Universität Konstanz Fachbereich Mathematik und Statistik C. Scheiderer, Ch. Hanselka 14. Januar 2016

Übungen zu Reelle algebraische Geometrie I (WS 2015/16)

Blatt 11

Abgabe: Donnerstag, 21. Januar 2016 um 11.45 Uhr

Sei R stets ein reell abgeschlossener Körper.

Aufgabe 41

Sei $S^n=\{\xi\in R^{n+1}\colon |\xi|=1\}$ die *n*-dimensionale Sphäre und $\infty=(1,0,\dots,0)$ ihr Nordpol.

- (a) Die stereographische Projektion $p\colon S^n\smallsetminus\{\infty\}\to R^n$ ist ein semialgebraischer Homöomorphismus.
- (b) Eine Teilmenge $M \subseteq \mathbb{R}^n$ ist genau dann unbeschränkt, wenn ∞ im Abschluß von $p^{-1}(M)$ liegt.

Aufgabe 42

Sei M eine semialgebraische Menge. Genau dann ist M semialgebraisch zusammenhängend, wenn \widetilde{M} zusammenhängend ist.

Aufgabe 43

Sei $f \colon M \to N$ eine surjektive semialgebraische Abbildung zwischen semialgebraischen Mengen. Sei N s.a. zusammenhängend, und sei $f^{-1}(y)$ s.a. zusammenhängend für jedes $y \in N$.

- (a) Bildet f offene semialgebraische Teilmengen von M auf offene Teilmengen von N ab, so ist M semialgebraisch zusammenhängend. Ebenso, wenn man "offen" durch "abgeschlossen" ersetzt.
- (b) Zeige an einem Beispiel, daß (a) ohne weitere Voraussetzung an f im allgemeinen falsch ist.

Aufgabe 44

Sei M eine semialgebraische Menge

- (a) Ist $\alpha \in M_{\min}$ und $N \subseteq M$ eine semialgebraische Teilmenge mit $\alpha \in \widetilde{N}$, so gibt es eine in M offene semialgebraische Teilmenge U von N mit $\alpha \in \widetilde{U}$.
- (b) Seien $M_1, \ldots, M_r \subseteq M$ semialgebraische Teilmengen. Ist $M_1 \cup \cdots \cup M_r$ dicht in M, so ist auch $\operatorname{int}(M_1) \cup \cdots \cup \operatorname{int}(M_r)$ dicht in M. (Hier bezeichnet $\operatorname{int}(M_i)$ das relative Innere von M_i in M.)
- (c) Ist $f: M \to R^m$ eine definierbare Abbildung, so gibt es eine in M offene und dichte semialgebraische Menge $M' \subseteq M$, so daß $f|_{M'}$ stetig ist.