Universität Konstanz
Fachbereich Mathematik und Statistik
Universität
C. Scheiderer, Th. Mayer

Konstanz
SS 2020

Exercises for Real Algebraic Geometry II

Sheet 1

Please upload your solutions on ILIAS by Monday 27 April 2020 at 11:45

Exercise 1

Let $\mathbb{R}[x]$ be the ring of polynomials in one variable. Decide which of the following quadratic modules in $\mathbb{R}[x]$ are preorders:
(a) $M=Q M(x)$;
(b) $M=Q M(x, 1-x)$;
(c) $M=Q M\left(x+1, x^{2}-x\right)$.

Exercise 2

Write every polynomial $0 \neq f \in \mathbb{R}[x, y]$ as

$$
f=\sum_{i \geq 0} f_{i}(x) y^{i}
$$

where $f_{i} \in \mathbb{R}[x]$ are univariate polynomials. Let $n=\operatorname{deg}_{y}(f)$ and $m=\operatorname{deg}_{x}\left(f_{n}\right)$, let $a_{m n} \in \mathbb{R}$ be the coefficient of $x^{m} y^{n}$ in f. Let $M \subseteq \mathbb{R}[x, y]$ be the set of all polynomials $f \neq 0$ for which $(-1)^{m n} a_{m n}>0$, together with $f=0$.
(a) M is a semiorder of $\mathbb{R}[x, y]$.
(b) M is not contained in any positive cone of $\mathbb{R}[x, y]$.

Exercise 3

Let $n \in \mathbb{N}$, we consider the tuples of variables $z=\left(z_{1}, \ldots, z_{n}\right)$ and $w=\left(w_{1}, \ldots, w_{n}\right)$. Consider the involutive ring automorphism $f \mapsto f^{*}$ of the polynomial ring $\mathbb{C}[z, w]$ defined by $z_{j}^{*}=w_{j}(j=1, \ldots, n)$ and $c^{*}=\bar{c}$ for $c \in \mathbb{C}$ (complex conjugate), see II.2.15.
(a) The fix ring of $*$ is $A:=\mathbb{R}[x, y]$ where $x=\left(x_{1}, \ldots, x_{n}\right), y=\left(y_{1}, \ldots, y_{n}\right)$ and $x_{j}=\frac{1}{2}\left(z_{j}+w_{j}\right), y_{j}=\frac{1}{2 i}\left(z_{j}-w_{j}\right)(j=1, \ldots, n)$.
(b) Given $f \in \mathbb{C}[z, w]$, let $|f|^{2}:=f f^{*}$. The set $\left\{\sum_{j=1}^{r}\left|f_{j}(z, w)\right|^{2}: r \in \mathbb{N}\right.$, $\left.f_{j} \in \mathbb{C}[z, w](j=1, \ldots, r)\right\}$ is equal to ΣA^{2}.
(c) Let $\Sigma_{h} A^{2}:=\left\{\sum_{j=1}^{r}\left|f_{j}(z)\right|^{2}: r \in \mathbb{N}, f_{j} \in \mathbb{C}[z](j=1, \ldots, r)\right\}$. Prove that $\Sigma_{h} A^{2}$ is a generating semiring in A.
(d) Show that $\Sigma_{h} A^{2} \neq \Sigma A^{2}$. (Hint: Consider polynomials of degree 2.)

Exercise 4

Using the notation of Exercise 3 let $\Sigma_{h}:=\Sigma_{h} A^{2}$, and let I be an ideal of $A=\mathbb{R}[x, y]$. The semiring $\Sigma_{h}+I$ of A is archimedean if and only if I contains an element of the form

$$
c+q+\sum_{j=1}^{n}\left|z_{j}\right|^{2}
$$

with $c \in \mathbb{R}$ and $q \in \Sigma_{h}$.

