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Abstract. In 1888, Hilbert proved that every nonnegative quartic form
f = f(x, y, z) with real coefficients is a sum of three squares of quadratic
forms. His proof was ahead of its time and used advanced methods
from topology and algebraic geometry. Up to now, no elementary proof
is known. Here we present a completely new approach. Although our
proof is not easy, it uses only elementary techniques. As a by-product,
it gives information on the number of representations f = p2

1 + p2
2 + p2

3

of f up to orthogonal equivalence. We show that this number is 8 for
generically chosen f , and that it is 4 when f is chosen generically with
a real zero. Although these facts were known, there was no elementary
approach to them so far.

Introduction

In 1888, David Hilbert published an influential paper [3] which became
fundamental for real algebraic geometry, and which remains an inspiring
source for research even today. It addresses the problem whether a real form
(homogeneous polynomial) f(x0, . . . , xn) which takes nonnegative values on
all of Rn+1 is necessarily a sum of squares of real forms. Hilbert proves that
the answer is negative in general. As is well-known, his results go much
beyond this fact and contain a surprising positive aspect as well. Namely,
for any pair (n, d) of integers with n ≥ 2 and even d ≥ 4, except for (n, d) =
(2, 4), he shows that there exists a nonnegative form of degree d in n + 1
variables which is not a sum of squares of polynomials. In the exceptional
case, however, he proves that every nonnegative ternary quartic form is a
sum of three squares of real quadratic forms.

It is the existence of a representation f = p2
1 + p2

2 + p2
3 in this exceptional

case that is the subject of the present article. Hilbert’s original proof is brief
and elegant, and it is ahead of its time in its topological arguments. For his
contemporaries it must have been hard to grasp. Even today it is not easy
to read, and it leaves a number of details to be filled in. Several authors have
given fully detailed accounts of Hilbert’s proof in recent years. We mention
the approach due to Cassels, published in Rajwade’s book ([8] chapter 7),
and the two articles by Rudin [9] and Swan [11]. These approaches also
show some characteristic differences.
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One of the first approaches to Hilbert’s theorem along elementary and
explicit lines was carried out by Powers and Reznick in [6], where complete
answers were given in certain special cases. We would also like to point out
the recent preprint [5] by Plaumann, Sturmfels and Vinzant which studies
the computational side of Hilbert’s theorem, and which contains a beautiful
blend of the 19th century mathematics of ternary quartics.

So far, there seems to exist essentially only one proof different from
Hilbert’s. It comes out as a by-product of the quantitative analysis made in
[7] and [10]. These papers had a different goal, namely to count the number
of essentially distinct ways in which a positive semidefinite (or psd, for short)
ternary quartic f can be written as a sum of three squares. The case where
the plane projective curve f = 0 is non-singular is done in [7], the general
irreducible case is in [10]. Both papers, and in particular the second, are
using tools of modern algebraic geometry and can certainly not be called
elementary.

We are convinced that Hilbert’s original proof from [3] cannot claim an
elementary character either. This can be seen from the following sketchy
overview of its main steps:

(1) The set of sums of three squares of quadratic forms is closed inside
the space of all quartic forms. Therefore it suffices to prove the
existence of a representation for all forms in some open dense subset
of the psd forms, for example for all nonsingular such forms.

(2) Hilbert proves that the map (p1, p2, p3) 7→
∑3

j=1 p
2
j (from triples

of real quadratic forms to quartic forms) is submersive (that is, its
tangent maps are surjective), when restricted to the open set of
triples for which the curve

∑
j p

2
j = 0 is nonsingular. His elegant

argument needs some non-trivial tool from algebraic geometry, like
Max Noether’s AF +BG theorem.

(3) When the real form f is strictly positive definite and singular, the
curve f = 0 has at least two different (complex conjugate) singular
points.

(4) The locus of quartic forms f for which the curve f = 0 has at least
two different singularities has codimension ≥ 2 inside the space of
all quartic forms.

(5) Removing a subspace of codimension ≥ 2 from a connected topolog-
ical space leaves the remaining space connected. Hence, by (3) and
(4), the space of nonsingular positive forms is (path) connected.

(6) There exist nonsingular positive forms which are sums of three squares,
like f (0) = x4 + y4 + z4.

(7) Given an arbitrary nonsingular positive form f there exists, by (5),
a path f (t), 0 ≤ t ≤ 1, joining f (1) = f to a sum of three squares
f (0) such that f (t) is nonsingular and positive for every 0 ≤ t ≤ 1.
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(8) Using (1) and (2), and by the implicit function theorem, the repre-
sentation (6) of f (0) can be extended continuously along the path
f (t) to a representation of f (1) = f as a sum of three squares.

In view of (2), and certainly of (4) and (5), this proof does not have an
elementary character. Also note that the existence of a path f (t) as in (7)
is ensured only by the general topological fact (5). There is no concrete
construction of such a path.

Our proof uses a variant of (1), plus applications of the implicit function
theorem similar to (8). Otherwise it proceeds differently. In particular, we
avoid the non-elementary steps (2), (4) and (5). Like Hilbert we are deform-
ing representations along paths. Other than in Hilbert’s proof, however, our
paths are completely explicit, and are in fact simply straight line segments.
Here is a road map:

(a) By a limit argument (see 3.6), it suffices to prove the existence of a
representation for generic psd f , i.e., for psd f satisfying a condition
Ψ(f) 6= 0 where Ψ is a suitable nonzero polynomial in the coefficients
of f .

(b) When the form f has a non-trivial real zero, an elementary and
constructive proof for the existence of a representation as a sum of
three squares was given by the first author in [4]. We shall recall it
in Sect. 2 below.

(c) Assume that f has no non-trivial real zero. We find a psd form
f (0) that has a non-trivial real zero such that the half-open interval]
f (0), f

]
(in the space of all quartic forms) consists of strictly positive

forms.
(d) Let f (t) (0 ≤ t ≤ 1) denote the forms in the line segment constructed

in (c), with f (1) = f . Under generic assumptions on f we show
that every representation of f (0) can be extended continuously to a
representation of f (t) for 0 < t < ε, with some ε > 0.

(e) Under further generic assumptions on f we prove for every fixed 0 <
t ≤ 1 that every representation of f (t) can be extended continuously
and uniquely to a representation of f (s) for all s sufficiently close to
t. Both in (d) and (e) we use the theorem on implicit functions.

(f) Using the limit principle (a), it follows that f = f (1) has a represen-
tation as a sum of three squares.

All our “generic assumptions” on f are explicit. See 9.1 for the entire list and
for a discussion of where they have been used. The exceptional cases that
we have to exclude are given by the vanishing of invariants that are mostly
discriminants or resultants of polynomials formed from (the coefficients of)
f . Two of our invariants are of a more general nature, one of them having
the amazing degree of 896 in the coefficients of f .

We believe that we have thus achieved a proof to Hilbert’s theorem that
only uses elementary tools. With only little extra effort, our arguments
allow in fact to deduce substantial information on the number of essentially
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distinct representations, at least in generic cases. So far there has been
no elementary approach to counting representations. Therefore we think it
worthwile to include these parts.

Here is an overview of the structure of the paper. We start with the case
where f has a real zero. By an explicit argument we show that f has a rep-
resentation as a sum of three squares (Prop. 2.4). Refining the arguments
yields the precise number of inequivalent representations, under suitable hy-
potheses of generic nature (Prop. 2.9). In Section 3 we turn to arbitrary psd
quartic forms f . We show that f can be written as a sum of three squares,
if and only if there exists a polynomial-valued rational point (with certain
side conditions) on a certain elliptic curve associated with f (Prop. 3.3).
No background or terminology on elliptic curves is used. Again we refine
this by a result that permits to count representations (Prop. 3.8). Then we
construct the linear path f (t) (0 ≤ t ≤ 1) referred to in (d) above and study
the extension of representations along this path. Extension around t = 0
is studied in Section 4, around 0 < t < 1 in Sections 6 and 8. In between
we insert two sections that provide the required background on symmetric
functions. Section 5 has classical material on the discriminant. To handle
the last case of the extension argument, we need an invariant Φ(f, g, h) of
triples of polynomials which is less standard; it is introduced and discussed
in Section 7. This invariant essentially decides if the pencil spanned by g
and h contains a member that has a quadratic factor in common with f .
We do not know whether this invariant has been considered before. Fi-
nally, in Section 9 we summarize our proof and give a systematic account
of all the genericity conditions used. We also obtain the precise number of
representations of f under (explicit) generic assumptions on f .

Basically, we consider techniques as “elementary” if they are accessible
using undergraduate mathematics. The most advanced features that we
use are the theorem on implicit functions and the theorem on symmetric
functions. Only once (in the proof of Prop. 1.1(b)) are we using slightly
more advanced algebraic techniques, namely basic facts about Dedekind
domains. However, this part is only used for counting representations, and
is not needed for the proof of Hilbert’s theorem.

We believe that our approach to representations as sums of three squares
is also “constructive”, at least in a weak sense. It should be possible to
follow our deformation argument for constructing such representations with
arbitrary numeric precision, for example by using finite element methods.

1. The forms <1, q>

As usual, a polynomial f(x1, . . . , xn) with real coefficients is said to be
positive semidefinite (or psd for short) if f takes nonnegative values on Rn.
It is said to be positive definite if f(x) > 0 for all x ∈ Rn. When speaking
of homogeneous polynomials (also called forms), one requires f(x) > 0 only
for x 6= (0, . . . , 0), in order to call f positive definite.
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We shall mostly be working with homogeneous polynomials, except when
it becomes more convenient to dehomogenize. We start with univariate
(inhomogeneous) real polynomials.

Proposition 1.1. Let q ∈ R[x] be a positive definite polynomial of degree
two.

(a) Given any psd polynomial f ∈ R[x], there are polynomials ξ, η ∈ R[x]
with

f = η2 + qξ2. (1.1)
(b) Assume that f 6= 0 in (a) satisfies deg(f) = 2d. Then the total

number of solutions (ξ, η) to (1.1) is ≤ 2d+1, with equality if and
only if q - f and f is square-free.

For the proof of Hilbert’s theorem we only need part (a). The second
statement will be used in our count of representations.

Proof. Clearly, q and f may be scaled by any positive real number. By
changing the generator x of the polynomial ring if necessary, we may there-
fore assume q = x2 + 1.

First assume that f is monic of degree 2, say f = (x+ a)2 + b2 with real
numbers a and b. Then ξ as in (1.1) has to be a constant, and we write
ξ2 = λ. Given λ ∈ R, the polynomial

f − λq = (1− λ)x2 + 2ax+ (a2 + b2 − λ)

is a square if and only if either λ = 1, a = 0 and b2 ≥ 1, or else λ < 1 and

(1− λ)(a2 + b2 − λ)− a2 = 0 (1.2)

(vanishing of the discriminant of f −λq). In any case, there is precisely one
value of λ ≥ 0 for which f−λq is a square: For a = 0, this is λ = min{1, b2},
while for a 6= 0 it is the unique 0 ≤ λ < 1 for which (1.2) vanishes. (Note
that the left hand side of (1.2) is positive for λ� 0, is b2 ≥ 0 for λ = 0, and
is −a2 < 0 for λ = 1.) Hence ξ2 = λ and η2 = f − qξ2 as in (1.2) exist and
are unique. Note that there are exactly four possibilities for the pair (ξ, η),
except when f or fq is a square. (In these cases there exist precisely two
possibilities, provided f 6= 0).

When f is an arbitrary psd polynomial, we can write f as a product
of quadratic psd polynomials. Using the quadratic case just established,
together with the multiplication formulæ

(a2 + b2q)(c2 + d2q) = (ac± bdq)2 + (ad∓ bc)2q, (1.3)

we conclude that f has a representation (1.1). This proves (a).
For the proof of (b) we use some basic facts about prime ideal factorization

in Dedekind domains. Let L = R(x,
√
−q), a quadratic extension of the field

R(x). The integral closure B of R[x] in L is a Dedekind domain. It consists
of all elements in L whose norm and trace are in R[x], from which we see
B = R[x,

√
−q]. The behaviour of the primes in the extension R[x] ⊂ B

is easy to see: The linear polynomials ` in R[x] are unramified in B and
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remain prime in B, having a quadratic extension of the residue field. The
monic irreducible quadratic polynomials p 6= q in R[x] are positive definite,
hence they split into a product p = p1p2 of two primes in B not associated
to each other, by (1.1), while the prime q of R[x] is ramified. Hence B is a
principal ideal domain. Since η2 + qξ2 = (η+ ξ

√
−q)(η− ξ

√
−q) is the norm

of η + ξ
√
−q in the extension R[x] ⊂ B (for ξ, η ∈ R[x]), the number of

representations (1.1) of f is equal to the number of elements in B of norm
f .

The norms of the prime elements of B are N(l) = l2, N(p1) = N(p2) = p
and N(

√
−q) = q. This shows that the number of elements in B of norm

f is obtained as follows: Every factor pm (for p 6= q quadratic irreducible)
contributes m + 1 solutions; multiply all these numbers, and multiply the
result by 2. In other words, the precise number is (for f 6= 0)

2
∏
p

(1 + vp(f)),

product over the monic irreducible polynomials p 6= q of degree 2. From this
the assertion in (b) is clear. �

It would be possible to present the arguments for part (b) in a way that
avoids using any theory of Dedekind rings. However we felt that trying this
is not worth the effort.

Later it will be preferable for us to use Prop. 1.1 in a homogenized version.
For convenience we state this version here:

Corollary 1.2. Let q ∈ R[x, y] be a positive definite quadratic form. Given
any psd form f ∈ R[x, y] of degree 2d, there exist forms ξ, η ∈ R[x, y] with
deg(ξ) = d − 1, deg(η) = d and f = η2 + qξ2. The number of such pairs
(ξ, η) is ≤ 2d+1, with equality if and only if q - f and f is square-free. �

2. The case where f has a real zero

2.1. Let f = f(x, y, z) be a psd quartic form in R[x, y, z], and assume that
f = 0 has a nontrivial real zero. Changing coordinates linearly we can
assume f(0, 0, 1) = 0, hence

f = f2(x, y) · z2 + f3(x, y) · z + f4(x, y) (2.1)

where fj = fj(x, y) is a binary form of degree j (j = 2, 3, 4). That f is psd
means that each of the three binary forms

f2, f4, 4f2f4 − f2
3

is psd, that is, a sum of two squares. By an argument which is entirely
elementary and explicit, we shall construct a representation of f as a sum of
three squares (Proposition 2.4). For generically chosen f2, f3, f4, we shall in
fact construct all such representations (Proposition 2.9). This second part
is not needed for the proof of Hilbert’s theorem.
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2.2. Let us start by showing that f is a sum of three squares. If f2 = 0
then also f3 = 0, and hence f = f4 is a psd binary form, therefore a
sum of two squares. If 0 6= f2 = l2 is a square of a linear form, then
4l2f4 ≥ f2

3 shows l | f3, say f3 = 2lg2. Observe that f4 − g2
2 is a sum of two

squares since 4l2(f4 − g2
2) = 4f2f4 − f2

3 is a sum of two squares. Therefore
f = (lz + g2)2 + (f4 − g2

2) is a sum of three squares.

2.3. It remains to discuss the case where f2 is strictly positive definite. From
Cor. 1.2 we see that there exist binary forms ξ = ξ(x, y) and η = η(x, y)
with deg(ξ) = 2, deg(η) = 3 and η2 + ξ2f2 = 4f2f4 − f2

3 , that is,

η2 + f2
3 = f2(4f4 − ξ2). (2.2)

On the other hand, since f2 is psd, there are linear forms l1, l2 ∈ R[x, y] with
f2 = l21 + l22 = (l1 + il2)(l1 − il2) (i2 = −1). By similarly factoring the left
hand side of (2.2), it follows that l1 + il2 divides one of η ± if3. Replacing
l2 by −l2 if necessary we can assume

(l1 + il2) | (η + if3).

This implies that f2 divides (η + if3)(l1 − il2) = (ηl1 + f3l2) + i(f3l1 − ηl2).
Hence f2 divides both real and imaginary part of the right hand form. So
the fractions

h1 :=
f3l1 − ηl2

2f2
, h2 :=

ηl1 + f3l2
2f2

are binary quadratic forms (with real coefficients), and (2.2) implies

h2
1 + h2

2 =
(η2 + f2

3 )(l21 + l22)
4f2

2

=
η2 + f2

3

4f2
= f4 −

1
4
ξ2.

Moreover

h1l1 + h2l2 =
f3(l21 + l22)

2f2
=

1
2
f3,

and so
f =

(ξ
2

)2
+ (h1 + l1z)2 + (h2 + l2z)2

is a sum of three squares of quadratic forms. We have thus proved:

Proposition 2.4. Let f ∈ R[x, y, z] be a psd quartic form which has a
nontrivial real zero. Then f is a sum of three squares of quadratic forms in
R[x, y, z]. �

Note that the proof was entirely explicit and constructive.
We now turn to the task of determining all representations of f , at least

in the case when f2, f3, f4 are chosen generically. For this, the following
definition is useful.

Definition 2.5. Two representations

f =
3∑
i=1

p2
i =

3∑
i=1

p′2i
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with quadratic forms pi, p′i ∈ R[x, y, z] are said to be (orthogonally) equiva-
lent if there exists an orthogonal matrix S = (sij) ∈ Ø3(R) such that

p′j =
3∑
i=1

sijpi (j = 1, 2, 3).

2.6. Let f = f2z
2 + f3z + f4 be a psd form as in (2.1). We assume that f2

is not a square, hence is strictly positive definite. Assume

f =
3∑
i=1

(viz + wi)2 (2.3)

where vi resp. wi ∈ R[x, y] are homogeneous of respective degrees 1 resp. 2
(i = 1, 2, 3). We first show how to associate with (2.3) a solution (ξ, η) of
(2.2).

Consider the column vectors v = (v1, v2, v3)t and w = (w1, w2, w3)t with
polynomial entries. Since the linear forms v1, v2, v3 are linearly dependent,
there is an orthogonal matrix S ∈ Ø3(R) such that the first entry of the
column Sv is zero. Replacing v resp. w by Sv resp. Sw yields an equivalent
representation f =

∑3
i=1(v′iz+w′i)

2 in which v′1 = 0. So up to replacing (2.3)
by an equivalent representation we can assume v1 = 0, and get accordingly

f2 = v2
2 + v2

3, f3 = 2(v2w2 + v3w3), f4 = w2
1 + w2

2 + w2
3.

Putting ξ := 2w1 and η := 2(v2w3 − v3w2) gives

η2 + f2
3 = 4(v2w3 − v3w2)2 + 4(v2w2 + v3w3)2

= 4(v2
2 + v2

3)(w2
2 + w2

3)

= f2(4f4 − ξ2)

so (ξ, η) solves (2.2).
Note that a different choice of S does not change ξ2 and η2. Indeed,

the first row of S is unique up to a factor ±1 since v1, v2, v3 span the
space of linear forms in R[x, y]. Therefore ±ξ does not change if S is chosen
differently. The same argument shows that ξ2 and η2 depend only on the
equivalence class of (2.3).

2.7. When f2 is not a square, note that the number of solutions (ξ, η) of
(2.2) was determined in Prop. 1.1(b). In particular, it was shown there that
this number is ≤ 16, and is equal to 16 if and only if f2 - f3 and 4f2f4−f2

3 is
square-free. In this latter case, the pair (ξ2, η2) can therefore take precisely
four different values.

2.8. Assume that f2 is not a square, that f2 - f3 and 4f2f4 − f2
3 is square-

free. We show that inequivalent representations (2.3) give different solutions
(ξ2, η2) to (2.2). Combined with 2.7, this will imply that f has precisely four
different representations up to equivalence.
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Let

f = w2
1 + (v2z + w2)2 + (v3z + w3)2

= w′21 + (v′2z + w′2)2 + (v′3z + w′3)2

be two representations with the same invariants ξ2, that is, with w2
1 = w′21 =

ξ2

4 . Then v2w3 − v3w2 = ±(v′2w
′
3 − v′3w′2), and we can assume

v2w3 − v3w2 = v′2w
′
3 − v′3w′2

by multiplying v2z + w2 with −1 if necessary. Writing v = v2 + iv3, w =
w2 + iw3 and v′ = v′2 + iv′3, w′ = w′2 + iw′3 this means =(vw) = =(v′w′). On
the other hand we have

vv = v′v′ = f2, <(vw) = <(v′w′) =
1
2
f3, 4ww = 4w′w′ = 4f4 − ξ2,

and we conclude
vw = v′w′. (2.4)

Now v does not divide w′, because otherwise vv = f2 would divide 4w′w′ =
4f4 − ξ2, and hence we would have

f2
2 | (η2 + f2

3 ) = (η + if3)(η − if3),

whence f2 | f3, which was excluded. Comparing the two products (2.4) we
see that there exist λ, µ ∈ C with v′ = λv and w′ = µw, and clearly we
must have |λ| = |µ| = 1. Therefore (2.4) shows λ = µ. This means that the
two representations we started with are equivalent.

We summarize these discussions:

Proposition 2.9. Let f = f2z
2 + f3z + f4 be psd (with fi ∈ R[x, y] homo-

geneous of degree i, for i = 2, 3, 4), and assume that f2 is not a square.
(a) Associated with each representation of f as a sum of three squares

is a well-defined solution of

η2 + f2
3 = f2(4f4 − ξ2)

such that ξ2 and η2 depend only on the orthogonal equivalence class
of the representation.

(b) If f2 - f3 and 4f2f4− f2
3 is square-free, then any two representations

of f with the same invariants ξ2, η2 are equivalent. There exist
precisely four different equivalence classes of representations of f .

�

Remark 2.10. Let f = f2z
2 +f3z+f4 be psd, as in Proposition 2.9. The real

zero (0, 0, 1) is a singularity of the projective curve f = 0. That f2 is not
a square means that this singularity is a node (with two complex conjugate
tangents). When f2 - f3 and 4f2f4 − f2

3 is square-free, one can show that
(0, 0, 1) is the only singularity of the curve (the converse is not true). The
fact that f has precisely four inequivalent representations is in agreement
with the results of [10].
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3. The case where f has no real zero

The following normalization lemma was proved in [4]:

Lemma 3.1. Let f = f(x, y, z) be a strictly positive definite form of degree
four in R[x, y, z]. Then, by a linear change of coordinates, f can be brought
into the form

f = z4 + f2z
2 + f3z + f4 (3.1)

in which fj ∈ R[x, y] is a form of degree j (j = 2, 3, 4), and such that the
form f − z4 is psd.

Proof. Let c > 0 be the minimum value taken by f on the unit sphere
S2 in R3. Scaling f with a positive factor we may assume c = 1, and
after an orthogonal coordinate change we get c = 1 = f(0, 0, 1). The form
f̃ := f − (x2 + y2 + z2)2 is nonnegative on R3 and vanishes at (0, 0, 1).
Therefore f̃ does not contain the term z4, in fact degz(f̃) ≤ 2. This means
that f has the shape (3.1). The last assertion follows from f − z4 = f̃ +
(x2 + y2 + z2)2 − z4 ≥ f̃ ≥ 0. �

Remarks 3.2. 1. The form f − z4 is psd and vanishes in (0, 0, 1), so the
results of Sect. 2 apply to f − z4. In particular, we can explicitly construct
a representation of f − z4 as a sum of three squares.

2. The minimum value of f on the unit sphere can be found by inspecting
the solutions of the equation ∇f(x, y, z) = λ · (x, y, z) with λ ∈ R.

For f as in (3.1) we now study the question when f is a sum of three
squares.

Proposition 3.3 ([4] Prop. 3.1). Let f = z4 + f2z
2 + f3z + f4 where fj ∈

R[x, y] is a form of degree j (j = 2, 3, 4). Then f is a sum of three squares
if, and only if, there exist binary forms ξ, η ∈ R[x, y] with deg(ξ) = 2,
deg(η) = 3 and

η2 + f2
3 = (f2 − ξ)(4f4 − ξ2), (3.2)

such that
f2 − ξ ≥ 0, 4f4 − ξ2 ≥ 0. (3.3)

Remark 3.4. If one of f2−ξ and 4f4−ξ2 is psd, then so is the other by (3.2),
except possibly in the case where f2 − ξ resp. 4f4 − ξ2 was zero. The latter
can happen only if f3 = 0 and η = 0. Note that the psd conditions in (3.3)
mean that the two forms are sums of two squares of linear resp. quadratic
forms.

Proof of 3.3. First assume f =
∑3

i=1(uiz2 + viz + wi)2, where ui, vi, wi ∈
R[x, y] are forms of respective degrees 0, 1, 2 (1 ≤ i ≤ 3). The vector
(u1, u2, u3) ∈ R3 has unit length, so by changing with an orthogonal real
3 × 3 matrix we can get u1 = 1 and u2 = u3 = 0. This implies v1 = 0,
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v2
2 +v2

3 = f2−2w1, 2(v2w2 +v3w3) = f3 and w2
2 +w2

3 = f4−w2
1. One checks

that (3.2) and (3.3) are satisfied with

ξ = 2w1, η = 2(v2w3 − v3w2).

Conversely assume that ξ, η satisfy (3.2) and (3.3). If ξ = f2, then f3 = 0,
and by (3.3) there are quadratic forms w2, w3 ∈ R[x, y] with f4 − 1

4f
2
2 =

w2
2 + w2

3, so

f = z4 + f2z
2 + f4 =

(
z2 +

f2

2

)2
+ w2

2 + w2
3.

Now assume ξ 6= f2. By (3.3) there are linear forms v2, v3 ∈ R[x, y] with
f2 − ξ = v2

2 + v2
3 = (v2 + iv3)(v2 − iv3) (where i2 = −1). From (3.2) we see

that the linear form v2 + iv3 divides one of the two forms η± if3 (in C[x, y]).
Replacing v3 with −v3 if necessary we can assume (v2 + iv3) | (η+ if3). This
implies that f2 − ξ divides

(η + if3)(v2 − iv3) = (f3v3 + ηv2) + i(f3v2 − ηv3).

Therefore,(
z2 +

ξ

2

)2
+
(
v2z +

f3v2 − ηv3
2(f2 − ξ)

)2
+
(
v3z +

f3v3 + ηv2
2(f2 − ξ)

)2

is a sum of three squares in R[x, y, z]. A comparison of the coefficients shows
that this sum is equal to f . �

Remark 3.5. Consider f = z4 + f2z
2 + f3z+ f4 as a monic polynomial in z,

with coefficients fj ∈ R[x, y] as in Prop. 3.3. Equation (3.2) says η2 = rf (ξ)
where

rf (z) = (f2 − z)(4f4 − z2)− f2
3

is the cubic resolvent of f with respect to z (see 5.2 below).

The following lemma follows from the fact that the sum of squares map
(p1, p2, p3) 7→

∑
j p

2
j is topologically proper (see (1) of the introduction).

Avoiding this argument we give a direct proof based on Prop. 3.3:

Lemma 3.6. Let f (1), f (2), . . . be a sequence of quartic forms as in 3.3
which converges coefficient-wise to a form f . If every f (j) is a sum of three
squares, then the same is true for f .

Proof. For every index j there exist forms ξ(j), η(j) ∈ R[x, y] satisfying the
conditions of Prop. 3.3. From the inequality

(
ξ(j)
)2 ≤ 4f4 it follows that

the sequence ξ(j) is bounded, and so the sequence η(j) is bounded as well.
Hence there exists a limit point (ξ, η) of the sequence

(
ξ(j), η(j)

)
, and (ξ, η)

satisfies the conditions of 3.3 for the form f . �

The rest of this section is not needed for our proof of Hilbert’s theorem.
Similar as in the case where f has a real zero (Section 2), we try to find all
representations of f as a sum of three squares.
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Lemma 3.7. Let f be as in Prop. 3.3. The construction in the proof of
Prop. 3.3 associates with every representation

f = p2
1 + p2

2 + p2
3 (3.4)

a pair (ξ, η) which solves (3.2) and (3.3). The form ξ is independent from
the choices. In fact it depends only on the orthogonal equivalence class of
the representation (3.4).

Proof. Consider the representation (3.4), and write

pi = uiz
2 + viz + wi (i = 1, 2, 3)

where ui, vi, wi ∈ R[x, y] are homogeneous of respective degrees 0, 1 and 2.
Writing u = (u1, u2, u3)t, v = (v1, v2, v3)t, w = (w1, w2, w3)t, we choose S ∈
Ø3(R) with Su = (1, 0, 0)t as in the proof of Prop. 3.3. If Sv = (v′1, v

′
2, v
′
3)t

and Sw = (w′1, w
′
2, w

′
3)t, we have shown that

ξ = 2w′1, η = 2(v′2w
′
3 − v′3w′2)

solve (3.2) and (3.3). If T is another orthogonal matrix with Tu = (1, 0, 0)t,
then T = US where U is orthogonal with first column and row (1, 0, 0). This
shows that using T instead of S does not change ξ. The same argument
shows that ξ depends only on the orthogonal equivalence class of (3.4). �

Proposition 3.8. Let f = z4+f2z
2+f3z+f4 with fj ∈ R[x, y] homogeneous

of degree j (j = 2, 3, 4), and assume gcd(f3, 4f4 − f2
2 ) = 1. Let

f =
3∑
i=1

p2
i =

3∑
i=1

p′2i

be two representations of f with associated invariants ξ and ξ′ (see Lemma
3.7). If ξ = ξ′, the two representations are orthogonally equivalent.

Proof. Assuming f2−ξ 6= 0, we first show that f2−ξ does not divide 4f4−ξ2.
From

(f2 − ξ)(4f4 − ξ2) = η2 + f2
3 = (η + if3)(η − if3)

we see that (f2−ξ) | (4f4−ξ2) would imply (f2−ξ) | f3. On the other hand,
it would imply (f2 − ξ) | (4f4 − f2

2 ), thus contradicting the assumption.
Write pi = uiz

2 + viz + wi and p′i = u′iz
2 + v′iz + w′i (i = 1, 2, 3) as in the

proof of Lemma 3.7. We can assume u1 = u′1 = 1 and ui = u′i = 0 for i = 2, 3.
By hypothesis we have w1 = w′1 = ξ

2 and v2w3 − v3w2 = ±(v′2w
′
3 − v′3w′2);

replacing p3 with −p3 if necessary we can assume

v2w3 − v3w2 = v′2w
′
3 − v′3w′2 =

η

2
. (3.5)

Since the coefficient of z3 vanishes in f we have v1 = v′1 = 0, and so p1 =
p′1 = z2 + ξ

2 . Write v := v2 + iv3, w := w2 + iw3 and similarly v′ := v′2 + iv′3,
w′ := w′2 + iw′3. Then (3.5) says =(vw) = =(v′w′) = 1

2η. A comparison of
the other coefficients gives vv = v′v′ = f2 − ξ, <(vw) = <(v′w′) = 1

2f3 and
4ww = 4w′w′ = 4f4 − ξ2. In particular, vw = v′w′ = 1

2(f3 + iη).
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We clearly have v = 0 ⇔ v′ = 0, and similarly w = 0 ⇔ w′ = 0. In
either of these cases, it is clear that the two representations are equivalent.
Hence we can assume v, w 6= 0. Now v does not divide w′, because otherwise
vv | w′w′, i.e., (f2 − ξ) | (4f4 − ξ2), which was ruled out at the beginning.
So we conclude that there exist λ, µ ∈ C with |λ| = |µ| = 1 and v′ = λv,
w′ = µw. Then vw = v′w′ implies λ = µ. Hence the two representations
are orthogonally equivalent. �

Corollary 3.9. If gcd(f3, 4f4 − f2
2 ) = 1 the number of inequivalent repre-

sentations of f equals the number of forms ξ solving (3.2) and (3.3) with
suitable η. �

4. Deforming the quartic, I

4.1. Let f = f(x, y, z) be a nonzero psd quartic form with real coefficients.
We are trying to show that f is a sum of three squares. The case where f
has a nontrivial real zero has already been solved completely. From now on
we assume that f is strictly positive definite. We shall use a deformation
to a suitable psd form with real zero to arrive at the desired conclusion, at
least in a generic case.

As in Lemma 3.1 we use scaling by a positive number and an orthogonal
coordinate change to bring f into the form

f = z4 + f2(x, y)z2 + f3(x, y)z + f4(x, y) (4.1)

with deg(fj) = j (j = 2, 3, 4), such that the form

f − z4 = f2(x, y)z2 + f3(x, y)z + f4(x, y)

is psd. The latter means that each of the binary forms f2, f4 and 4f2f4−f2
3

is psd.

4.2. Let t be a real parameter. Fixing f as in 4.1, we consider the family
of quartic forms

f (t) := t2f + (1− t2)(f − z4)

= t2z4 + f2(x, y)z2 + f3(x, y)z + f4(x, y) (4.2)

(t ∈ R). For 0 < |t| ≤ 1, the form f (t) is strictly positive definite, while
f (0) = f − z4 has a zero at (0, 0, 1). When t runs from 0 to 1, the form
f (t) covers the line segment between f − z4 and f (inside the space of all
real quartic forms). Note however that the time parameter is quadratic, not
linear.

4.3. Let 0 6= t ∈ R. By Prop. 3.3, f (t) is a sum of three squares if and only
if there are forms ξ̃, η̃ ∈ R[x, y] with η̃2 + t−4f2

3 = (t−2f2 − ξ̃)(4t−2f4 − ξ̃2),
with both factors on the right psd. Multiplying with t4 and substituting
ξ = tξ̃, η = t2η̃, we see that this happens if and only if there are forms ξ, η
in R[x, y] (of degrees 2 resp. 3) such that

η2 + f2
3 = (f2 − tξ)(4f4 − ξ2), (4.3)
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f2 − tξ ≥ 0, 4f4 − ξ2 ≥ 0. (4.4)
On the other hand, conditions (4.3), (4.4) have a solution (ξ0, η0) for t = 0,
provided that f2 is not a square, since 4f2f4 − f2

3 is then represented by
<1, f2> (Cor. 1.2, see also (2.2) above). The condition 4f4 − ξ20 ≥ 0 is
automatic since f2 ≥ 0 and f2 6= 0. Keeping the assumption that f2 is not
a square, let us fix such forms ξ0, η0 with deg(ξ0) = 2, deg(η0) = 3 and

η2
0 + f2ξ

2
0 = 4f2f4 − f2

3 . (4.5)

Proposition 4.4. In addition to the assumptions in 4.1, assume that f2

is not a square, that f2 - f3 and that 4f2f4 − f2
3 is square-free. Then there

exist continuous families (ξ(t)), (η(t)) (|t| < ε, for some ε > 0) of forms such
that (ξ(0), η(0)) = (ξ0, η0), and such that (ξ(t), η(t)) solves (4.3), (4.4) for all
|t| < ε.

For the proof we need the following simple lemma:

Lemma 4.5. Let k be a field, let f , g ∈ k[t] be polynomials with deg(f) = m,
deg(g) = n and m, n ≥ 1. The linear map

k[t]m−1 ⊕ k[t]n−1 → k[t]m+n−1, (p, q) 7→ pg + qf

is bijective if and only if f and g are relatively prime. (Here k[t]d denotes
the space of polynomials of degree ≤ d.)

Proof. Both the source and the target vector space have the same dimension
m + n. If f and g are relatively prime, then pg + qf = 0 implies f | p and
g | q, whence p = q = 0 by degree reasons. The reverse implication is
obvious. �

Note that if one uses the canonical linear bases to describe the map in
4.5 by a matrix, and takes its determinant, one obtains the resultant of f
and g.

Proof of Prop. 4.4. We first exploit the assumption. The forms ξ0 and η0 are
relatively prime since the square of any common divisor divides 4f2f4 − f2

3

by (4.5). Also, the irreducible form f2 does not divide η0, since otherwise
(4.5) would imply f2 | f3. We conclude that f2ξ0 and η0 are relatively prime.

Let Vd ⊂ R[x, y] denote the space of binary forms of degree d, and consider
the map

F : V2 × V3 × R→ V6, (ξ, η, t) 7→ η2 + f2
3 − (f2 − tξ)(4f4 − ξ2).

The partial derivative of F at (ξ0, η0, 0) with respect to (ξ, η) is the linear
map

V2 ⊕ V3 → V6, (ξ, η) 7→ 2(η0η − f2ξ0ξ).
By Lemma 4.5, this map is bijective.

The theorem on implicit functions gives us therefore the existence of con-
tinuous families (ξ(t)), (η(t)), for |t| < ε′ and some ε′ > 0, with (ξ(0), η(0)) =
(ξ0, η0) and with F (ξ(t), η(t), t) = 0 (that is, (4.3)) for |t| < ε′. As for con-
ditions (4.4), it suffices to verify the first of them since f3 6= 0. For t = 0,
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f2 − tξ(t) = f2 is strictly positive definite by assumption. Hence there is
some ε′′ > 0 such that f2 − tξ(t) ≥ 0 for all |t| < ε′′, and we can take
ε = min{ε′, ε′′}. �

Using Prop. 3.3, we conclude from Prop. 4.4:

Corollary 4.6. Assume that f = z4 +f2z
2 +f3z+f4 (with fj ∈ R[x, y] and

deg(fj) = j) is strictly positive definite and satisfies f − z4 ≥ 0. If f2 is not
a square, f2 - f3 and 4f2f4 − f2

3 is square-free, then there exists ε > 0 such
that f (t) is a sum of three squares for all 0 ≤ |t| < ε.

Remarks 4.7. 1. It can be shown that a representation of f (t) as a sum of
three squares can be chosen for every |t| < ε such that the polynomials
in this representation depend continuously on t, starting at t = 0 with an
arbitrary representation of f (0) = f − z4.

2. Since the map F in the proof of 4.4 is polynomial, a suitable version
of the implicit function theorem (see [2] 10.2.4, for example) shows that the
families (ξ(t)), (η(t)) are not just continuous but even analytic.

5. The discriminant

Before proceeding to extend representations of f (t) over the entire interval
0 ≤ t ≤ 1, we need to discuss the discriminant of f (t).

5.1. Here are some reminders about the classical discriminant. Let K be a
field, let

f = a0z
n + a1z

n−1 + · · ·+ an ∈ K[z]
with a0 6= 0. The discriminant of f is defined as

disc(f) = discn(f) = a2n−2
0

∏
i<j

(αi − αj)2

if α1, . . . , αn are the roots of f in an algebraic closure of K. More precisely,
this is the n-discriminant of f ; if deg(f) = m < n − 1 then discn(f) = 0,
while in general discm(f) 6= 0. If deg(f) = n then it follows directly from
the definition that discn(f) = 0 if and only if f has a multiple root.

Using the theorem on symmetric functions one sees that discn(f) is an
integral polynomial in the coefficients a0, . . . , an of f . Moreover, there exist
universal polynomials p, q ∈ Z[a0, . . . , an, z] such that

discn(f) = pf + qf ′

where f ′ is the derivative of f . One finds p and q by writing f with in-
determinate coefficients and performing the Euclidean algorithm on f and
f ′.

Directly from the definition one sees that the polynomial f(λz) has dis-
criminant

discn f(λz) = λn(n−1) discn f(z), (5.1)
if λ ∈ K is a parameter.
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In the remainder of this section the degree n is always clear from the
context, and we omit the index n of the discriminant.

5.2. Given a quartic polynomial

f(z) = a0z
4 + a1z

3 + a2z
2 + a3z + a4,

the cubic resolvent rf (z) of f(z) is defined to be the cubic polynomial

rf (z) = a3
0z

3 − a2
0a2z

2 + a0(a1a3 − 4a0a4)z + (4a0a2a4 − a0a
2
3 − a2

1a4).

If a0 6= 0 and α1, . . . , α4 are the roots of f(z) in an algebraic closure of K,
a calculation with symmetric polynomials shows that rf (z) has the roots

β1 = α1α2 + α3α4, β2 = α1α3 + α2α4, β3 = α1α4 + α2α3.

We will only use the case where the cubic coefficient a1 of f vanishes, in
which

disc(f) = a0

(
−4a3

2a
2
3−27a0a

4
3+16a4

2a4−128a0a
2
2a

2
4+144a0a2a

2
3a4+256a2

0a
3
4

)
and

rf (z) = a0

(
(a0z − a2)(a0z

2 − 4a4)− a2
3

)
.

Lemma 5.3. Let f = a0z
4 + a1z

3 + a2z
2 + a3z + a4. Then

disc rf (z) = a6
0 disc f(z).

Proof. If β1, β2, β3 are the roots of rf as in 5.2, then

β1 − β2 = (α1 − α4)(α2 − α3),

β1 − β3 = (α1 − α3)(α2 − α4),

β2 − β3 = (α1 − α2)(α3 − α4),

from which one immediately sees

disc(rf ) = a12
0

∏
1≤k<l≤3

(βk − βl)2 = a12
0

∏
1≤i<j≤4

(αi − αj)2 = a6
0 disc(f).

�

Remark 5.4. If A = R, and if a quartic polynomial f(z) = a0z
4 + a2z

2 +
a3z + a4 ∈ R[z] with a0 6= 0 is known to be strictly positive definite, then
f can have a multiple root only if f is a square. Therefore, disc(f) = 0 is
equivalent to a3 = a2

2 − 4a0a4 = 0 in this case.

5.5. Now let t 6= 0 be a real parameter. We consider

f (t) = t2z4 + f2(x, y)z2 + f3(x, y)z + f4(x, y)

as a quartic polynomial in the variable z over R[x, y] (see (4.2)). Let r(t) be
the cubic resolvent of f (t) (with respect to z). We put

gt(z) :=
1
t2
· r(t)

(z
t

)
= (tz − f2)(z2 − 4f4)− f2

3 ,

and we define
Dt := disc gt(z) ∈ R[x, y].
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Using (5.1) and Lemma 5.3 we find

Dt = disc gt(z) = t−2 disc f (t)(z).

Explicitly, this gives

Dt := −4f3
2 f

2
3 − 27t2f4

3 + 16f4
2 f4 − 128t2f2

2 f
2
4 + 144t2f2f

2
3 f4 + 256t4f3

4

= 16f4(4t2f4 − f2
2 )2 + 4f2f

2
3 (36t2f4 − f2

2 )− 27t2f4
3

(a form of degree 12 in x and y). We further put

ht(z) =
∂

∂z
gt(z) = 3tz2 − 2f2z − 4tf4 (5.2)

and conclude:

Lemma 5.6. Dt lies in the ideal generated by gt and ht in R[x, y, z]. �

6. Deforming the quartic, II: Case of a linear factor

6.1. For t ∈ R we continue to consider the form

f (t) = t2z4 + f2(x, y)z2 + f3(x, y)z + f4(x, y),

see (4.2). We know that f (t) is strictly positive definite for 0 < |t| ≤ 1, and
that f (t) is a sum of three squares for small |t| (Prop. 4.4).

Let t0 6= 0 be a fixed real number, and assume that the form f (t0) is strictly
positive definite and a sum of three squares. Under generic assumptions on
f which do not depend on t0, we shall show that f (t) is a sum of three squares
for all t sufficiently close to t0.

6.2. That f (t0) is a sum of three squares means the following, by 4.3: There
exist forms ξ0, η0 ∈ R[x, y] with deg(ξ0) = 2, deg(η0) = 3 such that

η2
0 = (f2 − t0ξ0)(4f4 − ξ20)− f2

3 = gt0(ξ0), (6.1)

and
f2 − t0ξ0 ≥ 0, 4f4 − ξ20 ≥ 0. (6.2)

For d ≥ 0 we let again Vd denote the vector space of forms of degree d in
R[x, y]. As in the proof of Prop. 4.4 we consider the map F : V2×V3×R→ V6,

F (ξ, η, t) = η2 + f2
3 − (f2 − tξ)(4f4 − ξ2) = η2 − gt(ξ)

(see 5.5 for gt(ξ)). The partial derivative of F in (ξ0, η0, t0) with respect to
(ξ, η) is the linear map

V2 ⊕ V3 → V6, (ξ, η) 7→ 2η0 · η − ht0(ξ0) · ξ
where

ht0(ξ0) = 3t0ξ20 − 2f2ξ0 − 4t0f4,

c. f. 5.5.

Proposition 6.3. Assume that the two forms η0 ∈ V3 and ht0(ξ0) ∈ V4

are relatively prime, and that f3 6= 0. Then there exist ε > 0 and solutions
(ξt, ηt) to (4.3) and (4.4) for |t− t0| < ε such that (ξt0 , ηt0) = (ξ0, η0).
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Proof. Indeed, by applying Lemma 4.5 as in the proof of Prop. 4.4, it follows
from the theorem on implicit functions that there are (ξt, ηt) depending
continuously (in fact analytically, see 4.7) on t and satisfying (ξt0 , ηt0) =
(ξ0, η0) and F (ξt, ηt, t) = 0, for |t − t0| < ε′ (with suitable ε′ > 0). So
equations (4.3) hold for |t− t0| < ε′. We claim that conditions (4.4) hold as
well for suitable 0 < ε ≤ ε′. Indeed, since f3 6= 0, this is clear if f2 − t0ξ0 is
strictly positive, see Remark 3.4. If f2 − t0ξ0 is a square, it could a priori
happen that the quadratic form f2− tξt is indefinite for t arbitrarily close to
t0, say with real zeros αt < βt. However, since (f2− tξt)(4f4−ξ2t ) = f2

3 +η2
t ,

this would imply that αt and βt are roots of f3 for all these t, which is
evidently impossible. �

6.4. It remains to show, under suitable generic assumptions on f , that the
following is true:

For every real number t 6= 0 such that f (t) is positive definite,
and for every solution (ξ, η) of (4.3) and (4.4), the two forms
η and ht(ξ) are relatively prime.

To analyze the problem, assume that η and ht(ξ) have a nontrivial common
divisor p = p(x, y) in R[x, y]. We can assume that p is irreducible, hence
(homogeneous) of degree one or two. By (4.3), η2 = gt(ξ), and so p divides
gt(ξ) as well.

Below we will treat the case where p is linear. The quadratic case will be
dealt with in Sect. 8.

6.5. So assume that t 6= 0 and f (t) is positive definite, and p is a linear
common divisor of gt(ξ) and ht(ξ) in R[x, y]. Let us denote equivalence in
R[x, y] modulo the principal ideal (p) by ≡. By Lemma 5.6, Dt lies in the
ideal generated by gt(ξ) and ht(ξ). We conclude that Dt ≡ 0.

Since f (t) is strictly positive definite, and since disc f (t) = t2Dt, Remark
5.4 implies f3 ≡ 4 t2f4 − f2

2 ≡ 0. Since p2 divides

gt(ξ) = (f2 − tξ)(4f4 − ξ2)− f2
3 ,

and since both factors f2 − tξ and 4f4 − ξ2 are psd, we conclude that p2

divides f2 − tξ or 4f4 − ξ2. From t2(4f4 − ξ2) = (f2
2 − t2ξ2) + (4t2f4 − f2

2 )
we see that in fact p2 divides 4f4 − ξ2 unconditionally, and that p divides
f2
2 − t2ξ2. So we have

η ≡ f3 ≡ f2
2 − t2ξ2 ≡ 0, p2 | (4f4 − ξ2). (6.3)

From f2
2 − t2ξ2 ≡ 0 we see that one of the two conditions f2 ± tξ ≡ 0 holds.

When f2 − tξ ≡ 0, this implies p2 | (f2 − tξ) since f2 − tξ is psd, and so the
right hand side of

η2 + f2
3 = (f2 − tξ)(4f4 − ξ2)

is divisible by p4. This implies p2 | f3, and so f3 is not square-free, which is
a non-generic situation. When f2 + tξ ≡ 0, we combine this with 4f4 ≡ ξ2

to get

0 ≡ ht(ξ) = 3tξ2 − 2f2ξ − 4tf4 ≡ (3 + 2− 1)tξ2 = 4tξ2.
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This gives ξ ≡ 0, and hence f4 ≡ 0, whence (f3, f4) 6= 1. Again this is a
non-generic situation.

7. Quadratic common divisors in pencils of polynomials

Proposition 7.1. Fix m, n ≥ 2 and consider triples (f, g, h) of univari-
ate polynomials with deg(f) ≤ m and deg(g), deg(h) ≤ n. There exists a
nonzero integral polynomial Ψm,n(f, g, h) in the coefficients of f , g, h with
the following property:

For any field k and any polynomials f , g, h ∈ k[x] with deg(f) ≤ m and
deg(g), deg(h) ≤ n, if there exists (0, 0) 6= (s, t) ∈ k2 with

deg gcd(f, sg + th) ≥ 2,

then Ψm,n(f, g, h) = 0.

Proof. Let k be algebraically closed and f ∈ k[x]. Assume deg(f) = m, let
α1, . . . , αm be the roots of f , and assume that the αi are pairwise distinct,
i.e., that f is separable. Given g and h, there exists (s, t) 6= (0, 0) with
deg gcd(f, sg + th) ≥ 2 if and only if there exist 1 ≤ i < j ≤ m such that

sg(αi) + th(αi) = sg(αj) + th(αj) = 0

for some (s, t) 6= (0, 0), or equivalently, such that

g(αi)h(αj) = g(αj)h(αi).

So this holds if and only if

φ̃(f, g, h) :=
∏

1≤i<j≤m

g(αi)h(αj)− g(αj)h(αi)
αi − αj

vanishes. It is easy to see that φ̃ is invariant under all permutations of
the roots αi. Hence when f is monic, φ̃ is an integral polynomial in the
coefficients of f , g and h. To cover the non-monic case as well, observe that
φ̃ has degree ≤ (m − 1)(n − 1) with respect to each αi. Therefore, if a0

denotes the leading coefficient of f , it follows that

φ(f, g, h) := a
(m−1)(n−1)
0 ·

∏
1≤i<j≤m

g(αi)h(αj)− g(αj)h(αi)
αi − αj

is an integral polynomial in the coefficients of f , g and h.
From φ(f, x, 1) = 1 for monic f of degree m we see that φ does not vanish

identically. To prove the proposition it suffices to put

Ψm,n(f, g, h) := discm(f) · φ(f, g, h).

�

Definition 7.2. For polynomials f , g, h ∈ k[x] with deg(f) ≤ m and deg(g),
deg(h) ≤ n, we define the Φ-invariant by

Φm,n(f, g, h) := a
(m−1)(n−1)
0 ·

∏
1≤i<j≤m

g(αi)h(αj)− g(αj)h(αi)
αi − αj
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where α1, . . . , αm are the roots of f and a0 is the coefficient of xm in f . By
the proof of Proposition 7.1, Φm,n(f, g, h) is an integral polynomial in the
coefficients of f , g and h.

The proof of Proposition 7.1 has shown:

Corollary 7.3. In 7.1 we can take

Ψm,n(f, g, h) = discm(f) · Φm,n(f, g, h).

If f is separable with deg(f) ≥ m−1, then Φm,n(f, g, h) = 0 is equivalent to
the existence of a pair (0, 0) 6= (s, t) ∈ k2 with sg+ th = 0 or deg gcd(f, sg+
th) ≥ 2. �

Remarks 7.4. 1. The power of a0 in the definition of Φm,n is the correct one,
in the sense that Φm,n is not divisible by a0. Indeed, if f =

∑m
i=0 aix

m−i,
and if one takes g := xn−1(b0x+ b1), h := xn−1(c0x+ c1), one finds

Φm,n(f, g, h) = a(m−1)(n−1)
m · (b0c1 − b1c0)(

m
2 ).

2. Write f =
∑m

i=0 aix
m−i, g =

∑n
j=0 bjx

n−j and h =
∑n

j=0 cjx
n−j . As a

polynomial in the ai, bj and cj , Φm,n is homogeneous of degree (m−1)(n−1)
in the ai and of degree

(
m
2

)
in the bj and in the cj . If we give degree i to ai

and degree j to bj and cj , then Φm,n is jointly homogeneous in all variables
of degree

(
m
2

)
(2n− 1).

3. The Φ-invariant has some relations with resultants. For example, the
rule

Φm,n+d(f, pg, ph) = resm,d(f, p)m−1 · Φm,n(f, g, h)

holds, for deg(f) ≤ m, deg(p) ≤ d and deg(g), deg(h) ≤ n.

Example 7.5. Let ai, bj , cj be the coefficients of f , g, h as before. In low
degrees it is quite manageable to calculate Φ explicitly. For example we have

Φ2,2(f, g, h) = det(f, g, h) =

∣∣∣∣∣∣
a0 b0 c0
a1 b1 c1
a2 b2 c2

∣∣∣∣∣∣
or

Φ2,3(f, g, h) = a2
0b2c3 − a0a2b2c1 + a1a2b2c0 − a0a1b1c3 + a2

1b0c3

− a0a2b0c3 + a2
2b0c1 − a2

0b3c2 + a0a2b1c2 − a1a2b0c2

+ a0a1b3c1 − a2
1b3c0 + a0a2b3c0 − a2

2b1c0.

As the remarks on the degree of Φm,n show, the size of Φm,n grows quickly
with m and n.

We do not know whether Φm,n(f, g, h) or some related invariant has been
considered before.
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8. Deforming the quadric, III: Case of a quadratic factor

As before we write

gt(ξ) = tξ3 − f2ξ
2 − 4tf4ξ + f6

where f6 := 4f2f4 − f2
3 , and

ht(ξ) =
∂

∂ξ
gt(ξ) = 3tξ2 − 2f2ξ − 4tf4.

The hardest step in our proof is to show, for generically chosen fi, that gt(ξ)
and ht(ξ) have no common quadratic factor, whenever (ξ, η) is a solution of
(4.3) and t 6= 0. This will be accomplished by the following result:

Proposition 8.1. Consider triples (f2, f3, f4) of forms in R[x, y] (with
deg(fi) = i for i = 2, 3, 4) for which

η2 = (f2 − tξ)(4f4 − ξ2)− f2
3 = gt(ξ) (8.1)

has a solution (ξ, η) for some 0 6= t ∈ R such that gt(ξ) and ht(ξ) have
a common irreducible quadratic factor. Then these triples are not Zariski
dense.

In other words, there exists a nonzero polynomial Ψ = Ψ(f2, f3, f4) in the
coefficients of f2, f3 and f4 which vanishes on the triples described in the
proposition.

The plan of the proof is as follows. We will successively deduce six “excep-
tional” conditions on (f2, f3, f4), labelled (S1)–(S6). We will show that, for
generic choice of the fi, none of these conditions holds. On the other hand,
we’ll show that the assumptions of 8.1 imply that at least one of (S1)–(S6)
is satisfied.

8.2. We dehomogenize all forms in R[x, y] by setting y = 1. So f2, f3, f4,
ξ, η are polynomials in R[x] with deg(fi) ≤ i (i = 2, 3, 4), deg(ξ) ≤ 2 and
deg(η) ≤ 3. We assume that t 6= 0 is a real number and identity (8.1) holds,
and that p ∈ R[x] is an irreducible quadratic polynomial with p2 | gt(ξ) and
p | ht(ξ). Denoting congruences modulo (p) in R[x] by ≡, we therefore have

tξ3 − f2ξ
2 − 4tf4ξ + f6 = (f2 − tξ)(4f4 − ξ2)− f2

3 ≡ 0 (8.2)

and
3tξ2 − 2f2ξ − 4tf4 ≡ 0. (8.3)

Combining (8.2) and (8.3) we get

f2ξ
2 + 8tf4ξ − 3f6 ≡ 0, (8.4)

and eliminating t from (8.3) and (8.4) we find

f2ξ
4 − (8f2f4 − 3f2

3 )ξ2 + 4f4f6 ≡ 0. (8.5)
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8.3. We use ′ to denote the derivative d
dx on polynomials in R[x]. From

p2 | gt(ξ) we see that p divides gt(ξ)′ = ht(ξ)ξ′ − (f ′2ξ
2 + 4tf ′4ξ − f ′6), and

hence
f ′2ξ

2 + 4tf ′4ξ − f ′6 ≡ 0. (8.6)
From ht(ξ) ≡ 0 and (8.6) we can again eliminate t and get

3f ′2ξ
4 + (8f2f

′
4 − 4f ′2f4 − 3f ′6)ξ2 + 4f4f

′
6 ≡ 0. (8.7)

8.4. For i, j ∈ {2, 3, 4} we put

gij := ifif
′
j − jfjf ′i = fifj

d

dx
log(f ijf

−j
i ).

Note that deg(gij) ≤ i+ j− 2, with equality for generic choice of the fi. We
observe the relation

2f2g34 − 3f3g24 + 4f4g23 = 0.

8.5. We now eliminate ξ. From (8.5) and (8.7) we can eliminate ξ4 and get

(2f2g24 − 3f3g23)ξ2 − 4f4(2f2g24 − f3g23) ≡ 0. (8.8)

We can eliminate t from (8.4) and (8.6), getting

g24ξ
2 + 2(f3g34 − 2f4g24) ≡ 0. (8.9)

Finally we can eliminate ξ from (8.8) and (8.9), getting

f2
3 ·
(
g23g34 − g2

24

)
≡ 0. (8.10)

8.6. We introduce the following “exceptional” conditions (S1)–(S3). Clearly,
none of them holds for generically chosen f2, f3, f4:

(S1) gcd(f3, f4) 6= 1,
(S2) gcd(g23, g24) 6= 1,
(S3) gcd(g34, g24) 6= 1.

8.7. We show that f3 ≡ 0 leads to an exceptional case. Assume that (S1)
is excluded and f3 ≡ 0. From (8.2) we get (f2 − tξ)(4f4 − ξ2) ≡ 0, hence

f2 − tξ ≡ 0 or 4f4 − ξ2 ≡ 0.

f2 ≡ tξ, together with (8.3), gives 4f4 ≡ ξ2 since t 6= 0. Conversely, 4f4 ≡ ξ2
and (8.4) imply f4(f2 − tξ) ≡ 0, and f4 6≡ 0 since gcd(f3, f4) = 1. So we
see that f3 ≡ f2 − tξ ≡ 4f4 − ξ2 ≡ 0 hold in any case, and therefore
also f3 ≡ f2

2 − 4t2f4 ≡ 0. In particular, there exists a scalar λ such that
deg gcd(f3, f

2
2 + λf4) ≥ 2. By Proposition 7.1 this means we are in the

following exceptional case:
(S4) Ψ3,4(f3, f

2
2 , f4) = 0.

8.8. Excluding (S1) and (S4) we have f3 6≡ 0, and therefore get

g23g34 − g2
24 ≡ 0 (8.11)

from (8.10). The assumption g24 ≡ 0 leads to one of (S2) or (S3). Excluding
those we have in addition g24 6≡ 0.
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8.9. We finally assume that (S1)–(S4) are excluded, so (8.11) holds with
g24 6≡ 0. We show that this again leads to an exceptional case. Multiply
(8.9) with g23, rewrite using (8.11) and cancel the factor g24 to get

g23ξ
2 + 2f3g24 − 4f4g23 ≡ 0. (8.12)

Multiply (8.4) with g23 and use (8.12) to obtain

8tf4g23ξ ≡ (8f2f4 − 3f2
3 )g23 + 2f2f3g24.

Squaring this congruence and using (8.12) once more we finally get

128 t2f2
4 g23(2f4g23 − f3g24)−

(
(8f2f4 − 3f2

3 )g23 + 2f2f3g24

)2
≡ 0. (8.13)

8.10. Consider

P := g23g34 − g2
24,

Q := f2
4 g23 (2f4g23 − f3g24),

R := (8f2f4 − 3f2
3 )g23 + 2f2f3g24.

These are integral polynomials in the coefficients of f2, f3, f4. For generically
chosen fi we have deg(P ) = 8, deg(Q) = 18 and deg(R) = 9. We have shown
that the assumption in Proposition 8.1 leads either to one of (S1)–(S4), or
to the existence of a pair (λ, µ) 6= (0, 0) of scalars with deg gcd(P, λQ +
µR2) ≥ 2. By Proposition 7.1 and Corollary 7.3, the latter implies one of
the following two conditions:

(S5) disc8(P ) = 0;
(S6) Φ8,18(P, Q, R2) = 0.

8.11. We still need to show that

Ψ8,18(P,Q,R2) = disc8(P ) · Φ8,18(P,Q,R2) 6= 0

for generically chosen fi. Clearly it suffices to exhibit a single triple (f2, f3, f4)
where this number is nonzero. Unfortunately, it seems hard to do this by
hand alone, due to the enormous size of the polynomial Φ. With the help
of a computer algebra program, there is no difficulty: If we take

f2 = x2 − x+ 1, f3 = x2 − 1, f4 = x4 + 1,

then
P = g23g34 − g2

24 = −24x8 + 60x7 − 64x5 + 56x4 − 20x3 − 144x2 + 88x− 16

is separable, and Φ8,18(P,Q,R2) is an integer with 372 digits that has the
prime factorization
− 2713 · 333 · 179 · 233 · 641 · 1531 · 4093 · 11273 · 299837 · 34284114 · 66617977107707

Remark 8.12. We can consider Φ8,18(P,Q,R2) as an integral polynomial in
the coefficients of f2, f3, f4. To find the degree of this polynomial, note that
Φ8,18(P,Q,R2) is homogeneous of degree 7 · 17 = 119 in the coefficients of
P , and homogeneous of degree

(
8
2

)
= 28 in the coefficients of Q and in those

of R2 (Remark 7.4.2). Given that P (resp. Q, resp. R2) is homogeneous of
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degree 4 (resp. 7, resp. 8) in (f2, f3, f4), we conclude that Φ8,18(P,Q,R2) is
homogeneous of degree

119 · 4 + 28 · 7 + 28 · 8 = 896

in (the coefficients of) f2, f3 and f4.

Remark 8.13. The invariant Φ8,18(P,Q,R2) is enormous not only by its de-
gree, but also in terms of the values it produces. If the fi have small integral
coefficients, then Φ(P,Q,R2) typically has several hundreds of digits.

Based on the factorization of this invariant in several sample cases with
integer coefficients, we suspect that the form Φ(P,Q,R2) (of degree 896 in
the coefficients of f2, f3 and f4) decomposes as a product of smaller degree
forms.

9. Summary and complements

9.1. Let
f = z4 + f2z

2 + f3z + f4 (9.1)

where fi ∈ R[x, y] is homogeneous of degree i (i = 2, 3, 4) and f2, f4, 4f2f4−
f2
3 are psd. In the course of our proof of Hilbert’s theorem we have considered

the following exceptional cases:
(E1) disc2(f2) = 0,
(E2) f2 | f3,
(E3) disc6(4f2f4 − f2

3 ) = 0,
(E4) disc3(f3) = 0,
(E5) gcd(f3, f4) 6= 1,
(E6) gcd(g23, g24) 6= 1,
(E7) gcd(g24, g34) 6= 1,
(E8) Φ3,4(f3, f

2
2 , f4) = 0,

(E9) disc8(g23g34 − g2
24) = 0,

(E10) Φ8,18(P,Q,R2) = 0.
(Note that the conditions gcd 6= 1 can be rephrased as the vanishing of suit-
able resultants.) For counting inequivalent representations, we also needed
to consider the following condition:

(E11) gcd(f3, 4f4 − f2
2 ) 6= 1.

Let us summarize the role of these exceptional cases. For every real number
t we considered the equation

Ct : η2 + f2
3 = (f2 − tξ)(4f4 − ξ2)

with the side conditions f2 − tξ ≥ 0 and 4f4 − ξ2 ≥ 0.
We had to exclude (E1) to ensure that C0 has a solution (ξ0, η0) (for t = 0,

Cor. 1.2).
We had to exclude (E2), (E3) to extend any solution of C0 to a solution

of Ct for small |t| (Prop. 4.4).
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We had to exclude f3 = 0 (which is contained in (E4)), and had to
assume gcd(gt(ξ), ht(ξ)) = 1 for all 0 < |t| < 1 and all solutions (ξ, η) of Ct,
to extend a solution of Ct for 0 < |t| < 1 into a neighborhood of t (see 6.3).

We had to exclude (E4) and (E5) to exclude a linear common divisor of
gt(ξ) and ht(ξ) (see 6.5).

We had to exclude (E5)–(E10) to exclude an irreducible quadratic common
divisor of gt(ξ) and ht(ξ) (see Sect. 8, these conditions were labelled (S1)–
(S6) there).

9.2. We have proved: If the quartic form

f = z4 + f2z
2 + f3z + f4

is strictly positive definite with f − z4 ≥ 0, and if f is sufficiently generic,
then any solution of C0 (for t = 0) can be extended in a unique continuous
way to a solution of Ct, for 0 ≤ t ≤ 1. Here “sufficiently generic” means that
f avoids the exceptional cases (E1)–(E10). For i = 1, . . . , 10, there exists a
nonzero polynomial Ψi in (the coefficients of) f such that Ψi(f) 6= 0 if and
only if f avoids (Ei). Clearly, the set of strictly positive definite forms f
with

∏10
i=1 Ψi(f) 6= 0 is dense in the space of all psd forms of shape (9.2).

By 3.6, it follows that any psd form (9.2) is a sum of three squares.

Example 9.3. An explicit example of a positive definite form f which is
“sufficiently generic” is

f = z4 + (x2 − xy + y2)z2 + (x2 − y2)yz + (x4 + y4).

That is, f avoids all exceptional conditions (E1)–(E11). (See 8.11 for (E9)
and (E10); the other conditions are readily checked except possibly (E8),
which is avoided since Φ3,4(f3, f

2
2 , f4) = 56.)

9.4. Along our proof of Hilbert’s theorem, we needed only little extra effort
to obtain partial information on the number of inequivalent representations
of a psd form f as a sum of three squares. (See Definition 2.5 for the meaning
of equivalence of representations.) Let us review and complete these results:

Theorem 9.5. Let f be a psd form.
(a) When f has a real zero and is otherwise sufficiently generic, then f

has precisely 4 inequivalent representations.
(b) When f is strictly positive and sufficiently generic, then f has pre-

cisely 8 inequivalent representations.
Here, “sufficiently generic” means in (a) that f avoids (E1)–(E3), assuming
f(0, 0, 1) = 0. In (b) it means that f avoids (E1)–(E11) if f is normalized
into the form f = z4 + f2z

2 + f3z + f4 with f − z4 ≥ 0.

Proof. (a) was proved in Prop. 2.9. For the proof of (b) assume that f
is normalized as above (Lemma 3.1), and consider the linear pencil f (t) as
in (4.2). When f avoids (E1)–(E10), we have proved that we can extend
every solution (ξ0, η0) of C0 (at time t = 0) along this pencil to a solution
(ξ, η) of C1 (at time t = 1), and that locally this extension is everywhere
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unique. Hence, for t = 1 there are at least as many solutions (ξ, η) as for
t = 0, namely 16 (see 2.7). If we also exclude (E11), then Corollary 3.9
shows that for f (i.e., for t = 1) these 16 pairs (ξ, η) correspond to precisely
8 inequivalent representations. In order to show that there are no further
representations of f , we need to show that for t→ 0 the solutions (ξ(t), η(t))
of Ct remain bounded, and thus converge to solutions for t = 0. But this is
obvious since we have 4f4 − (ξ(t))2 ≥ 0 for all t. �

Remark 9.6. These findings are in agreement with the results of [7] and
[10]. As far as we know, this is the first time that results on the number of
inequivalent representations have been obtained by elementary methods.
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