Universität Konstanz Fachbereich Mathematik und Statistik C. Scheiderer, S. Wenzel WS 2014/15

Übungen zur Vorlesung Algorithmische algebraische Geometrie

Blatt 9

Abgabe: Donnerstag, 8. Januar 2014, 10.00 Uhr

Aufgabe 33

Die projektive k-Varietät $\mathbb{P}^m \times \mathbb{P}^n$, definiert über die Segre-Einbettung wie in der Vorlesung, hat die folgenden Eigenschaften:

- (a) Die Projektionen $\mathrm{pr}_1,\;\mathrm{pr}_2$ auf die beiden Faktoren sind Morphismen von $k\text{-Variet\"{a}ten}.$
- (b) Sind $f \colon X \to \mathbb{P}^m$ und $g \colon X \to \mathbb{P}^n$ Morphismen von k-Varietäten, so gibt es genau einen Morphismus $h \colon X \to \mathbb{P}^m \times \mathbb{P}^n$ der k-Varietäten mit $f = \operatorname{pr}_1 \circ h$ und $g = \operatorname{pr}_2 \circ h$.

Aufgabe 34

Zeige, daß die abgeschlossenen Teilmengen von $\mathbb{P}^m \times \mathbb{P}^n$ genau die Nullstellenmengen von Systemen aus bihomogenen Polynomen in $k[\mathbf{x}, \mathbf{y}]$ sind. Hier ist $\mathbf{x} = (x_0, \dots, x_m)$, $\mathbf{y} = (y_0, \dots, y_n)$, und $f(\mathbf{x}, \mathbf{y})$ heißt bihomogen vom Bigrad (d, e), wenn in f nur Monome $\mathbf{x}^{\alpha}\mathbf{y}^{\beta}$ mit $|\alpha| = d$ und $|\beta| = e$ vorkommen.

Aufgabe 35

Seien drei paarweise disjunkte Geraden L_1 , L_2 , L_3 im \mathbb{P}^3 gegeben. Beweise: Die Vereinigung aller Geraden im \mathbb{P}^3 , welche alle drei Geraden schneiden, ist projektiv äquivalent zur Segrevarietät $S_{1,1}$.

Anleitung: Zeige zunächst, daß man lineare Koordinaten auf \mathbb{P}^3 derart finden kann, daß $L_1 = \mathcal{V}_+(x_0, x_1)$, $L_2 = \mathcal{V}_+(x_2, x_3)$ und $L_3 = \mathcal{V}_+(x_0 - x_2, x_1 - x_3)$ ist.

Aufgabe 36

Sei $\sigma\colon \mathbb{P}^1\times \mathbb{P}^1\to \mathbb{P}^3$ die Segre-Einbettung. Für jeden Punkt $p=(a:b)\in \mathbb{P}^1$ sind $G_p:=\sigma(p\times \mathbb{P}^1)$ und $H_p:=\sigma(\mathbb{P}^1\times p)$ Geraden im \mathbb{P}^3 . Stelle die Gleichungen dieser Geraden auf.