to the Helton–Nie con-

jecture exists that has smooth boundary.
4. A different approach was taken in [28]. If E ⊆ Zn

+ is a finite set of multi-
indices, let P+(E) denote the cone of all psd polynomials f ∈ R[x] = R[x1, . . . , xn]
with supp( f ) ⊆ E. The authors prove that P+(E) is a spectrahedral shadow if, and
only if, there exists an integer d ≥ 1 such that, for every f ∈ P+(E), the polynomial
f (xd

1, . . . , x
d
n) is a sum of squares of polynomials. Using this criterion, they are able

to show that the cone

Cn = {A ∈ Sn : x>Ax ≥ 0 for every Rn
+}

of copositive matrices is not a spectrahedral shadow for n ≥ 5. Whether or not Cn is
a spectrahedral shadow had been a well-known open problem before. (For n ≤ 4, it
has long been known that Cn is a spectrahedral shadow.)

5. Without proof we remark that there exists yet another, and quite different, char-
acterization of spectrahedral shadows, as follows. If ξ = (ξ1, . . . , ξn) ∈ Rn where R is
a real closed overfield of R, and if f = a0 +

∑n
i=1 aixi ∈ R[x] is a linear polynomial,

let the “tensor evaluation” of f at ξ be the element

f ⊗(ξ) = a0 ⊗ 1 +

n∑
i=1

ai ⊗ ξi
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in the ring R ⊗ R := R ⊗R R. Let S ⊆ Rn be a semialgebraic set, let K ⊆ Rn be its
closed convex hull. Then, for every ξ ∈ SR and every linear polynomial f ∈ R[x] that
is non-negative on SR, the element f ⊗(ξ) is psd in R⊗R (i.e., maps to a non-negative
element for every ring homomorphism R⊗ R→ R′ into a real closed field R′). With
these notations, the following theorem holds [188]: The set K is a spectrahedral
shadow if, and only if, f ⊗(ξ) is a sum of squares in the ring R ⊗ R, for all choices of
R, ξ and f .

Exercises

8.7.1 Show that the closed convex hull of {(s2t, st2, st) : s, t ≥ 0} in R3 is a spectrahedral shadow.
(Hint: Use Exercise 2.4.3)

8.7.2 Let f ∈ R[t, x] = R[t, x1, . . . , xn] be a polynomial in n + 1 variables, and write f in the form

f (t, x) =
∑
i≥0

ti fi(x)

with polynomials fi ∈ R[x] (i ≥ 0). Let L ⊆ R[x] be the linear subspace spanned by all
iterated partial derivatives of f0, f1, . . . with respect to the x-variables:

L = span
{
∂α fi(x)
∂xα

: i ≥ 0, α ∈ Zn
+

}
Show that L contains f (c, x + u) for every c ∈ R and u ∈ Rn, and that L is the smallest
subspace of R[x] with this property.

8.7.3 Use Theorem 8.7.18 in combination with Exercise 8.7.2 to find a polynomial map ϕ : R2 →

R12 such that the closed convex hull of ϕ(S ) in R12 fails to be a spectrahedral shadow,
whenever S ⊆ R2 is a semialgebraic set with non-empty interior. (Hint: Use the Motzkin
form.)

8.7.4 In this exercise we construct convex semialgebraic sets of dimension 11 that are not spec-
trahedral shadows. For this consider the polynomial

p = p(t, x, y) = t6 + t5 x + (y2 − x3)2

in R[t, x, y].

(a) Show that p(t, x, y) > 0 for every (t, x, y) ∈ R3 with t > 0.
(b) Calculate a basis for the linear span L1 of {∂i

x∂
j
y p : i, j ≥ 0}, and conclude that dim(L1) =

12. (Here ∂x = ∂/∂x, ∂y = ∂/∂y)

Let L ⊆ L1 be of dimension 11 with L1 = R + L, and let S ⊆ R2 be a semialgebraic set with
non-empty interior. Prove that the closed convex hull of ϕL(S ) in R11 is not a spectrahedral
shadow, following the arguments in the proof of Theorem 8.7.18 and observing Exercise
8.7.2. For the key step, do the following:

(c) Let R ⊇ R be a proper extension of real closed fields, let B denote the convex hull of
R in R, and let ε ∈ mB with ε > 0. Show that p(ε, x, y) is not a sum of squares in
R[[x, y]] ⊗ B, by reducing modulo the ideal generated by y2 − x3.
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8.8 Notes

The first use of the term spectrahedron seems to be in [163], where the faces of
spectrahedra are determined. Proposition 8.3.7 is taken from [146]. The Lax con-
jecture was raised in 1958 by Peter Lax [126]. Helton and Vinnikov’s proof of the
conjecture is in [89], and Hanselka’s algebraic proof appeared in [81]. An excellent
and accessible source for more information on hyperbolic forms is the recent book
[144].

The moment relaxation method appears in Lasserre [121] and Parrilo [148] for
the first time. Meanwhile hundreds of papers (and several books) have been pub-
lished in which various aspects are studied. For comprehensive introductions the
reader may consult [122] or [90]. Laurent [124] gives an extensive overview which
also surveys some of the foundations from real algebraic geometry.

The results in Section 8.6 are taken from Helton and Nie [88], [87]. Lemma
8.6.23 is from [112]. The Helton–Nie conjecture is stated in [87]. The question for
a characterization of the class of spectrahedral shadows goes back to Nemirovski
[142]. The disproof of the conjecture, together with the counter-examples presented
here, is due to Scheiderer [187].



Appendix A:
Commutative Algebra and Algebraic Geometry

The purpose of this appendix is to provide quick access to definitions, notations and
basic facts from general topology, commutative algebra and algebraic geometry, as
far as they are used in the main text. As a rule, motivational remarks are rarely made
here and proofs are almost never given, since there exists ample references in the
literature (see below for some suggestions).

A.1 Topological spaces

A.1.1 For ease of reference we fix some notation from general point set topology,
and recall a few basic concepts. Let X be a topological space. If Y is a subset of
X, the closure (or interior, or boundary) of Y in X is denoted Y (or int(Y) or ∂Y ,
respectively). The subset Y is locally closed in X if it is relatively open in its closure,
or equivalently, if Y = U ∩ Z with U ⊆ X open and Z ⊆ X closed. We also recall
that a map f : X → Y between topological spaces is open if f (U) is an open set in Y
for every open subset U of X. Similarly, f is closed if f (A) is closed in Y for every
closed subset A of X.

A.1.2 The space X has property T0 (resp. T1) if, for any x , y in X, there is an
open set U ⊆ X with |U ∩ {x, y}| = 1 (resp., with U ∩ {x, y} = {x}). The T2 (alias
Hausdorff ) property requires that for x , y there always exist open neighborhoods
U of x and V of y with U ∩ V = ∅. The space X is quasi-compact if every covering
of X by open sets has a finite subcovering. If, in addition, X is Hausdorff, then X
is said to be compact. Tikhonov’s theorem states that an arbitrary direct product of
compact topological spaces is compact.

A.1.3 The space X is connected if X cannot be written as a disjoint union of two
non-empty open subsets. X is irreducible if X is non-empty and cannot be written
as a union of two proper closed subsets. Connected or irreducible components of
X are defined to be the maximal connected or maximal irreducible subsets of X,
respectively. Every space is the disjoint union of its connected components, and is

351
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the union of its irreducible components. The space X is totally disconnected if every
singleton {x} (x ∈ X) is a connected component of X.

A Boolean space is a Hausdorff space that is compact and totally disconnected. In
such a space, every open subset is a union of compact open subsets, or equivalently,
every closed subset is an intersection of compact open sets.

A.1.4 The Krull (or combinatorial) dimension of a topological space X, denoted
dim(X), is the supremum of all lengths d of chains Y0 ( Y1 ( · · · ( Yd of irreducible
closed subsets Yi of X (proper inclusions). The empty space has dim(∅) = −1. Note
that this definition is not suitable for all topological spaces (for example, every non-
empty Hausdorff space has Krull dimension 0).

A.2 General rings

As a general reference for basic commutative algebra, the old book [7] by Atiyah–
Macdonald is still an excellent choice. Other very good options with a more ad-
vanced scope are the books by Matsumura [140], Eisenbud [62] or Bruns–Herzog
[35], for example.

All rings in this text are assumed to be commutative and unital, i.e. to have a mul-
tiplicative unit 1 (with 1 = 0 allowed), except when explicitly mentioned otherwise.
Subrings of a ring A are required to contain the unit of A. All ring homomorphisms
send 1 to 1. The group of units (elements which have a multiplicative inverse) is
denoted A∗. In the following let A always be a ring.

A.2.1 The ideal of A generated by a set M ⊆ A is denoted 〈M〉, or 〈 f1, . . . , fr〉
if M = { f1, . . . , fr}. The radical of the ideal I ⊆ A is

√
I = {a ∈ A : ∃ n ≥ 1

an ∈ I}, and the ideal I is said to be a radical ideal if I =
√

I. The nilradical of A
is Nil(A) =

√
{0}. This is also the intersection of all prime ideals of A. The ring A is

reduced if Nil(A) = {0}. The residue field of a prime ideal p of A is written κ(p).
If S ⊆ A is a multiplicative set (always assumed to contain 1) then AS = { as : a ∈

A, s ∈ S } denotes the ring of fractions with denominators in S . If p is a prime ideal
of A, the localization of A at p is Ap := AS where S = A r p.

A.2.2 A is an integral domain, or briefly a domain, if A , {0}, and if ab = 0 implies
a = 0 or b = 0, for a, b ∈ A. The field of fractions of an integral domain A is
denoted qf(A). A prime element in a domain A is an element p , 0 in A such that
the principal ideal 〈p〉 is a prime ideal in A. The domain A is a unique factorization
domain, abbreviated ufd, if every non-unit a , 0 in A is a product of finitely many
prime elements. If A is a ufd, this decomposition is unique up to permutation of the
factors and up to multiplying them with units. For every ufd A, the polynomial ring
A[x] is a ufd as well (Gauss’s lemma).

A.2.3 An A-algebra is a ring homomorphism ϕ : A → B. Mentioning of ϕ will of-
ten be suppressed if ϕ is either clear from the context or not explicitly important.
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Accordingly, it is customary for a ∈ A to write just a instead of ϕ(a). Homomor-
phisms of A-algebras are defined in the obvious way. The A-algebra B is finitely
generated (or of finite type) if B is generated as a ring by A together with finitely
many elements. The A-algebra B is finite if B is finitely generated as an A-module.

The ring A is Noetherian if every ideal of A can be generated by finitely many
elements. Hilbert’s basis theorem states that every finitely generated algebra over a
Noetherian ring is again Noetherian. It A is a Noetherian ring then so is AS for every
multiplicative set S in A.

The Zariski spectrum Spec(A) of A is the set of all prime ideals of A, equipped
with the Zariski topology. Every ring homomorphism ϕ : A→ B induces a continu-
ous map ϕ∗ : Spec(B)→ Spec(A) via q 7→ ϕ−1(q). The dimension dim(A) of the ring
A is defined to be the Krull dimension (A.1.4) of the topological space Spec(A). So
dim(A) is the supremum of all lengths d of chains of prime ideals p0 ( p1 ( · · · ( pd

(with proper inclusions) in A. The nullring A = {0} has dim(A) = −1.

A.2.4 Let ϕ : A → B be a ring homomorphism. An element b ∈ B is integral over
A if there exists a monic polynomial p ∈ A[t] with p(b) = 0. The A-algebra B, or
the homomorphism ϕ, is said to be integral if every b ∈ B is integral over A. When
B is an integral A-algebra, going-up holds: Given p ∈ Spec(A) and q′ ∈ Spec(B)
with ϕ−1(q′) ⊆ p, there exists q ∈ Spec(B) with q′ ⊆ q and ϕ−1(q) = p. In particular,
the map ϕ∗ : Spec(B)→ Spec(A) sends closed sets to closed sets. If ϕ is in addition
injective then dim(A) = dim(B).

If A→ B is any A-algebra, the (relative) integral closure of A in B is {b ∈ B : b is
integral over A}, and is a subring of B. A domain A is integrally closed if it coincides
with its integral closure in qf(A).

A.2.5 Let A be a Noetherian ring. The height of a prime ideal p ∈ Spec(A) is ht(p) =

dim(Ap). The height of an arbitrary ideal I ⊆ A is ht(I) = minp ht(p), minimum over
all prime ideals p ⊇ I of A. Every ideal I satisfies ht(I) + dim(A/I) ≤ dim(A),
with equality failing in general. Krull’s principal ideal theorem states, for any ideal
I = 〈a1, . . . , an〉 generated by n elements, that ht(p) ≤ n holds for every minimal
prime ideal p ⊇ I.

A.3 Affine algebras

A.3.1 Let k be a field. Finitely generated k-algebras are also called affine k-
algebras. The single most important general result for affine algebras is Hilbert’s
nullstellensatz. In its algebraic version, it asserts that if a field extension K/k is
finitely generated as a k-algebra, then K/k is finite algebraic. In A.6.3 below we
recall geometric formulations.

A.3.2 Let A be a k-algebra. Elements a1, . . . , an of A are k-algebraically indepen-
dent if the only polynomial p ∈ k[x1, . . . , xn] with p(a1, . . . , an) = 0 is the zero
polynomial. An arbitrary family of elements of A is k-algebraically independent if
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every finite subfamily is. The transcendence degree of A over k, denoted trdegk(A),
is the maximal cardinality of a k-algebraically independent family in A. We do not
distinguish between different infinite cardinalities and regard trdegk(A) as a non-
negative integer or∞. If A = K is a field extension of k, the maximal k-algebraically
independent families in K are called transcendence bases for K/k. Any two tran-
scendence bases of K/k have the same cardinality trdegk(K).

A.3.3 Let A be an affine k-algebra. Every chain of prime ideals of A that cannot
be extended to a longer sequence has the same length, which is dim(A). When A is
a domain, every ideal I satisfies ht(I) + dim(A/I) = dim(A). Moreover, dim(A) =

trdegk(K) holds in this case, with K = qf(A).
Noether normalization, in its most basic version, says that every affine k-algebra

A is a finite extension of a polynomial ring: There exist algebraically independent
elements x1, . . . , xn ∈ A such that the ring extension k[x1, . . . , xn] ⊆ A is finite. Here
necessarily n = dim(A).

A.3.4 If A, B are affine k-algebras then so is A ⊗k B, and dim(A ⊗k B) = dim(A) +

dim(B). If K/k is a field extension then A ⊗k K is an affine K-algebra, of dimension
dim(A ⊗k K) = dim(A).

A.4 Local rings

A.4.1 A ring A is local if it has a unique maximal ideal m. The field k = A/m is
called the residue field of the local ring A. We often use a phrase like “let (A,m) [or
(A,m, k)] be a local ring”. It is meant to indicate that A is a local ring with maximal
ideal m [and residue field k]. The ring A is semilocal if A , {0} and A has only
finitely many maximal ideals.

A.4.2 An important basic tool for working with local rings is the Nakayama
Lemma. In its general form, the lemma asserts that if A is a ring, I ⊆ A is an
ideal and M is a finitely generated A-module with M = IM, there exists a ∈ I
with (1 − a)M = 0. A frequently used consequence is this: Let (A,m, k) be a local
ring and M a finitely generated A-module, and let M = M ⊗A k = M/mM, a k-
vector space of finite dimension. If x1, . . . , xn ∈ M are such that their residue classes
x1, . . . , xn generate the k-vector space M, then x1, . . . , xn generate the A-module M.

A.4.3 Let A be any (base) ring. The ring of formal power series over A in the
variable x is denoted A[[x]]. It consists of all formal infinite sums f =

∑∞
i=0 aixi

with ai ∈ A (i ≥ 0), with natural definition of addition and multiplication. One
writes f (0) = a0. Given any g ∈ A[[x]] with g(0) = 0, the series 1 − g has an
inverse, given by the geometric series (1 − g)−1 =

∑∞
i=0 gi. Therefore, the power

series f is a unit in A[[x]] if, and only if, f (0) is a unit in A. In particular, if A
is a local ring with maximal ideal m, the power series ring A[[x]] is again local,
with maximal ideal generated by m and x. Iterating the construction, one writes
A[[x1, . . . , xn]] := A[[x1, . . . , xn−1]] [[xn]] for any n ≥ 1.
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When A = k is a field, k[[x]] is a discrete valuation ring. Its field of fractions is
the field k((x)) of formal Laurent series. The elements of k((x)) are the formal sums
f =

∑∞
i≥m aixi where m ∈ Z and ai ∈ k.

A.4.4 Let (A,m, k) be a Noetherian local ring. The sequence of natural ring ho-
momorphisms A/m

π1
←− A/m2 π2

←− · · · ← A/mν
πν
←− · · · forms an inverse system

whose inverse (projective) limit is Â, the completion of A. The ring Â therefore con-
sists of all sequences (bν)ν≥1 in

∏
ν≥1 A/mν that satisfy πν(bν+1) = bν for all ν ≥ 1.

The ring Â is again local, its maximal ideal m̂ being the kernel of the natural homo-
morphism Â → A/m = k. The natural homomorphisms Â/m̂ν → A/mν (ν ≥ 1) are
isomorphisms, and in particular, the residue fields of A and Â coincide. The natural
homomorphism i : A→ Â is injective, and A is complete if i is an isomorphism. The
completion Â is known to be Noetherian as well, and both rings A and Â have the
same dimension: dim(A) = dim(Â).

A.4.5 Let (A,m, k) be a Noetherian local ring of dimension d. Then dimk(m/m2) ≥
d holds, and both are finite. The local ring A is regular if equality holds, which
means that the maximal ideal m can be generated by d elements. In this case, a reg-
ular system of parameters of A is a sequence x1, . . . , xd (of length d) that generates
the ideal m. By A.4.2, it is equivalent that the residue classes xi + m2 (i = 1, . . . , d)
form a basis of the k-vector space m/m2. If x1, . . . , xd is a regular system of param-
eters, then for any m ≤ d the ideal p = 〈x1, . . . , xm〉 of A is prime, and the quotient
ring A/p is regular local of dimension d − m.

Every regular local ring is a unique factorization domain (Auslander–Buchsbaum
theorem). In particular, regular local rings are integrally closed domains. The local-
ization of a regular local ring at any prime ideal is again a regular local ring. This is a
consequence of the homological characterization of regular local rings (Auslander–
Buchsbaum–Serre theorem). In the case of local rings of algebraic varieties, an eas-
ier proof is available via the Jacobian criterion for regularity (A.6.17).

A Noetherian ring A, not necessarily local, is said to be regular if the localization
Ap at every prime ideal p is a regular local ring. By the Auslander–Buchsbaum–Serre
theorem, it suffices that Am is regular for every maximal ideal m of A.

A.4.6 Let A be a Noetherian local ring. If A is regular then the same is true for the
completion Â of A, and vice versa. If (A,m, k) is a complete regular local ring, and
if A has equal characteristic (meaning that char(K) = char(k) for K = qf(A)), it
is known that A � k[[x1, . . . , xd]] with d = dim(A). This is a particular case of the
Cohen structure theorem.

A.4.7 Let (A,m, k) be a local Noetherian ring. The graded ring associated with
A is gr(A) =

⊕
ν≥0m

ν/mν+1 where m0 := A. This is a finitely generated graded
k-algebra of dimension dim gr(A) = dim(A). The natural homomorphism A → Â
induces an isomorphism gr(A)

∼
→ gr(Â) of the associated graded rings. The local

ring A is regular of dimension d if, and only if, gr(A) is a polynomial ring over
k in d variables. In fact, if a1, . . . , ad is a regular parameter sequence in A, the k-
homomorphism k[x1, . . . , xd] → gr(A) defined by xi 7→ ai + m2 (i = 1, . . . , d) is an
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isomorphism of graded k-algebras. For regular A, the (vanishing) order of f ∈ A
is ω( f ) = sup{ν ≥ 0: f ∈ mν}. The map ω extends to a discrete valuation of the
quotient field qf(A) of A. In particular, ω( f ) < ∞ if f , 0. The leading form of
f , 0 is the coset L( f ) := f +mn+1 in grn(A), where n = ω( f ).

A.4.8 A local ring (A,m, k) is Henselian if, for every monic polynomial f ∈ A[t]
and every a ∈ A whose residue class a in A/m = k is a simple root of f ∈ k[t], there
exists b ∈ A with f (b) = 0 and b ≡ a (mod m). For example, if A is Henselian and
f ∈ m, and if n ≥ 1 is an integer that is relatively prime to char(k), there is a unique
element g ∈ mwith (1+g)n = f . Every complete Noetherian local ring is Henselian.

A.4.9 In Section 6.4 we are using some standard theorems for rings of formal power
series. Let k be a field and n ≥ 1, let x = (x1, . . . , xn) and x′ = (x1, . . . , xn−1). A
formal power series g = g(x) ∈ k[[x]] is a Weierstrass polynomial (of order m ≥ 0)
with respect to xn if

g(x) = xm
n +

m−1∑
i=0

ai(x′)xi
n

where ai(x′) ∈ k[[x′]] are power series with ai(0, . . . , 0) = 0 for 0 ≤ i ≤ m − 1. For
such g, the natural ring homomorphism k[[x′]][xn]/〈g〉 → k[[x]]/〈g〉 is an isomor-
phism. This is a consequence of the Weierstrass division theorem (that we omit). In
particular, k[[x]]/〈g〉 is a finite k[[x′]]-algebra then. The Weierstrass preparation the-
orem states that every f ∈ k[[x]], after a linear change of coordinates, has the form
f = ug with u, g ∈ k[[x]] where u is a unit and g is a Weierstrass polynomial with
respect to xn. (These are just basic versions. More precise statements hold, and they
hold in rings of convergent power series as well (over R or C).)

A.4.10 Let k be an algebraically closed field of characteristic zero. Then the field

k((x1/∞)) :=
⋃
n≥1

k((x1/n))

is again algebraically closed. It is called the field of formal Puiseux series.

A.5 Valuation rings

A.5.1 Let K be a field. A subring B of K is a valuation ring of K if, for every
a ∈ K∗, (at least) one of a ∈ B or a−1 ∈ B holds. Clearly this implies K = qf(B). An
integral domain B is a valuation ring if it is a valuation ring of its quotient field. If
B is a valuation ring of K then the same is true for every overring of B in K. Every
valuation ring B is a local ring, with maximal ideal mB = {0} ∪ {a ∈ B : a , 0,
a−1 < B}. The residue field B/mB of B will usually be denoted kB. Every valuation
ring is integrally closed in its quotient field.
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A.5.2 An ordered abelian group is an abelian group (G,+) together with a total
(linear) ordering ≤ that is compatible with the group structure, i.e. that satisfies
a ≤ b⇒ a + c ≤ b + c for all a, b, c ∈ G. A subgroup H of G is convex2 if 0 < b < a
and a ∈ H, b ∈ G implies b ∈ H. If H is a convex subgroup of G then G/H becomes
an ordered abelian group by the ordering induced from G.

A.5.3 Let B be a valuation ring of K. The (multiplicative) abelian group Γ = K∗/B∗

is called the value group of B. Usually it is written additively. The valuation of K
associated with B is the map v : K → Γ ∪ {∞} defined by v(a) = aB∗ (a , 0) and
v(0) = ∞. Here∞ is an extra symbol not in Γ that satisfies α +∞ = ∞ + α = ∞ for
every α ∈ Γ. The abelian group Γ is ordered by v(a) ≤ v(b)⇔ ba−1 ∈ B (a, b ∈ K∗).
Extend this ordering from the group Γ to the set Γ∪{∞} by defining α ≤ ∞ for every
α ∈ Γ, then v(ab) = v(a) + v(b) and v(a + b) ≥ min{v(a), v(b)} hold for all a, b ∈ K.
The last inequality is an equality if v(a) , v(b). Note that B = {x ∈ K : v(x) ≥ 0} and
m = {x ∈ K : v(x) > 0}.

Conversely, a (Krull) valuation of a field K is a map v : K → Γ∪ {∞}, where Γ is
an ordered abelian group and∞ < Γ is an extra symbol as above, such that v(1) = 0,
v(ab) = v(a) + v(b) and v(a + b) ≥ min{v(a), v(b)} hold for all a, b ∈ K. For such
v, the set Ov := {a ∈ K : v(a) ≥ 0} is a valuation ring of K, called the valuation ring
associated with v. If v was surjective then v coincides with the valuation associated
with the ring Ov, up to an order isomorphism of the value group. The residue field
of Ov is also called the residue field of the valuation v.

A discrete valuation ring is a valuation ring whose value group is infinite cyclic.
At the same time, discrete valuation rings are precisely the regular local rings of
dimension one.

A.5.4 Let A, B be local subrings of a field K. Then A dominates B if B ⊆ A and
mB ⊆ mA (hence mB = B ∩ mA) hold. Note that this implies a natural embedding
kB → kA of the residue fields. Domination is a (partial) order relation on the set of
all local subrings of K. The domination-maximal local subrings of K are exactly the
valuation rings of K.

A.5.5 Proposition. Given a regular local ring (A,m) with field of fractions K, there
exists a valuation ring B of K that dominates A, and such that the induced embed-
ding kA → kB of the residue fields is an isomorphism.

Proof. We include the proof since this important result is not standardly included in
textbooks on commutative algebra. Induction on d = dim(A). If d = 0 then A = K,
if d = 1 then A is a discrete valuation ring. In both cases we may take B = A. Let
d ≥ 2 and choose an element a ∈ m r m2. Then p := Aa is a prime ideal of A, and
the local ring A/p is regular of dimension d − 1. The localized ring Ap is a domain
of dimension one whose maximal ideal pAp = aAp is principal. Therefore Ap is a
discrete valuation ring, with residue field F := Ap/pAp = qf(A/p).

Let π : Ap → F denote the residue map. Since A/p is a regular local subring of F
of dimension d − 1, the inductive hypothesis gives a valuation subring C of F that

2 some authors (e.g. Bourbaki) use the term isolated subgroup for convex subgroup
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dominates A/p and has the same residue field. Then B := {y ∈ Ap : π(y) ∈ C} is a
valuation ring of K. Indeed, if x ∈ K∗ with a < B, two cases are possible. Either
x < Ap, in which case x−1 lies in the maximal ideal of Ap, and so π(x−1) = 0 and
x−1 ∈ B. Or else x ∈ Ap but π(x) < C, in which case x is a unit of Ap and π(x−1) ∈ C,
and so again x−1 ∈ B.

It is clear that A ⊆ B and A∩mB ⊆ mA, and that the induced map A/mA → B/mB

is an isomorphism. Therefore the valuation ring B has the desired properties. �

A.6 Algebraic geometry

In order to keep the requirements for this course as basic as reasonably possible, we
do not assume familiarity with the language of schemes. The view point of schemes
is nowhere truly necessary in this book, although its use would have simplified some
of the exposition. Instead, a “naive” understanding of varieties is sufficient, and all
varieties that occur may be assumed to be quasi-projective. For the reader who has
not (yet) learned about schemes so far, this means that he or she can read the entire
book on the basis of the definitions outlined below, and may assume throughout that
“k-variety” means “quasi-projective k-variety”. On the other hand, a reader who is
familiar with the basics of schemes may everywhere understand the term “k-variety”
as reduced and separated k-scheme of finite type, in the sense of Grothendieck. Then
everything will remain true in this more general sense. We point out that, in our use,
the term “variety” does not imply irreducibility.

When we adopt naive language, there is one subtle point that is important: We
need a systematic way for speaking of algebraic varieties over non-closed ground
fields (think of the field k = R of real numbers!). This point of view is missing
in many, if not most introductory books. A notable exception is Kunz’s textbook
[117]. If one is willing to accept the restriction to algebraically closed ground fields,
there exist numerous great choices for a first introduction to algebraic geometry,
ranging from very broad expositions like Cox, Little, O’Shea ([49] and [48]) to texts
that proceed at a much more demanding pace, like Harris [83]. The two volumes
by Shafarevich [198], [197] offer a thorough treatment of algebraic varieties over
algebraically closed fields in the first volume, before they turn to the view point of
schemes in the second.

For more than the first half of this course, familiarity with just the most basic
notions of algebraic geometry is sufficient: Quasi-projective algebraic varieties and
their morphisms, Zariski topology, regular and rational functions, dictionary be-
tween affine varieties and their coordinate rings. Towards the end of Chapter 5, and
more so in the remaining chapters, concepts are required that are slightly more ad-
vanced. This includes tangent spaces, regular and singular points, and others. Below
we review these most important notions and facts in a naive language setup, and fix
the terminology.

Ultimately however, we strongly advise the reader to become friends with the
modern language of schemes. It has become the standard in algebraic geometry for
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a long time. The classic choice for an introduction is still Hartshorne’s textbook
[84]. But meanwhile several excellent alternatives are available as well, for example
[127], [210] or [75].

A.6.1 Let k be an arbitrary (base) field. For the entire discussion we fix an alge-
braically closed field extension E of k. Definitions and facts below are essentially
independent of the choice of E, and for most purposes it suffices to take E = k, an
algebraic closure of k.

For n ≥ 0, affine n-space is defined to be An := En. Similarly, projective n-
space is Pn := (En+1 r {0})/∼, where two points u, v , 0 in En+1 are considered
equivalent (u ∼ v) iff there exists 0 , a ∈ E with au = v. The equivalence class of
u = (u0, . . . , un) in Pn is denoted [u] or (u0 : · · · : un) (homogeneous coordinates).
Note that A0 = P0 is just a point.

Let x = (x1, . . . , xn) be an n-tuple of indeterminates. For p ∈ k[x] let D(p) = {u ∈
An : p(u) , 0}. The k-Zariski topology on An has the sets D(p) (with p ∈ k[x]) as a
basis of open sets. The closed subsets of An are therefore the common zero sets of
families of k-polynomials. Similarly, if p ∈ k[x0, x] is a homogeneous polynomial
in n + 1 variables, put D+(p) = {[u] ∈ Pn : p(u) , 0}. The k-Zariski topology on Pn

has the sets D+(p) (with p homogeneous) as a basis of open sets. The closed subsets
of Pn are the common zero sets of families of homogeneous k-polynomials. We will
always consider An and Pn with the k-Zariski topology.

A.6.2 Recall that a subset of a topological space X is locally closed if it has the form
U ∩ Z with U ⊆ X open and Z ⊆ X closed. A quasi-projective k-variety is a locally
closed subset V of An or Pn, equipped with the relative k-Zariski topology (A.6.1)
and with the sheaf OV of regular functions (see A.6.4 below). The qualifier “quasi-
projective” will be dropped in the sequel since no other varieties are considered
here. If V is a variety, a closed (or open, or locally closed) subvariety of V is a
variety that is a closed (or open, or locally closed, respectively) subset W of V . Note
that, according to our conventions, a variety need not be irreducible.

A.6.3 If P ⊆ k[x] is a set of polynomials, V(P) = {u ∈ An : ∀ p ∈ P p(u) = 0}
denotes the zero set of P. This is a closed subset of An. If X ⊆ An is a set of points
in affine n-space, I(X) = {p ∈ k[x] : ∀ u ∈ X p(u) = 0} denotes the ideal of all
polynomials in k[x] that vanish on X. Hilbert’s nullstellensatz A.3.1 is equivalent to
saying that V(P) = ∅ implies 1 ∈ 〈P〉. More generally, it implies I(V(P)) =

√
〈P〉

for every subset P ⊆ k[x]. Altogether, this means that the operators V and I define
a bijective and inclusion-reversing correspondence between the radical ideals of
k[x] = k[x1, . . . , xn] and the closed k-subvarieties of An.

For projective varieties, the picture is similar. If P ⊆ k[x0, x] is a set of homoge-
neous polynomials, V(P) = {u ∈ Pn : ∀ p ∈ P p(u) = 0} is3 a closed subset of Pn. If
I ⊆ k[x0, x] is a homogeneous ideal one puts V(I) := V(P) ⊆ Pn where P is the set
of homogeneous members of I. Then I 7→ V(I) is a bijective and inclusion-reversing
correspondence between the homogeneous radical ideals I ⊆ k[x0, x] with I , 〈1〉,

3 We use the same symbol V for zero varieties in affine or projective space. Which one is actually
meant should always be clear from the context.
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and the closed k-subvarieties of Pn. The inverse operator sends a subset X ⊆ Pn to
I(X), the ideal of k[x0, x] that is generated by all homogeneous polynomials p that
vanish identically on X.

A.6.4 Next we recall the notion of regular functions on a k-variety. Let V be a lo-
cally closed subset of An. A map f : V → E is a regular function on V if the follow-
ing holds: For every u ∈ V there exist p, q ∈ k[x1, . . . , xn] and an open neighborhood
W of u in V , such that q(w) , 0 and f (w) =

p(w)
q(w) for all w ∈ W. Similarly, if V is a

locally closed subset of Pn, a regular function on V is a map f : V → E that, locally
around every point u ∈ V , has the form f (w) =

p(w)
q(w) where p, q ∈ k[x0, . . . , xn] are

homogeneous polynomials of the same degree, and with q(u) , 0.
In either case, the set of all regular functions on V is a k-algebra, with ring opera-

tions defined pointwise, and is denoted O(V). The structural sheaf OV of a k-variety
V is defined by OV (U) := O(U) for every open subset U of V . Saying that OV is a
sheaf means two things: (1) For any open subsets U′ ⊆ U of V and any f ∈ OV (U),
the restriction f |U′ of f lies in OV (U′); (2) if Ui (i ∈ I) are open subsets of V ,
if U =

⋃
i Ui, and if f : U → E is a map with f |Ui ∈ OV (Ui) for every i, then

f ∈ OV (U).

A.6.5 Let V, W be k-varieties. A morphism (of k-varieties) from V to W is a con-
tinuous map f : V → W with the property that, for every open subset W ′ of W and
every g ∈ OW (W ′), the pull-back f ∗(g) = g ◦ f (which is a map f −1(W ′)→ E) lies in
OV ( f −1(W ′)). This defines the category (Vark) of (quasi-projective) k-varieties, and
in particular, the according notion of isomorphism of k-varieties.

A morphism f : V → W of k-varieties is an open (or closed) immersion if f
induces an isomorphism from V onto an open (or closed, respectively) subvariety
of W.

Since An is isomorphic to an open subset of Pn as a k-variety (for example, to
D+(x0)), every (quasi-projective) k-variety is isomorphic to a locally closed subset
of Pn, for some n.

A.6.6 A k-variety V is irreducible if V , ∅ and V cannot be written as the union of
two proper closed subsets. Otherwise V is reducible. The irreducible components of
V are the maximal closed irreducible subset of V; there are only finitely many, and
V is their union.

Beware that the notion of irreducibility depends strongly on the base field k,
since the k-Zariski topology does. It may very well happen that the k-variety V is
irreducible, but that it becomes reducible when considered as a variety over a larger
field, e.g. over k. For a simple example, the equation x2 + y2 = 0 defines a closed
subvariety V of the affine plane A2 that is irreducible as an R-variety. But seen as a
C-variety, V becomes a union of two proper closed subsets (lines), and therefore V
is reducible. Of course, what is behind this example is the fact that the polynomial
x2 +y2 is irreducible over R but splits over C: x2 +y2 = (x+ iy)(x− iy) with i =

√
−1.

A.6.7 The dimension of V is the maximum length d of a chain V0 ( V1 ( · · · ( Vd

of irreducible closed subsets of V (with proper inclusions). The empty variety
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has dim(∅) = −1. The local dimension of V at a point u ∈ V is dimu(V) =

min{dim(U) : U ⊆ V is an open neighborhood of u in V}. While irreducibility of
V may depend on the base field k, the dimension of V is independent of the base
field.

A.6.8 Let k ⊆ K ⊆ E be an intermediate field. A K-rational point of An is a point
in Kn. A K-rational point of Pn is a point [u] ∈ Pn that can be represented by a tuple
u ∈ Kn+1, u , 0. In general, when V is a locally closed subvariety of An or Pn, a
K-rational point of V is a point in V that is K-rational as a point of An or of Pn,
respectively. The set of K-rational points of V is denoted V(K). Every morphism
f : V → W of k-varieties sends K-rational points to K-rational points.

In the main text, we often consider the condition that a subset M of V(k) be
Zariski dense in the k-variety V . What is meant by this is that M, considered as a
subset of V = V(E), should be dense in V with respect to the k-Zariski topology.

It is essential not to confuse the set of k-rational points of V with the k-variety
V itself. For example, when k = R and V is a closed R-subvariety of An, the set
V(R) ⊆ Rn will be called an (R-) algebraic set in this book, but will never be called
an algebraic R-variety.

A.6.9 A k-variety V is affine if it is isomorphic to a closed subvariety of An, for
some n ≥ 0. For such V one usually writes k[V] := OV (V). The ring k[V], called
the affine coordinate ring of V , is a reduced and finitely generated k-algebra, and
depends functorially on V . Given a morphism f : V → W of affine k-varieties,
the associated (pull-back) homomorphism between the coordinate rings is denoted
f ∗ : k[W] → k[V]. Thus, V 7→ k[V] is a contravariant functor from the category of
affine k-varieties to the category of reduced affine k-algebras.

The coordinate ring k[V] determines the affine k-variety V up to isomorphism.
To recover V from k[V], choose any finite system p1, . . . , pn of generators of
the k-algebra k[V] and let I be the kernel of the homomorphism of k-algebras
k[x1, . . . , xn] → k[V], xi 7→ pi. The zero set V(I) ⊆ An of I is an affine k-variety
that is canonically isomorphic to V . In a similar way one sees, for affine k-varieties
V and W, that every k-homomorphism k[W]→ k[V] between their coordinate rings
has the form f ∗, for a unique morphism f : V → W of the k-varieties. In other words,
the functor V 7→ k[V] is an anti-equivalence from the category of affine k-varieties
to the category of reduced affine k-algebras.

Given an affine variety V , the ideal–subvariety correspondence A.6.3 restricts
to a bijective correspondence between radical ideals of k[V] and closed subsets of
V . We use the notations VV (P) for P ⊆ k[V] (the vanishing set of P in V) and
IV (X) for X ⊆ V (the vanishing ideal of X in k[V]), respectively. Note that, under
this correspondence, the prime ideals of k[V] correspond exactly to the irreducible
closed subsets of V . In particular, dim(V) = dim k[V].

We remark that the K-rational points of an affine k-variety V are in natural bijec-
tion with the set Homk(k[V],K) of k-algebra homomorphisms.

On every k-variety V , the open affine subvarieties U of V form a basis of open
sets on V . Together with quasi-compactness of V , this fact makes it often possible
to reduce proofs from general varieties to the case of affine varieties.
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A.6.10 The k-variety V is projective if it is a closed subvariety of Pn, for some n ≥ 0.
The projective coordinate ring of V is the graded k-algebra k[V] = k[x0, x]/I(V).
We’ll write k[V]d for the graded piece of degree d of k[V], so k[V]d consists of
the elements in k[V] that can be represented by a form of degree d in k[x0, x]. The
correspondence between subvarieties and ideals from A.6.3 restricts to a bijection
between homogeneous radical ideals I , 〈1〉 of k[V] and closed subvarieties Z of V ,
denoted I 7→ VV (I) and Z 7→ IV (Z). Prime ideals properly contained in k[V]+ =⊕

d≥1 k[V]d correspond to irreducible subvarieties of V under this bijection, and
vice versa.

If f ∈ k[x0, x] is a homogeneous polynomial, the complement D+( f ) = PnrV( f )
of the projective hypersurface V( f ) is an affine k-variety. Its affine coordinate ring is
naturally isomorphic to the ring k[x0, x]( f ) of all homogeneous fractions g

f m , meaning
that m ≥ 0 and g ∈ k[x0, x] is homogeneous of degree deg(g) = deg( f m).

Given a closed (projective) subvariety V of Pn, the set V̂ = {v ∈ An+1 r {0} : [v] ∈
V} ∪ {0} is a closed subvariety of An+1, called the affine cone over V . The affine co-
ordinate ring of V̂ is the homogeneous coordinate ring of V , stripped of its grading.

A.6.11 For every n, d ≥ 1, the d-th Veronese embedding vd : Pn → PN is the mor-
phism defined by vd(u) =

(
uα

)
|α|=d for u ∈ Pn (multinomial notation uα = uα0

0 · · · u
αn
n ).

Here N =
(

n+d
d

)
− 1, and coordinates in PN correspond to monomials α ∈ Zn+1

+ of
degree d, in some fixed order. The morphism vd is an isomorphism onto the image
variety Vn,d := vd(Pn), which is called a Veronese variety. Moreover, vd induces an
isomorphism k[Pn] → k[Vn,d] of the homogeneous coordinate rings that is compat-
ible with the gradings and multiplies degrees by d. In particular, hypersurfaces of
degree d in Pn correspond naturally to hyperplane sections of Vn,d.

A.6.12 Direct products of varieties can be constructed as follows. The direct prod-
uct Pm × Pn of two projective spaces is the Segre variety Sm,n. By definition, this is
the projective variety of all rank one matrices of size (m + 1)× (n + 1), considered as
a closed subset of projective space Pmn+m+n. Sending a rank one matrix to its column
span or row span defines a morphism π1 : Sm,n → P

m or π2 : Sm,n → P
n, respectively.

With these morphisms, the Segre variety satisfies the usual universal property for
the direct product Pm × Pn, in the category (Vark) of k-varieties.

To construct the direct product of a general pair of varieties we may assume that
V ⊆ Pm and W ⊆ Pn are locally closed. Then V × W = {u ∈ Pm × Pn : π1(u) ∈ V ,
π2(u) ∈ W}, together with the restrictions of π1 and π2, is a direct product of V and W
in (Vark). For affine varieties, the construction of the direct product simplifies: If
V ⊆ Am and W ⊆ An are closed subvarieties, the product variety V × W is simply
the cartesian product of V and W in Am×An = Am+n. Assuming that the base field k
is perfect, the affine coordinate ring of V×W is the tensor product k[V]⊗k k[W].4 Of
course, the assumption k perfect is harmless in the context of this book since every
field with an ordering has characteristic zero.

For any k-variety V , the diagonal ∆V = {(u, u) : u ∈ V} of V is a closed subva-
riety of V × V . (If one considers varieties more general than quasi-projective ones,

4 If k fails to be perfect, this tensor product need not be reduced.
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this property is not automatic and means that the variety V is separated.) As a con-
sequence, the intersection of any two open affine subsets of V is again (open and)
affine.

A.6.13 Rational functions and maps. Let V, W be k-varieties. A rational map
f : V d W is an equivalence class of morphisms ϕ : U → W with U ⊆ V open
and dense. Here ϕ and ϕ′ : U′ → W are said to be equivalent if both agree on an
open dense subset U′′ of U ∩ U′. The equivalence class of ϕ is denoted [ϕ]. A ra-
tional map V d A1 is also called a rational function on V .

Given a rational map f : V d W, the domain dom( f ) of f is the union of all open
dense sets U ⊆ V for which a representative ϕ : U → W of f exists. There exists a
morphism ϕ0 : dom( f ) → W that represents f , and every other representative of f
is a restriction of ϕ0. Given u ∈ V , one says that f is defined at u if u ∈ dom( f ).

We usually consider rational maps on irreducible varieties only. If V is irre-
ducible, the set of all rational functions on V forms the function field k(V) of V
(with naturally defined sum and product). Let all varieties in the following be irre-
ducible. A rational map f : V d W is dominant if the image set of some (equiva-
lently, any) representative of f is dense in W. Dominant rational maps between ir-
reducible varieties can be composed, and so there is a category (Ratk) of irreducible
k-varieties, with the dominant rational maps as morphisms. The rational dominant
map f : V d W induces an embedding f ∗ : k(W) → k(V) of the function fields,
and the functor V 7→ k(V) defined in this way is an anti-equivalence from (Ratk) to
the category of finitely generated field extensions of k, with k-embeddings as mor-
phisms. The rational map V d W is birational, or a birational equivalence, if it has
a rational inverse, or equivalently, if the induced map k(W) → k(V) between the
function fields is an isomorphism.

An important example of rational maps is given by linear projections in projective
space. If L ⊆ Pn is an m-dimensional linear k-subvariety, linear projection πL : Pn d
Pn−m−1 with centre L is a rational map defined outside of L. Identifying Pn−m−1 with
a fixed linear k-subvariety L′ ⊆ Pn, disjoint to L, the image point πL(ξ) of ξ < L is
the unique point of intersection between L′ and the linear space spanned by L and ξ.

A.6.14 Let V be an irreducible k-variety. If V is affine, the function field of V is
the quotient field of the coordinate ring of V . In other words, a rational function on
V is a quotient of two regular functions on V (with non-zero denominator). If V is
projective, then k(V) is the subfield of qf(k[V]) that consists of all fractions p

q with
p, q homogeneous of the same degree (and q , 0).

A.6.15 Let k′/k be a field extension and let V be a k-variety. So V ⊆ Pn is a set that
is locally closed in the k-Zariski topology, which means that V can be expressed in
the form

V = V( f1, . . . , fr) ∩
(
D+(g1) ∪ · · · ∪ D+(gs)

)
(A.1)

with homogeneous polynomials fi, g j ∈ k[x]. The same expression defines a k′-
variety that is denoted Vk′ . It is easy to see that the k′-variety Vk′ does not depend on
the particular choice of (A.1). The operator V 7→ Vk′ extends to a functor (Vark)→
(Vark′ ), called base field extension (from k to k′). If the k-variety V is affine, with
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coordinate ring k[V], the coordinate of the affine k′-variety Vk′ is k[V] ⊗k k′. The
analogous statement is true for the projective coordinate ring when the k-variety V
is projective. For both statements we are again assuming that k is perfect.

A.6.16 Let V be a k-variety and let u ∈ V be a point. The local ring of V at u is
OV,u := lim

−−→u∈U
OV (U), the inductive limit over the directed set of all open neighbor-

hoods of u in V , with restriction maps as transition homomorphisms. Clearly, this
ring doesn’t change when V is replaced by an open neighborhood of u in V . For the
study of OV,u one may therefore assume that V is affine. If V ⊆ An is a closed subset
then p := IV ({u}) = { f ∈ k[V] : f (u) = 0} is a prime ideal of k[V] (which is maximal
if u ∈ k

n
), and OV,u is naturally isomorphic to the localization k[V]p of k[V]. When

V is irreducible, the local ring OV,u can also be characterized as the subring of k(V)
that consist of all rational functions f with u ∈ dom( f ).

A.6.17 Let V be a k-variety. A point u ∈ V is a non-singular point (or regular point)
of V if the local ring OV,u is regular (A.4.5). Otherwise u is a singular point of V .
Assume that the field k is perfect, for example char(k) = 0. Then the set Vreg of
all non-singular points of V is open and dense in V , and therefore the set Vsing of
singular points is a proper closed subvariety of V . The variety V is non-singular if
it has no singular points. Moreover, when k is perfect, there is a convenient way to
determine the singular locus of a variety. Assume that V ⊆ An is a closed subvariety,
and let f1, . . . , fr ∈ k[x] = k[x1, . . . , xn] be a generating system for the full vanishing
ideal I(V) of V in k[x]. Let u ∈ V , and let d = dimu(V) be the local dimension of V
at u. The Jacobian matrix ( ∂ fi

∂x j
(u)

)
1≤i≤r, 1≤ j≤n

,

evaluated at u, has rank ≤ n− d. The point u is a non-singular point of V if and only
if this rank is equal to n − d. Observe that from this criterion, it is clear that Vsing is
a closed subset of V .

A.6.18 For a systematic discussion of (co-) tangent spaces on algebraic varieties,
one should use the sheaf-theoretic approach via the sheaf of k-differentials and its
dual. Or even better, their relative versions for morphisms of varieties (or schemes).
In this course, only (co-) tangent spaces at k-rational points are used, and only in
very few places. For this it suffices to introduce them in a more elementary way, as
follows.

Let V be an affine k-variety and let ξ be a k-rational point on V . The cotangent
space of V at ξ is the k-vector space T ∨

ξ (V) := m/m2, where m is the maximal
ideal of k[V] corresponding to ξ. Accordingly, the tangent space of V at ξ is the
linear dual of T ∨

ξ (V), viz. Tξ(V) = (m/m2)∨. Note that this may also be written
as Tξ(V) = HomA(m, A/m). An element of Tξ(V) is therefore a map τ : A → k
satisfying τ( f g) = f (ξ)τ(g) for f ∈ A, g ∈ m. Such a map τ should be thought of as
the directional derivative at ξ corresponding to the specified tangent direction.

Since the definition of (co-) tangent space at ξ ∈ V(k) is not affected when V is
replaced by an open neighborhood of ξ, the definition carries over immediately to
k-varieties that are not necessarily affine. Note that always dim Tξ(V) ≥ dimξ(V),
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and that equality holds if and only if ξ is a non-singular point of V . The tangent
space is functorial (covariantly) for morphisms of k-varieties in an obvious way.

Let W be a closed subvariety of V , and let ξ ∈ W(k). The inclusion i : W → V
induces an embedding i∗ : Tξ(W)→ Tξ(V) of the tangent spaces. The normal space
Nξ(W,V) (of W in V at ξ) is defined to be the cokernel, so by definition the sequence

0→ Tξ(W)
i∗
−→ Tξ(V)→ Nξ(W,V)→ 0 (A.2)

of k-vector spaces is exact. For an algebraic description, assume that V is affine and I
is the vanishing ideal of W in A = k[V]. Ifm ⊆ A is the maximal ideal corresponding
to ξ, we have the conormal exact sequence at ξ, which is the dual of (A.2):

0→
I

I ∩m2 →
m

m2 →
m

I +m2 → 0 (A.3)

When V and W are both non-singular at ξ, the inclusion Im ⊆ I ∩m2 is an equality,
and so (A.3) reads

0→
I

Im
→
m

m2 →
m

I +m2 → 0 (A.4)

In particular, Nξ(W,V) = HomA(I, A/m) in this case.

A.6.19 For use in Chapter 7, we recall the notion of degree of projective varieties.
Let V ⊆ Pn be a projective k-variety, with vanishing ideal I = I(V) ⊆ k[x] =

k[x0, . . . , xn] and homogeneous coordinate ring k[V] = k[x]/I. The Hilbert series
of V is the formal power series HV (t) =

∑∞
i=0 dim(k[V]i) ti in the variable t. There

exists a unique polynomial PV (t) ∈ Q[t] with PV (i) = dim(k[V]i) for all sufficiently
large integers i, the Hilbert polynomial of V . By the Hilbert-Serre theorem, HV (t)
is a rational function of the form HV (t) = p(t)(1 − t)−r with a (unique) polynomial
p ∈ Z[t] satisfying p(1) , 0, and with r ≥ 0. The Hilbert polynomial has degree r−1
and has leading (highest) coefficient p(1)

(r−1)! . It is known that deg(PV ) = dim(V), so the
pole order r of HV (t) at t = 1 is r = dim(V) + 1. The degree of the projective variety
V is defined to be deg(V) = p(1). So if the Hilbert polynomial is PV (t) = ctm+(lower
degree summands) with c ∈ Q∗, the degree of V is deg(V) = m! · c. Note that deg(V)
is always a positive integer.





Appendix B:
Convex Sets in Real Infinite-Dimensional Vector
Spaces

We briefly recall the notions of topological R-vector spaces in general, and of lo-
cally convex vector spaces in particular. Then we state the two single most impor-
tant theorems for the latter, which are the Hahn–Banach separation theorem and the
Krein–Milman theorem. For more background one may consult any textbook on
functional analysis, like [173]. We also state the Eidelheit–Kakutani separation the-
orem, which applies to arbitrary R-vector spaces without topology. Here we refer to
Köthe’s monograph [111]. Finally we explain how to extend this last result to vec-
tor spaces over the field Q of rational numbers. Unless otherwise said, all R-vector
spaces may have arbitrary dimension.

B.1 Let V be an R-vector space. The full dual space of all linear maps V → R is
denoted V∨. Recall a few basic notions from convexity. A set K ⊆ V is convex if
(1 − t)x + ty ∈ K holds for every real number 0 ≤ t ≤ 1 whenever x, y ∈ K. If in
addition K , ∅ and tK ⊆ K holds for all t ≥ 0, then K is a convex cone. The convex
hull conv(M) of a set M ⊆ V is the smallest convex set in V that contains M. It
consists of all convex combinations of points in M, so conv(M) = {

∑n
i=1 aixi : n ≥ 0,

xi ∈ M, 0 ≤ ai ∈ R,
∑n

i=1 ai = 1}.
An affine hyperplane in V is a set of the form H = {x ∈ V : f (x) = c} where

0 , f ∈ V∨ and c ∈ R. If K ⊆ V is a convex set then H is a supporting hyperplane
of K if K ∩ H , ∅, and if either f (y) ≥ c or f (y) ≤ c holds for every y ∈ K. A point
x ∈ K is an extreme point of K if x = (1− t)y+ tz with 0 < t < 1 and y, z ∈ K implies
y = z = x. The set of extreme points of K is denoted Ex(K). If K is a convex cone
and 0 , x ∈ K, the half-line R+x is an extreme ray of K if x = y + z with y, z ∈ K
implies y, z ∈ R+x.

B.2 A topological vector space (over R) is an R-vector space V together with a
Hausdorff topology on V , such that addition V × V → V and scalar multiplication
R × V → V are continuous maps. Given such V , the vector space of all continuous
linear forms V → R will be denoted V ′. We don’t consider a topology on V ′.
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B.3 Remarks.

1. A finite-dimensional R-vector space V has a unique vector space topology. If
we use a linear basis of V to identify V with Rn, this is the Euclidean topology on Rn.

2. A normed vector space is an R-vector space V together with a map V → R,
x 7→ ||x|| (called the norm) that satisfies ||x|| > 0 for x , 0, ||x + y|| ≤ ||x|| + ||y||
and ||ax|| = |a| · ||x|| for a ∈ R and x, y ∈ V . The norm defines a metric d on V via
d(x, y) = ||x−y|| (x, y ∈ V), and the associated topology makes V a topological vector
space. Well-known examples of normed vector spaces are Rn (with the Euclidean
norm), the space C(X,R) of continuous real-valued functions on a compact space
X (with the sup-norm), or the Lp-space of a measure µ (for 1 ≤ p ≤ ∞) with the
Lp-norm. A Banach space is a normed vector space that is complete.

3. If V is a topological vector space then closure K and interior int(K) of any
convex set K ⊆ V are again convex (easy exercise). For M ⊆ V an arbitrary subset,
the set M∗ := { f ∈ V ′ : f |M ≥ 0} is a convex cone in V ′.

B.4 Definition. A topological R-vector space V is locally convex if every neighbor-
hood of 0 contains a convex such neighborhood.

B.5 Examples.

1. Every normed vector space is locally convex, since the open balls {x ∈
V : ||x|| < r} are convex. In particular, finite-dimensional vector spaces are locally
convex. Linear subspaces or arbitrary direct products of locally convex vector spaces
are again locally convex (in the subspace topology and the product topology, respec-
tively). In particular,

∏
I R is a locally convex vector space for any index set I.

2. In the complex case, a locally convex C-vector space is required to have a
neighborhood basis of 0 that consists of convex sets U which are balanced, mean-
ing that cU ⊆ U for every c ∈ C with |c| = 1. For R-vector spaces, Definition
B.4 automatically implies the existence of arbitrarily small (real) balanced convex
neighborhoods, since U ∩ (−U) is (real) balanced for every convex set U. For both
the real and the complex case, there is an equivalent characterization of locally con-
vex vector spaces in terms of seminorms, that is technically more convenient to
work with. For our modest purposes, the above definition suffices.

3. Let V be an R-vector space with a linear basis that is (at most) countable.
Define a topology τ on V as follows: A subset M ⊆ V is τ-closed if, for every
linear subspace U ⊆ V of finite dimension, M ∩ U is closed in U (with respect to
the unique vector space topology of U). Then (V, τ) is a topological vector space
which is locally convex, and for which every linear form V → R is continuous. This
topology τ is the finest among all vector space topologies on V . When dim(V) is
infinite (and countable), the topology τ cannot be defined by a metric on V . When
the vector space dimension of V is uncountable, τ is not a vector space topology any
more [20]. Regardless of the dimension, there always exists a unique finest locally
convex vector space topology on V (which agrees with τ when the dimension is at
most countable).
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A fundamental fact that holds in every locally convex vector space is the separa-
tion theorem:

B.6 Theorem. (Hahn–Banach) Let V be a locally convex R-vector space, and let
A, B ⊆ V be two disjoint convex sets, where A is compact and B is closed in V. Then
there exists a continuous linear form f ∈ V ′ and a real number c ∈ R such that
f (b) < c < f (a) holds for all a ∈ A, b ∈ B.

In other words, there exists a closed affine hyperplane H in V which separates A
and B, in the sense that A is contained in one of the two open halfspaces defined by
H, and B in the other. For the proof see any book on functional analysis, e.g. [173].
The Hahn–Banach theorem exists in many formulations. For this course, the one
stated above is sufficient.

Let V be a locally convex vector space. We record a few direct consequences.

B.7 Corollary. Given any convex set K ⊆ V, the closure K is the intersection of a
family of closed halfspaces in V. ut

Here, of course, a closed halfspace is a set of the form {x ∈ V : f (x) ≥ c} with
0 , f ∈ V ′ and c ∈ R.

B.8 Corollary. Let C ⊆ V be a convex cone, and let C∗∗ := {x ∈ V : ∀ f ∈ C∗

f (x) ≥ 0}. Then C∗∗ is the closure of C.

Proof. C∗∗ is a closed convex set in V that contains C. If f ∈ V ′ and c ∈ R are such
that f ≥ c on C, then c ≤ 0, and f |C ≥ 0 since C is a cone. So C∗∗ = C follows from
Corollary B.7. �

B.9 Theorem. (Krein–Milman) Let V be a locally convex vector space, and let K ⊆
V be a compact convex set. Then K is the closed convex hull of its extreme points,
i.e. K = conv(Ex(K)).

B.10 Remarks.

1. Clearly, the Krein–Milman theorem implies that every non-empty compact
convex set has an extreme point. Conversely, this weak version already implies the
full theorem. Indeed, put K′ = conv(Ex(K)) and assume that there is a point x ∈ K
with x < K′. Apply Hahn–Banach to K′ and {x}, to get a linear form f ∈ V ′ with
f (x) < min f (K′). Put c = min f (K), then H := f −1(c) is a supporting hyperplane
of K, and K ∩ H is a non-empty compact convex set in H. By the weak version of
Krein–Milman, K ∩H has an extreme point y. Clearly y is an extreme point of K as
well, and so y ∈ K′. But f (y) = c < min f (K′), contradiction.

2. When dim(V) < ∞ then Theorem B.9 is true even without taking the closure.
This is proved in Theorem 8.1.13.

B.11 Corollary. Let V be locally convex, let K ⊆ V be a non-empty compact convex
set.

(a) Every supporting hyperplane of K contains an extreme point of K.
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(b) If f ∈ V ′ then min f (K) and max f (K) are taken in extreme points of K. ut

Lastly, we introduce the Eidelheit–Kakutani separation theorem, which applies
to arbitrary real vector spaces without topology. To prepare for this, consider the
following definitions. We use the general notation 8.1.1 for line segments in vector
spaces.

B.12 Definition. Let V be an R-vector space and let K ⊆ V be a subset.

(a) x ∈ K is an algebraic interior point of K, if for every v ∈ V there is a real
number c > 0 with ]x − cv, x + cv[ ⊆ K. The set Ki of all algebraic interior
points of K is the algebraic interior of K.

(b) The algebraic closure Ka of K consists of all x ∈ V for which there exists y ∈ K
with

[
y, x

[
⊆ K.

B.13 Remarks.

1. For any set K ⊆ V one has Ki ⊆ K ⊆ Ka. If K is convex then so are Ki and Ka.
When K is convex and dim(V) is finite, Ki and Ka are the usual topological interior
and closure of K.

2. If dim(V) = ∞, there may exist convex sets K ⊆ V for which (Ka)a , Ka

([111] pp. 177–178). So there need not exist any topology on V that satisfies Ka = K
for every convex set K ⊆ V . If dim(V) = ∞, there always exists a proper convex set
K , V with Ka = V .

B.14 Theorem. (Eidelheit–Kakutani) Let V be an arbitrary R-vector space, and let
K1, K2 be non-empty convex subsets of V satisfying Ki

1 , ∅ and Ki
1 ∩ K2 = ∅. Then

there exists a linear form 0 , f ∈ V∨ and a real number c such that f (x2) ≤ c ≤
f (x1) for all x1 ∈ K1 and x2 ∈ K2.

In other words, there exists an affine hyperplane H ⊆ V such that K1 is contained
in one of the two “closed” halfspaces defined by H, and K2 in the other. The original
papers are [61] and [105], a more accessible reference is [111] pp. 186–187.

B.15 Corollary. Let V be an R-vector space, let C ⊆ V be a convex cone with an
algebraic interior point u, and let x ∈ V with x < Ci. Then there exists a linear form
f ∈ V∨ with f |C ≥ 0, f (u) = 1 and f (x) ≤ 0.

Proof. Applying Theorem B.14 to K1 = C and K2 = {x} we get 0 , f ∈ V∨ and
c ∈ R with f |C ≥ c and f (x) ≤ c. Since 0 ∈ C we have c ≤ 0. There cannot be y ∈ C
with f (y) < 0 since then f would not be bounded below on C. So we can take c = 0.
Moreover f (u) > 0 since u ∈ Ci, and replacing f with 1

f (u) f does the job. �

B.16 Theorem B.14 is also useful in vector spaces over Q, as we will now explain.
Let V be a Q-vector space. For x, y ∈ V write [x, y]Q = {(1 − t)x + ty : t ∈ Q,
0 ≤ t ≤ 1}, and similarly for open or half-open intervals. A subset K ⊆ V is Q-
convex if x, y ∈ K implies [x, y]Q ⊆ K. If M ⊆ V is a set, an element u ∈ M is
a Q-algebraic interior point of M, if for every v ∈ V there exists t > 0 in Q with
[u − tv, u + tv]Q ⊆ M.
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Let VR = V ⊗QR, and consider V as a subset of VR via V → VR, v 7→ v⊗1. Given
a Q-convex set K in V let KR be the (R-) convex hull of K in VR. If K is a Q-convex
cone (meaning that 0 ∈ K, K + K ⊆ K and Q+K ⊆ K), KR is a (R-) convex cone in
VR. The following lemma is not hard not prove:

B.17 Lemma. Let K ⊆ V be a Q-convex set. Then KR ∩ V = K.

B.18 Lemma. Let K be a Q-convex set in V. A point x ∈ K is a Q-algebraic interior
point of K (in V) if, and only if, x is an R-algebraic interior point of the R-convex
hull KR (in VR).

Proof. If x is an R-algebraic interior point of KR then x is a Q-algebraic interior
point of K, by Lemma B.17. Conversely let x be a Q-algebraic interior point of K,
and let v ∈ VR. Since KR is R-convex, it suffices to find a real number t > 0 with
x + tv ∈ K̂. Write v =

∑n
i=1 aivi with real numbers ai > 0 and with vi ∈ V . Scaling v

by a positive real number we may assume
∑n

i=1 ai = 1. By hypothesis there is t > 0
in Q with x + tvi ∈ K for i = 1, . . . , n. So x + tv =

∑
i ai(x + tvi) is in KR, being an

R-convex combination of the points x + tvi ∈ K. �

From the previous lemma we get a version of Eidelheit–Kakutani for Q-vector
spaces. We content ourselves with stating the analogue of Corollary B.15:

B.19 Corollary. Let V be a Q-vector space, let C ⊆ V be a Q-convex cone with
Q-algebraic interior point u. If x ∈ V is not a Q-algebraic interior point of C, there
is a Q-linear map f : V → R such that f ≥ 0 on C, f (u) = 1 and f (x) ≤ 0.

Proof. Let CR be the R-convex hull of C in VR = V ⊗Q R. This is a convex cone in
VR. Using Lemma B.18 we see that u is an algebraic interior point of CR, and that x
is not. So the assertion follows from Corollary B.15. �
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103. Jakubović, V.A.: The S -procedure in nonlinear control theory. Vestnik Leningrad. Univ. (1),

62–77 (1971). Russian
104. Kadison, R.V.: A representation theory for commutative topological algebra. Mem. Amer.

Math. Soc. 7, 39 pp (1951)
105. Kakutani, S.: Ein Beweis des Satzes von M. Eidelheit über konvexe Mengen. Proc. Imp.

Acad. Tokyo 13(4), 93–94 (1937)
106. Khovanskii, A.G.: Fewnomials, Translations of Mathematical Monographs, vol. 88. Amer-

ican Mathematical Society, Providence, RI (1991). Translated from the Russian by
S. Zdravkovska
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