Universität Konstanz Fachbereich Mathematik und Statistik C. Scheiderer, Th. Mayer SS 2020

Exercises for Real Algebraic Geometry II

Sheet 2

Please upload your solutions on ILIAS by Monday 4 May 2020 at 11:45

Exercise 5

Let $\mathbb{R}[x]$ be the polynomial ring in one variable, let $S \subseteq \mathbb{R}[x]$ be the semiring generated by \mathbb{R}_+ and x, and let M = S + S(1 - x).

(a) S is a generating semiring of $\mathbb{R}[x]$, and M is an archimedean S-module. (b) If 0 < c < 1 and $f = c + (1 - x^2)^2$ then f > 0 on X_M , but $f \notin M$.

Hence the archimedean Positivstellensatz is usually false for archimedean modules over generating semirings.

Exercise 6

The dehomogenized version of Pólya's theorem is false: Find a polynomial $f \in$ $\mathbb{R}[x_1,\ldots,x_n]$ (necessarily inhomogeneous) with f > 0 on $C = \{\xi \in \mathbb{R}^n : \xi_1 \geq 0,\ldots,\xi_n \geq 0\}$ such that $(1+x_1+\cdots+x_n)^N \cdot f$ has a negative coefficient for each $N \geq 0.$

Exercise 7

Let c be a positive real number, and let

$$f(x,y) = (x+y)^2 + c(x-y)^2.$$

Show that if $n \in \mathbb{N}$ is even with n < c-1, then the form $(x+y)^n \cdot f(x,y)$ has a negative coefficient.

Exercise 8

Use the notation from Exercise 4. Let $z = (z_1, \ldots, z_n)$ and $w = (w_1, \ldots, w_n)$, let $f(z,w) \in \mathbb{C}[z,w]$ such that $f = f^*$ and $f(u,\overline{u}) > 0$ for every $u \in \mathbb{C}^n$ with |u| = 1. Prove Quillen's theorem: There exist finitely many polynomials $p_1, \ldots, p_r \in \mathbb{C}[z]$ mit

$$f(u,\overline{u}) = \sum_{j=1}^{r} |p_j(u)|^2$$

for every $u \in \mathbb{C}^n$ with |u| = 1.