A REMARK ON DESCENDING
SUMS OF SQUARES REPRESENTATIONS

CLAUS SCHEIDERER

Let \(f = f(x_1, \ldots, x_n) \) be a polynomial with rational coefficients which is a sum of squares (sos) of polynomials with real coefficients. Sturmfels asked whether \(f \) is necessarily a sum of squares of polynomials with rational coefficients. From the assumption it follows easily that \(f \) is a sum of squares of polynomials with real algebraic coefficients. Hence there exists a real number field \(K \) such that \(f \) is sos in \(K[x_1, \ldots, x_n] \).

In [1], Hillar showed that the answer to Sturmfels’s question is positive if the real number field \(K \) can be chosen to be Galois over \(\mathbb{Q} \). Moreover, he provided bounds for the number of squares needed to write \(f \) over \(\mathbb{Q} \), in terms of the number of squares needed over \(K \) and the degree \([K : \mathbb{Q}]\). In fact, the polynomial ring \(\mathbb{Q}[x_1, \ldots, x_n] \) could be replaced for these results by any commutative \(\mathbb{Q} \)-algebra \(A \) (and accordingly \(K[x_1, \ldots, x_n] \) by \(A \otimes_{\mathbb{Q}} K \)).

The purpose of this note is to give a very short proof of a generalization of this result. This proof yields a significantly smaller bound for the number of squares necessary to express \(f \) as a sum of squares over \(\mathbb{Q} \). While in [1] this bound is exponential in the degree \([K : \mathbb{Q}]\), our bound is linear.

We prefer to work over an arbitrary real base field \(k \), since there is no difference in the proof.

Given a finite extension \(K/k \) of real fields, consider the associated trace quadratic form. This is the quadratic form \(\tau: K \to k, y \mapsto \text{tr}_{K/k}(y^2) \) over \(k \). It has the following well-known basic property: For any ordering \(P \) of \(k \), the Sylvester signature of \(\tau \) at \(P \) is equal to the number of extensions of the ordering \(P \) to \(K \). See [2] (Lemma 3.2.7 or Theorem 3.4.5), for example.

For any commutative ring \(A \) denote by \(\Sigma A^2 \) the set of sums of squares of \(A \). Assume that every ordering of \(k \) has \(d := [K : k] \) different extensions to \(K \). (It is easy to see that this is equivalent to the condition that every ordering of \(k \) extends to the Galois hull of \(K/k \).) Then \(\tau \) is positive definite with respect to every ordering of \(k \). Diagonalizing \(\tau \) therefore gives \(a_1, \ldots, a_d \in \Sigma k^2 \), together with a \(k \)-linear basis \(y_1, \ldots, y_d \) of \(K \), such that

\[
\text{tr}_{K/k}\left(\left(\sum_{i=1}^{d} x_iy_i \right)^2 \right) = \sum_{i=1}^{d} a_ix_i^2
\]

(1)

holds for all \(x_1, \ldots, x_d \in k \). More generally, if \(A \) is an arbitrary (commutative) \(k \)-Algebra and \(A_K := A \otimes_k K \), then

\[
\text{tr}_{A_K/A}\left(\left(\sum_{i=1}^{d} x_i \otimes y_i \right)^2 \right) = \sum_{i=1}^{d} a_ix_i^2
\]

(2)

holds for all \(x_1, \ldots, x_n \in A \).

\textbf{Date:} July 16, 2009.

1991 \textit{Mathematics Subject Classification}. Primary secondary .
Proposition 1. Let K/k be an extension of real fields of finite degree $d = [K : k]$, and assume that every ordering of k extends to d different orderings of K. Then there exist $c_1, \ldots, c_d \in \Sigma k^2$ with the following property:

For every k-algebra A and every $f \in A$ which is a sum of m squares in $A_K = A \otimes_k K$, there are $f_1, \ldots, f_d \in A$ such that each f_i is a sum of m squares in A, and such that

$$f = \sum_{i=1}^{d} c_i f_i.$$

In particular, f is a sum of $dm \cdot p(k)$ squares in A.

Here $p(k)$ denotes the Pythagoras number of k, i.e., the smallest number p such that every sum of squares in k is a sum of p squares in k. (If no such number p exists one puts $p(k) = \infty$.)

Proof. Choose $a_i \in \Sigma k^2$ and $y_i \in K$ ($i = 1, \ldots, d$) as before. It suffices to take $c_i = a_i^d$ for $i = 1, \ldots, d$. Indeed, assuming $f = g_1^2 + \cdots + g_m^2$ with $g_1, \ldots, g_m \in A_K$, we get

$$df = \text{tr}_{A_K/A}(f) = \sum_{j=1}^{m} \text{tr}_{A_K/A}(g_j^2) = \sum_{j=1}^{m} \sum_{i=1}^{d} a_i x_{ij}^2,$$

where the $x_{ij} \in A$ are determined by $g_j = \sum_{i=1}^{d} x_{ij} \otimes y_i$ ($j = 1, \ldots, m$). So we can put $f_i = \sum_{j=1}^{m} x_{ij}^2$ ($i = 1, \ldots, d$). \[\square\]

Remark. In [1] it was shown (for $k = \mathbb{Q}$) that if K/\mathbb{Q} is a totally real number field with Galois hull L/\mathbb{Q}, if A is a \mathbb{Q}-algebra and $f \in A$ is a sum of m squares in $A \otimes_\mathbb{Q} K$, then f is a sum of

$$4m \cdot 2^{e+1} \left(\frac{e+1}{2} \right) = 2^{e+2} (e+1) \cdot m$$

squares in A, with $e := [L : \mathbb{Q}]$.

The qualitative part of the above result extends immediately to the following more general situation. Let K/k be an extension as in the proposition, and let A be a k-algebra. Fix elements $h_1, \ldots, h_r \in A$ and consider the so-called (pseudo-) quadratic module

$$M := \left\{ \sum_{i=1}^{r} s_i h_i : s_1, \ldots, s_r \in \Sigma A^2 \right\}$$

generated by the h_i. Similarly, let

$$M_K = \left\{ \sum_{i=1}^{r} t_i h_i : t_1, \ldots, t_r \in \Sigma A_K^2 \right\}$$

be the (pseudo-) quadratic module generated by M in A_K. Then we have:

Proposition 2. $A \cap M_K = M$. \[\square\]

References

Fachbereich Mathematik und Statistik, Universität Konstanz, 78457 Konstanz, Germany

E-mail address: claus.scheiderer@uni-konstanz.de