Universität Konstanz Fachbereich Mathematik und Statistik C. Scheiderer, Ch. Schulze 3. Juni 2016

Übungen zu Reelle algebraische Geometrie II (SS 2016)

Blatt 8

Abgabe: Freitag, 10. Juni 2016 um 10.00 Uhr

Sei R stets ein reell abgeschlossener Körper.

Aufgabe 29

Sei k ein Körper, und sei $K=k(\!(x)\!)$. Bestimme alle endlichen Körpererweiterungen von K bis auf K-Isomorphie, wenn k

- (a) algebraisch abgeschlossen von Charakteristik 0,
- (b) reell abgeschlossen

ist.

Aufgabe 30

Sei A ein Ring. Für jede Präordnung T in A sind äquivalent:

- (i) T ist Durchschnitt von Positivkegeln von A;
- (ii) $T = \mathcal{P}(X(T));$
- (iii) aus $f \in A$ und $sf = f^{2m} + t$ mit $s, t \in T$ und $m \ge 0$ folgt $f \in T$.

Gelten (i)–(iii), so heißt T saturiert (siehe Vorlesung).

Aufgabe 31

Für jede saturierte Präordnung im Potenzreihenring $R[\![x]\!]$ einer Variable bestimme man ein System von Erzeugern.

${\bf Aufgabe~32}$

Sei C die ebene affine Kurve mit Gleichung $y^2 = x^3 + x$ über R. Dann gilt psd \neq sos in R[C]. (Hinweis: Betrachte $PO(x^3 + x)$ in R[x].)