Universität Konstanz Fachbereich Mathematik und Statistik C. Scheiderer, Th. Mayer SS 2020

Exercises for Real Algebraic Geometry II

Sheet 8

Please upload your solutions on ILIAS by Monday 22 June 2020 at 11:45

Exercise 29

Let $g(x) \in \mathbb{R}[x]$ be a polynomial of odd degree ≥ 3 , and let C be the plane affine curve $y^2 = g(x)$. Then psd \neq sos holds in $\mathbb{R}[C]$.

Exercise 30

Let A be a semilocal ring, and let α , $\beta \in \text{Sper}(A)$ be such that $\text{sign}_{\alpha}(u) = \text{sign}_{\beta}(u)$ for every unit u of A. Then α and β have a common specialization in Sper(A). (*Hint*: Prove it indirectly, using Winter semester, Aufgabe 40.)

Exercise 31

Let $B = \mathbb{R}[x, y]$ and f = x, $g = y^2 + 1 - x \in B$, and let $\mathfrak{m} = \langle x, y^2 + 1 \rangle \subseteq B$. The local ring $A := B_{\mathfrak{m}}/\langle fg \rangle$ has Krull dimension one. Show that

- (a) f is psd in A,
- (b) f is sos in \widehat{A} ,
- (c) f is not sos in A.

Exercise 32

Let k be a real field. Show that psd = sos does not hold in the local ring $A = k[x, y]/\langle y^2 - x^3 \rangle$.