Universität Konstanz
Fachbereich Mathematik und Statistik
Universität
C. Scheiderer, Th. Mayer

Konstanz
SS 2020

Exercises for Real Algebraic Geometry II

Sheet 5

Please upload your solutions on ILIAS by Monday 25 May 2020 at 11:45

Exercise 17

Let $n \in \mathbb{N}$, let k be a field and $A \in \mathrm{M}_{n}(k)$ an $n \times n$-matrix over k with $\operatorname{det}(A)=0$. Show that A is a nonsingular point of the hypersurface det $=0$ (in affine n^{2}-space) if and only if $\operatorname{rk}(A)=n-1$.

Exercise 18

Let X be the plane affine curve $y^{3}+2 x^{2} y-x^{4}=0$ over \mathbb{R}. Show that X is irreducible, find the singular \mathbb{C}-points of X and show that $X(\mathbb{R})$ is a 1-dimensional differentiable submanifold of \mathbb{R}^{2}.

Exercise 19
State and prove a version of the Jacobian criterion for nonsingular points on projective varieties.

Exercise 20

Find the complex singular points of the plane curve

$$
\left(x^{2}+y^{2}-z^{2}\right)^{3}=x^{2} y^{3} z
$$

