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Let X be a smooth projective irreducible R-variety, let K = R(X) be its function
field, and let s denote the number of connected components of the space X(R) of
real points on X. This short remark provides a direct geometric proof for the
following theorem:

Theorem (E. Becker and D. Gondard). Assume that X(R) is non-empty. Then
the quotient of the group K∗2 ∩ ΣK∗4 by its subgroup (ΣK∗2)2 is finite, of order
2s−1.

The result is obtained from Becker-Gondard’s paper [3] by combining Corollary
4.4 with Theorem 3.8. Corollary 4.4 says, for any real field K, that the number of
connected components of M(K) is

1 + log2

[
K∗2 ∩ ΣK∗4 : (ΣK∗2)2

]
,

where M(K) is the compact topological space of real (i.e., R-valued) places of K. If
K = R(X) is the function field of a smooth projective irreducible R-variety X, then
the connected components of M(K) are in canonical bijection with the connected
components of X(R), as shown in [3] Theorem 3.8.

The proof of [3] Corollary 4.4 makes essential use of Becker’s theory of the real
holomorphy ring, as exposed in [2]. Both that proof and the one given below use
Becker’s valuation-theoretic characterization of sums of higher powers [1] to show
that (ΣK∗2)2 is contained in ΣK∗4.

Alternative proof of the theorem. Let f ∈ K∗ be such that f2 is a sum of fourth
powers. Then f does not change sign on any connected component W of X(R). In
other words, if P1, P2 are any two points in W where f is defined, then f(P1)f(P2) ≥
0. Otherwise, f would change sign along a real irreducible subvariety Y of X of
codimension one, and hence vY (f) would be odd. (Here Y real means that Y (R)
is Zariski dense in Y , or equivalently, that R(Y ) is a real field; and vY denotes
the discrete valuation of K associated with Y .) It would follow that vY (f2) ≡ 2
(mod 4), and hence f2 could not be a sum of fourth powers (this uses that Y is
real).

Let S be the set of connected components of X(R). The preceding argument
shows that we get a well-defined group homomorphism

K∗2 ∩ ΣK∗4 → {±1}S/± 1, f2 7→ ±σ(f), (∗)

where σ(f) ∈ {±1}S is the sign distribution on S given by the locally semidefinite
map f . The kernel of (∗) consists of the squares of non-negative rational functions,
and so it is (ΣK∗2)2 by the theorem of Artin and Lang. The map (∗) is also surjec-
tive. To see this, let X(R) = W1 ∪W2 be a disjoint decomposition into open and
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closed sets W1, W2. There is a rational function f ∈ K∗ which is defined every-
where on X(R) such that f |W1 > 0 and f |W2 < 0. (For example, choose an affine
open subset X0 of X with X0(R) = X(R) and argue by Weierstraß approximation.)
By Becker’s valuation-theoretic characterization of sums of even powers [1], f2 is a
sum of 2n-th powers for any n ≥ 1. It is clear that f2 maps under (∗) to the sign
distribution given by W1 and W2. �
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Réelle et Formes Quadratiques (Rennes, 1981), ed. J.-L. Colliot-Thélène, M. Coste, L. Mahé,
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