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SUMS OF HERMITIAN SQUARES
ON PSEUDOCONVEX BOUNDARIES

Mihai Putinar and Claus Scheiderer

Abstract. We give an abstract characterization of all real algebraic subvarieties of

complex affine space on which every positive polynomial is a sum of hermitian squares,
and we find obstructions to this phenomenon. As a consequence we construct a strictly

pseudoconvex domain with smooth algebraic boundary on which there exists a degree

two positive polynomial which is not a sum of hermitian squares, answering thus in the
negative a question of John D’Angelo.

1. Introduction

We identify real affine space R2d of even dimension with complex affine space Cd,
with coordinates (x, y) = (x1, . . . , xd, y1, . . . , yd) ∈ R2d resp. z = (z1, . . . , zd) ∈ Cd, so
that zk = xk + iyk (1 ≤ k ≤ d). The Euclidean norm is denoted

‖z‖2 =
d∑

k=1

|zk|2 =
d∑

k=1

(x2
k + y2

k).

Let C[z, w] be the polynomial ring in 2d variables zj , wj (j = 1, . . . , d). On C[z, w] we
consider the C/R-involution ∗ given by z∗j = wj (j = 1, . . . , d). We call f = f(z, w)
real if f = f∗, and we write A for the ring of real (i.e., ∗-fixed) elements in C[z, w].
Thus A = R[x, y] is the real polynomial ring in the 2d variables x = 1

2 (z + w) and
y = 1

2i (z − w). The R-homomorphisms A → R correspond to the points α ∈ Cd via
(z, w) 7→ (α, α), or alternatively, to the points (ξ, η) in R2d via (x, y) 7→ (ξ, η).

We often identify a polynomial f(z, w) ∈ C[z, w] with its induced hermitian poly-
nomial map Cd → C, z 7→ f(z, z). This map commutes with complex conjugation
if and only if f = f∗, i.e., f is real. Conversely, if h : Cd → C, z 7→ h(z, z) is an
hermitian polynomial map, the polynomial f(z, w) ∈ C[z, w] with h(z) = f(z, z) is
called the polarization of h.

Let I ⊂ A be an ideal, and let

X := VR(I) = HomR(A/I, R) = {α ∈ Cd : ∀ f ∈ I, f(α, α) = 0}
be the real zero set of I. The elements of the quotient algebra A/I can be considered
as real polynomial functions on X. Let Σ(A/I)2 denote the convex cone of sums of
squares in A/I.

A real hermitian polynomial f(z, z) is called an hermitian square if f(z, z) = |p(z)|2
for some polynomial p(z) ∈ C[z]. Let Σh ⊂ A denote the convex cone of sums of
hermitian squares, so Σh consists of the finite sums

∑
ν f∗ν fν with fν ∈ C[z]. Clearly,

Σh ⊂ ΣA2, and it is easy to see that this inclusion is proper. Given an ideal I ⊂ A
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as above, we correspondingly write Σh(A/I) := (Σh + I)/I for the cone of sums of
hermitian squares restricted to X. There are nontrivial examples of ideals I for which
Σh(A/I) contains every function in A/I strictly positive on X. The most notable
example is the (ideal of the) unit sphere in Cd, in which case the observation goes back
independently to Quillen [14], Athavale [4] and Catlin-D’Angelo [6], [7]. To be more
specific, Quillen proved that a bi-homogeneous polynomial which is positive on the
sphere is a sum of (homogeneous) hermitian squares of polynomials, Athavale proved
that a commutative tuple T = (T1, ..., Tn) of Hilbert space operators satisfying the
sphere equation T ∗1 T1+...+T ∗nTn = I is subnormal, while Catlin and D’Angelo proved
that every positive polynomial on the sphere is equal to a sum of hermitian squares of
polynomials, when restricted to the sphere. The operator theory community was well
aware a long time ago that Athavale’s theorem is equivalent to Catlin and D’Angelo
result, see for instance [12, 13].

The aim of the present note is to work towards a characterization of all ideals I
in A with the property that Σh(A/I) contains all polynomials strictly positive on
VR(I). In the case of closed pseudoconvex real hypersurfaces of Cd, such a result
was sought by complex analysts, after the resurrection of Quillen’s theorem by Catlin
and D’Angelo. See specifically the comments in [1] and the open problem raised by
D’Angelo at the 2006 meeting “Complexity of mappings in CR geometry”, American
Institute of Mathematics, Palo Alto.

The link between a sum of hermitian squares restricted on the boundary of a do-
main G ⊂ Cn and proper polynomial maps (or even proper embeddings) of G into the
unit ball of a higher dimensional affine space comes naturally into discussion, see [6, 7].
In this respect it is worth mentioning the early work of Løw; he proved in [10] that
a continuous, positive function f on a strictly pseudoconvex C2-smooth boundary
∂G can be decomposed as f =

∑m
k=1 |gk|2, where the functions gk are analytic in G

and continuous on G. Also, Lempert [8, 9] has proved in the real analytic framework
that a positive function on ∂G is the sum of a series of hermitian squares of analytic
functions in G (which are real analytic on its closure). A conclusion of our note is
that the polynomial framework is much more rigid, revealing a large gap between
positive elements and sums of hermitian squares on strictly pseudoconvex boundaries
or on more general real algebraic varieties. To measure this gap it is natural to con-
sider duality and separating linear functionals, leading to the interpretation of sums
of hermitian squares as polars to solutions of moment problems with real algebraic
support. This can be done in the context of subnormality of tuples of commuting
operators and positivity of non-commutative functional calculi. Some results in this
direction will appear in a forthcoming article, together with more details about the
real algebraic geometry observations sketched below.

2. Semirings

Let B be an R-algebra, and let S be a subsemiring of B with R+ ⊂ S. Recall that
S is said to be archimedean (in B) if R + S = B, that is, if for every f ∈ B there
exists a real number c such that c± f ∈ S. If B is generated by x1, . . . , xn, then S is
archimedean if and only if there exist ci ∈ R with ci± xi ∈ S (i = 1, . . . , n). See ([11]
Definition 5.4.1 [15] 1.5 and references there).

Recall that A denotes the ring of real hermitian polynomials f(z, z).
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Definition. Let I be an ideal in A. We say that Σh is archimedean modulo I if
the semiring Σh + I is archimedean in A, or equivalently, if the semiring Σh(A/I) is
archimedean in A/I.

By (a particular case of) the Representation Theorem ([11] Theorem 5.4.4), we
have

Theorem 2.1. Let I be an ideal in A. The following conditions on I are equivalent:

(i) VR(I) is compact, and every f ∈ A with f > 0 on VR(I) lies in Σh + I;
(ii) Σh is archimedean modulo I.

(The Representation Theorem, in the version for semirings, asserts that (ii) implies
(i). The opposite implication is obvious.)

We observe the following simple characterization of these ideals:

Proposition 2.2. Let I be an ideal in A. Then Σh is archimedean modulo I if and
only if I contains an hermitian polynomial of the form

f(z, z) = c + ||z||2 +
r∑

k=1

|qk(z)|2

with c ∈ R and qk(z) ∈ C[z] (k = 1, . . . , r).

Proof. When Σh is archimedean modulo I, there exists c ∈ R with c−||z||2 ∈ Σh + I,
which implies the above condition. Conversely, if −(c + ||z||2) ∈ Σh + I then VR(I) is
compact, and also

(1− c)± 2xj = |zj ± 1|2 +
∑
k 6=j

|zk|2 − (c + ||z||2)

and

(1− c)± 2yj = |zj ± i|2 +
∑
k 6=j

|zk|2 − (c + ||z||2)

lie in Σh + I, for j = 1, . . . , d. This implies that Σh is archimedean modulo I. �

This gives plenty of examples of ideals I such that every polynomial strictly positive
on VR(I) is a hermitian sum of squares modulo I. In particular we have obtained in
this way an algebraic proof and explanation of Quillen and Catlin-D’Angelo theorems:

Proposition 2.3. On a real hypersurface of Cd with equation

‖z‖2 +
r∑

k=1

|qk(z)|2 = M,

where qk ∈ C[z] and M > 0, every strictly positive polynomial is a sum of hermitian
squares. �
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3. Obstructions

The basic observation which leads to simple obstructions for having universal her-
mitian squares decompositions of positive polynomials along a real variety is that
a positive semi-definite Hermitian form satisfies the Cauchy-Schwarz inequality. To
better cast this observation we introduce a couple of definitions.

For α, β ∈ Cd we consider the ideals

aα :=
d∑

j=1

(zj − αj), bβ :=
d∑

j=1

(wj − βj)

of C[z, w]. We define
Jα,β := aαaβ + bαbβ .

Writing mα,β = aα +bβ , the maximal ideal mα,β of C[z, w] consists of all f(z, w) with
f(α, β) = 0. When α 6= β, therefore,

Jα,β = mα,α ∩mβ,β ∩mα,β ∩mβ,α

consists of all p(z, w) ∈ C[z, w] with

p(α, α) = p(β, β) = p(α, β) = p(β, α) = 0.

Similarly, Jα,α consists of all p(z, w) ∈ C[z, w] with

p(α, α) =
∂p

∂zj

(α, α) =
∂p

∂zk

(α, α) =
∂2p

∂zj ∂zk

(α, α) = 0

for j, k = 1, . . . , d.

Proposition 3.1. Let I ⊂ A be an ideal, and consider two distinct points α, β ∈ Cd.
Assume that I ⊂ Jα,β. Then there exists a polynomial f ∈ A which is strictly positive
on VR(I) and for which f /∈ Σ2

h + I.

Proof. Since all real polynomials separate the points of R2d, there exists f ∈ A with
f > 0 on VR(I) and such that the Cauchy-Schwarz inequality

|f(α, β)|2 ≤ f(α, α)f(β, β)

fails. Indeed, we can choose f = ε+h2, where h ∈ A satisfies h(α, α) = 0, h(β, β) = 0,
h(α, β) = 1 and ε > 0 is small.

On the other hand, any sum of hermitian squares
∑

j |gj(z)|2 ∈ Σh satisfies the
above inequality: ∣∣∣∑

j

gj(α)gj(β)
∣∣∣2 ≤

(∑
j

|gj(α)|2
) (∑

j

|gj(β)|2
)
.

Since I ⊂ Jα,β by assumption, this shows f /∈ Σh + I. �

A more conceptual, and hence simpler, explanation of the above proof is the fol-
lowing. Consider the maximal set W (I) of all points α ∈ V (I), so that I ⊂ Jα,β

whenever α 6= β and α, β ∈ W (I). Then the polarization of every element F ∈ Σ2
h +I

defines a positive definite kernel on W (I)×W (I). Quite specifically, the matrix

(F (αj , αk))m
j,k=1
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is positive semidefinite for every finite subset {α1, ..., αm} ⊂ W (I). On the other hand,
positive polynomials along V (I) behave like continuous functions and in particular
they do not satisfy in general any matrix positivity, provided that W (I) is non-
empty. As mentioned in the introduction, this topic will be exposed in more detail
in a forthcoming article dealing with operator positivity aspects of sums of hermitian
squares. Similar matrix positivity conditions were recently treated in the article [3].

4. Examples

Example 1. We provide an example in two complex variables:

Gε = {(z, w) ∈ C2;
|z2 − 1|2

2
+ |w|2 + ε|(z2 − 1)z|2 < 1},

where ε > 0 is a small parameter. The points α = (1, 1), β = (−1, 1) assure that
Proposition 3.1 applies, hence there exist positive polynomials along the boundary of
Gε which are not equal to sums of hermitian squares. Indeed, the polarized defining
polynomial

P ((z1, w1), (z2, w2)) =
(z2

1 − 1)(z2
2 − 1)

2
+ w1w2 + ε(z2

1 − 1)z1(z2
2 − 1)z2 − 1

satisfies
P (α, α) = P (α, β) = P (β, α) = P (β, β) = 0.

As a matter of fact, it follows from the proof of Proposition 2.2 referring to the
archimedianity of the convex cone Σh+(P ) that for large enough M > 0, M−|z|2−|w|2
is not a sum of hermitian squares modulo the principal ideal (P ).

The choice of constants imply that the above inequality defines a connected set
with smooth boundary and strictly plurisubharmonic defining function. To check
connectedness look at the level sets |w| = c, with 0 ≤ c ≤ 1. Without the term
containing ε, equation |z2 − 1|2 = 2 − 2c2 defines a lemniscate around the foci ±1,
which in addition is connected for all c < 1/

√
2. On the other hand, the sections

z = ±1 and w arbitrary connect all level sets |w| = c. Again, without the term
containing ε, a direct computation of the gradient of P proves that the algebraic
variety

P0 =
|z2 − 1|2

2
+ |w|2 − 1 = 0

is smooth. Thus, a small additive perturbation of P0 by the term ε|(z2−1)z|2 will not
change the smoothness and connectedness of the domain P < 0. Finally, the hessian
matrix of P in complex coordinates is diagonal, with entries 2|z|2 + |3z2 − 1|2 and 1,
hence it is non-degenerate.

This example answers in the negative a question posed by D’Angelo in 2006 at
AIM Palo Alto.

Example 2. We depart in this subsection from the several complex variables
framework in order to give an example of a domain in C with compact nonsingular
algebraic boundary defined as the level set of a strictly subharmonic polynomial, with
the property that on the boundary not every positive polynomial is a sum of hermitian
squares.
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Let a be a real parameter, and consider the real hermitian polynomial p = pa in
one complex variable z, defined by

pa(z, z) = |z2 − 1 + a|2 + |z3 − z|2 − a2.

Since ∂z∂zpa(z, z) = 4|z|2 + |3z2 − 1|2 > 0 for z ∈ C, we see that pa(z, z) is stricly
subharmonic. Below we’ll show that, for suitable choice of a, the set

Ωa := {z ∈ C : pa(z, z) < 0}

is non-empty and connected, and the compact real algebraic curve

Ca := {z ∈ C : pa(z, z) = 0}

is nonsingular.
On the other hand, from pa(±1,±1) = 0 (for all four choices of sign) it is obvious

that the polarized polynomial pa(z, w) lies in the ideal J1,−1. Hence, by Proposition
3.1, there exists a real polynomial f ∈ A which is strictly positive on Ca but which is
not a sum of hermitian squares on Ca.

Since the polynomials pa form a linear pencil spanned by p0 and by ∂p
∂a (z, z) =

z2 + z2− 2, and since the latter defines a nonsingular affine curve, the affine curve Ca

is nonsingular for all but finitely many choices of a. A somewhat tedious calculation
by hand, or an immediate check with the help of a computer algebra system, verifies
that, for instance, a = 1 is such a choice.

Moreover, one can show that Ωa is connected for a > 1
2 . Here we restrict to showing

this for a close to 1. To that end consider |pa(reiθ)|2 as a function of r ≥ 0, for fixed
θ. We find |pa(reiθ)|2 = ha(r2) where ha(t) is the real cubic polynomial

ha(t) = t3 + (1− 2γ)t2 + (1− 2γ + 2aγ)t + (1− 2a)

with γ := cos(2θ). If ha(t) has more than one positive root then all three roots are
positive, which implies 1− 2γ < 0, hence γ > 1

2 . On the other hand, the discriminant
of ha(t) is negative for a = 1 and 0 ≤ γ ≤ 1 (it is equal to −32γ3 + 52γ2 + 8γ − 44).
Therefore, the discriminant of ha(t) is negative for the same γ and all values of a close
to 1. This shows that ha(t) has only one positive root for a close to 1 and all |γ| ≤ 1,
which implies that Ωa is connected for a close to 1. In summary we have proved:

Proposition 4.1. For all real numbers a close to 1, the set Ωa is connected, has a
strictly subharmonic defining function and possesses a compact nonsingular algebraic
boundary Ca. There exists a real hermitian polynomial f(z, z) which is strictly positive
on Ca but is not a sum of hermitian squares on Ca. �

For a = 1 we get Ω = {z ∈ C : |z|4 + |z3 − z|2 < 1}. Notice that the polynomial
f(z, z) = 2− |z|2 is strictly positive on Ω but it is not a sum of hermitian squares on
∂Ω, as proved in Proposition 2.2.
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