

Übungen zu Reelle algebraische Geometrie I

Blatt 7

Abgabe: Mittwoch 11. Dezember 2019 um 13:30 Uhr

Aufgabe 25

Schreibe die quartische Form

$$f = x^4 + x^2y^2 + y^4 + x^2z^2 + y^2z^2$$

als Summe von drei Quadraten quadratischer Formen über \mathbb{R} . (Hinweis: f hat eine nichttriviale reelle Nullstelle.)

Aufgabe 26

Sei $f \in \mathbb{R}[x,y]$ ein Polynom mit $f(\cos t,\sin t) \geq 0$ für alle $t \in \mathbb{R}$, sei $d = \deg(f)$. Zeige, daß es Polynome $f_1, f_2 \in \mathbb{R}[x, y]$ gibt mit

$$f(\cos t, \sin t) = f_1(\cos t, \sin t)^2 + f_2(\cos t, \sin t)^2$$

für alle $t\in\mathbb{R}$ und mit $\deg(f_i)\leq \lceil\frac{d}{2}\rceil$ (i=1,2). Anleitung: Finde zunächst einen expliziten Isomorphismus

$$\mathbb{R}[x,y]/\langle x^2 + y^2 - 1 \rangle \cong \mathbb{R}[u,v]_{(u^2+v^2)}$$

wobei der rechte Ring (homogene Lokalisierung) aus allen Brüchen $p(u,v)/(u^2+v^2)^r$ mit $r \geq 0$ und $p \in \mathbb{R}[u, v]$ homogen vom Grad 2r besteht.

Aufgabe 27

Sei R reell abgeschlossen, sei $C = R(\sqrt{-1})$. Wie in der Vorlesung betrachten wir auf $C[z,z^{-1}]$ die Involution * mit $z^*=z^{-1}$ und $c^*=\overline{c}$ ($c\in C$). Sei $f\in C[z,z^{-1}]$ mit $f=f^*$, und sei $\alpha\in C$ mit $f(\alpha)=0$ und $|\alpha|=1$. Zeige: Die Funktion fwechselt auf $\{z \in C \colon |z| = 1\}$ in $z = \alpha$ das Vorzeichen \Leftrightarrow die Nullstelle α von fhat ungerade Vielfachheit. (*Hinweis*: Für $\alpha = 1$ wird das Argument einfacher.)

Aufgabe 28

Sei A ein Ring.

(a) Sei $P \subseteq A$ eine Teilmenge mit $P + P \subseteq P$, $PP \subseteq P$ und $P \cup (-P) = A$. Genau dann ist P ein Positivkegel von A, wenn $-1 \notin P$ ist und für alle a, $b \in A$ gilt:

$$a \notin P \land b \notin P \Rightarrow -ab \notin P$$
.

(b) Zeige Satz 1.4: Die Abbildung

$$\alpha \, = \, (\mathfrak{p},T) \, \, \mapsto \, \, P_{\alpha} \, := \, \rho_{\mathfrak{p}}^{-1}(T)$$

ist eine Bijektion von $\operatorname{Sper}(A)$ auf die Menge aller Positivkegel von A.