Universität Konstanz Fachbereich Mathematik und Statistik C. Scheiderer, S. Wenzel WS 2014/15

Übungen zur Vorlesung Algorithmische algebraische Geometrie

Blatt 11

Abgabe: Dienstag, 27. Januar 2014, 10.00 Uhr

Aufgabe 41

Sei A ein Ring und S eine multiplikative Teilmenge von A. Für jeden A-Modul M definiert man $M_S := \{\frac{x}{s} : x \in M, s \in S\}$, wobei nach Definition gilt

$$\frac{x}{s} = \frac{x'}{s'}$$
 : \Leftrightarrow $\exists t \in S$ mit $t(s'x - sx') = 0$

 $(x, x' \in M, s, s' \in S)$. Sei $M' \xrightarrow{f} M \xrightarrow{g} M''$ (*) eine Sequenz von A-Moduln. Für $x \in M$ sei $\mathrm{Ann}(x) = \{a \in A \colon ax = 0\}$ das Annullatorideal von x.

- (a) M_S ist mit den natürlichen Operationen ein A_S -Modul. Ist (*) exakt, so ist auch die induzierte Sequenz $M_S' \xrightarrow{f_S} M_S \xrightarrow{g_S} M_S''$ von A_S -Moduln exakt.
- (b) Für $x \in M$ gilt: $\frac{x}{1} = 0$ in $M_S \Leftrightarrow \operatorname{Ann}(x) \cap S \neq \emptyset$.
- (c) Ist $M_{\mathfrak{m}} = 0$ für jedes maximale Ideal \mathfrak{m} von A, so ist M = 0.
- (d) Ist $M'_{\mathfrak{m}} \xrightarrow{f_{\mathfrak{m}}} M_{\mathfrak{m}} \xrightarrow{g_{\mathfrak{m}}} M''_{\mathfrak{m}}$ exakt für jedes maximale Ideal \mathfrak{m} von A, so ist (*) exakt.

Aufgabe 42

Sei $k \subseteq E \subseteq F$ eine Kette von Körpererweiterungen, und sei $x \in F$ transzendent über E. Dann ist [E:k] = [E(x):k(x)].

Hinweis: Zum Beweis von \leq zeige man für k-linear unabhängige $a_1, \ldots, a_r \in E$, daß a_1, \ldots, a_r auch über k(x) linear unabhängig sind.

Aufgabe 43

Sei $k\subseteq K$ eine endlich erzeugte rein transzendente Körpererweiterung, und sei $a\in K$ algebraisch über k. Dann ist $a\in k$.

Aufgabe 44

Sei $k \subseteq K$ eine endlich erzeugte Körpererweiterung.

- (a) Sei $\widetilde{K} = \{a \in K : a \text{ ist algebraisch ""uber } k\}$. Dann ist \widetilde{K} ein Zwischenkörper von K/k, und $[\widetilde{K} : k] < \infty$.
- (b) Jeder Zwischenkörper $k \subseteq F \subseteq K$ ist endlich erzeugt über k.

Anleitung: Wähle eine Transzendenzbasis von K/k (a) bzw. von F/k (b), betrachte den von ihr erzeugten Teilkörper und beachte Aufgabe 42.