Universität Konstanz
Fachbereich Mathematik und Statistik
Universität
C. Scheiderer, Th. Mayer

Konstanz
SS 2020

Exercises for Real Algebraic Geometry II

Sheet 2

Please upload your solutions on ILIAS by Monday 4 May 2020 at 11:45

Exercise 5

Let $\mathbb{R}[x]$ be the polynomial ring in one variable, let $S \subseteq \mathbb{R}[x]$ be the semiring generated by \mathbb{R}_{+}and x, and let $M=S+S(1-x)$.
(a) S is a generating semiring of $\mathbb{R}[x]$, and M is an archimedean S-module.
(b) If $0<c<1$ and $f=c+\left(1-x^{2}\right)^{2}$ then $f>0$ on X_{M}, but $f \notin M$.

Hence the archimedean Positivstellensatz is usually false for archimedean modules over generating semirings.

Exercise 6

The dehomogenized version of Pólya's theorem is false: Find a polynomial $f \in$ $\mathbb{R}\left[x_{1}, \ldots, x_{n}\right]$ (necessarily inhomogeneous) with $f>0$ on $C=\left\{\xi \in \mathbb{R}^{n}: \xi_{1} \geq\right.$ $\left.0, \ldots, \xi_{n} \geq 0\right\}$ such that $\left(1+x_{1}+\cdots+x_{n}\right)^{N} \cdot f$ has a negative coefficient for each $N \geq 0$.

Exercise 7

Let c be a positive real number, and let

$$
f(x, y)=(x+y)^{2}+c(x-y)^{2}
$$

Show that if $n \in \mathbb{N}$ is even with $n<c-1$, then the form $(x+y)^{n} \cdot f(x, y)$ has a negative coefficient.

Exercise 8

Use the notation from Exercise 4. Let $z=\left(z_{1}, \ldots, z_{n}\right)$ and $w=\left(w_{1}, \ldots, w_{n}\right)$, let $f(z, w) \in \mathbb{C}[z, w]$ such that $f=f^{*}$ and $f(u, \bar{u})>0$ for every $u \in \mathbb{C}^{n}$ with $|u|=1$. Prove Quillen's theorem: There exist finitely many polynomials $p_{1}, \ldots, p_{r} \in \mathbb{C}[z]$ mit

$$
f(u, \bar{u})=\sum_{j=1}^{r}\left|p_{j}(u)\right|^{2}
$$

for every $u \in \mathbb{C}^{n}$ with $|u|=1$.

