
LECTURES ON MEAN CURVATURE FLOW

WITHOUT SINGULARITIES

OLIVER C. SCHNÜRER

Abstract. In these lectures, we study hypersurfaces that solve geometric evo-
lution equations. More precisely, we investigate hypersurfaces that evolve with

a normal velocity depending on a curvature function like the mean curvature.

In two lectures, we will address
• hypersurfaces, principal curvatures and evolution equations for geometric

quantities like the metric and the second fundamental form.

• the evolution of graphical hypersurfaces under mean curvature flow.
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1. Overview and plan for the winter school

We consider flow equations that deform hypersurfaces according to their curva-
ture.

If X0 : Mn → Rn+1 is an embedding of an n-dimensional manifold, we can define
principal curvatures (λi)1≤i≤n and a normal vector ν. We deform the embedding
vector X according to {

d
dtX = −Fν,
X(·, 0) = X0,

where F is a symmetric function of the principal curvatures, e. g. the mean curvature
H = λ1 + · · ·+λn. In this way, we obtain a family X(·, t) of embeddings. Graphical
solutions are shown to exist for all times or to disappear to infinity.

Nowadays classical results in this direction were obtained by G. Huisken [9] and
K. Ecker and G. Huisken [6] for mean curvature flow.

Remark 1.1.
(i) We will use geometric flow equations as a tool to deform a manifold.
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(ii) The flow equations considered are parabolic equations like the heat equation.
(iii) In order to control the behaviour of the flow, we will look for properties of

the manifold that are preserved under the flow. For that purpose, we will also
look for quantities that are monotone and have geometric significance, i. e.
their boundedness implies geometric properties of the evolving manifold.

Plan for the winter school. These notes contain some background material that
will be covered as necessary. Then we will derive evolution equations for geometric
quantities and study geometric problems. More precisely, our plan is to study the
following:

• Geometric prerequisites and evolution equations of geometric quantities.
• Mean curvature flow of complete graphs.

2. Differential geometry of submanifolds

We will only consider hypersurfaces in Euclidean space.
We use X = X(x, t) = (Xα)1≤α≤n+1 to denote the time-dependent embedding

vector of a manifold Mn into Rn+1 and d
dtX = Ẋ for its total time derivative. Set

Mt := X(M, t) ⊂ Rn+1. We will often identify an embedded manifold with its
image. We will assume that X is smooth. Assume furthermore that Mn is smooth,
orientable, connected, complete and ∂Mn = ∅. We choose ν = ν(x) = (να)1≤α≤n+1

to be the outer (or downward pointing) unit normal vector to Mt at x ∈ Mt. The
embedding X(·, t) induces at each point on Mt a metric (gij)1≤i, j≤n and a second
fundamental form (hij)1≤i, j≤n. Let (gij) denote the inverse of (gij). These tensors
are symmetric. The principal curvatures (λi)1≤i≤n are the eigenvalues of the second
fundamental form with respect to that metric. That is, at p ∈M , for each principal
curvature λi, there exists 0 6= ξ ∈ TpM ∼= Rn such that

λi

n∑
l=1

gklξ
l =

n∑
l=1

hklξ
l or, equivalently, λiξ

l =

n∑
k,r=1

glkhkrξ
r.

As usual, eigenvalues are listed according to their multiplicity. A hypersurface is
called strictly convex, if all principal curvatures are strictly positive.

Latin indices range from 1 to n and refer to geometric quantities on the hyper-
surface, Greek indices range from 1 to n+1 and refer to components in the ambient
space Rn+1. In Rn+1, we will always choose Euclidean coordinates. We use the
Einstein summation convention for repeated upper and lower indices. Latin indices
are raised and lowered with respect to the induced metric or its inverse

(
gij
)
, for

Greek indices we use the flat metric (gαβ)1≤α,β≤n+1 = (δαβ)1≤α,β≤n+1 of Rn+1. So

the defining equation for the principal curvatures becomes λigklξ
l = hklξ

l.
Denoting by 〈·, ·〉 the Euclidean scalar product in Rn+1, we have

gij = 〈X, i, X, j〉 = Xα
, iδαβX

β
, j ,

where we used indices, preceded by commas, to denote partial derivatives. We write
indices, preceded by semi-colons, e. g. hij; k or v;k, to indicate covariant differentia-
tion with respect to the induced metric. Later, we will also drop the commas and
semi-colons, if the meaning is clear from the context. We set Xα

;i ≡ Xα
,i and

(2.1) Xα
; ij = Xα

, ij − ΓkijX
α
, k,

where

Γkij = 1
2g
kl(gil, j + gjl, i − gij, l)

are the Christoffel symbols of the metric (gij). So Xα
;ij becomes a tensor.
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The Gauß formula relates covariant derivatives of the position vector to the
second fundamental form and the normal vector

(2.2) Xα
; ij = −hijνα.

The Weingarten equation allows to compute derivatives of the normal vector

(2.3) να; i = hkiX
α
; k.

We can use the Gauß formula (2.2) or the Weingarten equation (2.3) to compute
the second fundamental form.

Symmetric functions of the principal curvatures are well-defined, we will use
the mean curvature H = λ1 + . . . + λn, the square of the norm of the second
fundamental form |A|2 = λ2

1 + . . . + λ2
n, trAk = λk1 + . . . + λkn, and the Gauß

curvature K = λ1 · . . . ·λn. It is often convenient to choose coordinate systems such
that, at a fixed point, the metric tensor equals the Kronecker delta, gij = δij , and
(hij) is diagonal, (hij) = diag(λ1, . . . , λn), e. g.

∑
λkh

2
ij;k =

n∑
i, j, k=1

λkh
2
ij;k = hklhij; kh

j
i; l = hrshij; khab; lg

iagjbgrkgsl.

Whenever we use this notation, we will also assume that we have fixed such a
coordinate system.

A normal velocity F can be considered as a function of (λ1, . . . , λn) or (hij , gij).
If F (λi) is symmetric and smooth, then F (hij , gij) is also smooth [8, Theorem

2.1.20]. We set F ij = ∂F
∂hij

, F ij, kl = ∂2F
∂hij∂hkl

. Note that in coordinate systems

with diagonal hij and gij = δij as mentioned above, F ij is diagonal. For F = |A|2,

we have F ij = 2hij = 2λig
ij , and for F = Kα, α > 0, we have F ij = αKαh̃ij =

αKαλ−1
i gij .

The Gauß equation expresses the Riemannian curvature tensor of the hypersur-
face in terms of the second fundamental form

(2.4) Rijkl = hikhjl − hilhjk.

As we use only Euclidean coordinate systems in Rn+1, hij; k is symmetric in all
three indices according to the Codazzi equations.

The Ricci identity allows to interchange covariant derivatives. We will use it for
the second fundamental form

(2.5) hik; lj = hik; jl + hakRailj + haiRaklj .

For tensors A and B, Aij ≥ Bij means that (Aij −Bij) is positive definite.
Finally, we use c to denote universal, estimated constants.

Graphical submanifolds.

Lemma 2.1. Let u : Rn → R be smooth. Then graphu is a submanifold in Rn+1.
The metric gij, the lower unit normal vector ν, the second fundamental form hij,
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the mean curvature H, and the Gauß curvature K are given by

gij = δij + uiuj ,

gij = δij − uiuj

1 + |Du|2
,

ν =
((ui),−1)√
1 + |Du|2

≡ ((ui),−1)

v
,

hij =
uij√

1 + |Du|2
≡ uij

v
,

H = div

(
Du√

1 + |Du|2

)
,

and

K =
detD2u

(1 + |Du|2)
n+2
2

,

where ui ≡ ∂u
∂xi , ui = ujδ

ji and uij = ∂2u
∂xi∂xj . Note that in Euclidean space, we do

not distinguish between Du and ∇u.

This result also holds, if u is defined on an open subset of Rn.

Proof. ?

(i) We use the embedding vector X(x) := (x, u(x)), X : Rn → Rn+1. The in-
duced metric is the pull-back of the Euclidean metric in Rn+1, g := X∗gRn+1

Eucl.
.

We have X,i = (ei, ui). Hence

gij = Xα
,iδαβX

β
,j = 〈X,i, X,j〉 = 〈(ei, ui), (ej , uj)〉 = δij + uiuj .

(ii) It is easy to check, that gij is the inverse of gij . Note that ui := δijuj , i. e.,
we lift the index with respect to the flat metric. It is convenient to choose a
coordinate system such that ui = 0 for i < n.

(iii) The vectors X,i = (ei, ui) are tangent to graphu. The vector ((−ui), 1) ≡
(−Du, 1) is orthogonal to these vectors, hence, up to normalization, a unit
normal vector.

(iv) We combine (2.1), (2.2) and compute the scalar product with ν to get

hij = − 〈X;ij , ν〉 = −〈X,ij − ΓkijX,k, ν〉 = −〈X,ij , ν〉

= −
〈

(0, uij),
((ui),−1)

v

〉
=
uij
v
.

(v) We obtain

H =

n∑
i=1

λi = gijhij =

(
δij − uiuj

1 + |Du|2

)
uij√

1 + |Du|2

=
δijuij√

1 + |Du|2
− uiujuij

(1 + |Du|2)
3/2

=
∆u√

1 + |Du|2
− uiujuij

(1 + |Du|2)
3/2
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and, on the other hand,

div

(
Du√

1 + |Du|2

)
=

n∑
i=1

∂

∂xi
ui√

1 + |Du|2

=

n∑
i=1

uii√
1 + |Du|2

−
n∑

i,j=1

uiujuji

(1 + |Du|2)
3/2

=H.

(vi) From the defining equation for the principal curvatures, we obtain

K =

n∏
i=1

λi = det
(
gijhjk

)
= det gij · dethij =

dethij
det gij

=
v−n detuij

v2
=

detD2u

(1 + |Du|2)
n+2
2

.

�

Exercise 2.2 (Spheres). ? The lower part of a sphere of radius R is locally given as

graphu with u : BR(0)→ R defined by u(x) := −
√
R2 − |x|2. Compute explicitly

for that example all the quantities mentioned in Lemma 2.1 and the principal
curvatures.

3. Evolving submanifolds

General assumption. We will only consider the evolution of manifolds of dimen-
sion n embedded into Rn+1, i. e. the evolution of hypersurfaces in Euclidean space.
(Mean curvature flow is also considered for manifolds of arbitrary codimension.
Another generalization is to study flow equations of hypersurfaces immersed into a
(Riemannian or Lorentzian) manifold.)

Definition 3.1. Let Mn denote an orientable manifold of dimension n. Let X(·, t) :
Mn → Rn+1, 0 ≤ t ≤ T ≤ ∞, be a smooth family of smooth embeddings. Let ν
denote one choice of the normal vector field along X(Mn, t). Then Mt := X(Mn, t)
is said to move with normal velocity F , if

d

dt
X = −Fν in Mn × [0, T ).

In the following we will often identify an embedded submanifold and its image
under the embedding.

Evolution of graphs.

Lemma 3.2. Let u : Rn × [0,∞) → R be a smooth function such that graphu
evolves according to d

dtX = −Fν. Then

u̇ =
√

1 + |Du|2 · F.

This result also holds, if u is defined on an open subset of Rn × [0,∞).

Proof. ? Beware of assuming that considering the (n + 1)-st component in the
evolution equation d

dtX = −Fν were equal to u̇ as a hypersurface evolving according

to d
dtX = −Fν does not only move in vertical direction but also in horizontal

direction.
Let p denote a point on the abstract manifold embedded via X into Rn+1. As

our embeddings are graphical, we see that

X(p, t) = (x(p, t), u(x(p, t), t)).
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We consider the scalar product of both sides of the evolution equation with ν and
obtain

F = 〈Fν, ν〉 =

〈
− d

dt
X, ν

〉
= −

〈((
ẋk
)
, uiẋ

i + u̇
)
,

((ui),−1)√
1 + |Du|2

〉
=

u̇√
1 + |Du|2

.

�

Corollary 3.3. ? Let u : Rn × [0,∞)→ R be a smooth function such that graphu
solves mean curvature flow d

dtX = −Hν. Then

u̇ =
√

1 + |Du|2 · div

(
Du√

1 + |Du|2

)
.

Examples.

Lemma 3.4. Consider mean curvature flow, i. e. the evolution equation d
dtX =

−Hν, with M0 = ∂BR(0). Then a smooth solution exists for 0 ≤ t < T := 1
2nR

2

and is given by Mt = ∂Br(t)(0) with r(t) =
√

2n(T − t) =
√
R2 − 2nt.

Proof. The mean curvature of a sphere of radius r(t) is given by H = n
r(t) . Hence

we obtain a solution to mean curvature flow, if r(t) fulfills

ṙ(t) =
−n
r(t)

.

A solution to this ordinary differential equation is given by r(t) =
√

2n(T − t).
(The theory of partial differential equations implies that this solution is actually

unique and hence no solutions exist that are not spherical.) �

Exercise 3.5. Find a solution to mean curvature flow with M0 = ∂BR(0)×Rk ⊂
Rl×Rk. This includes in particular cylinders. Note that for k > 1, it is not obvious,
whether these solutions are unique.

Remark 3.6 (Level-set flow). ? If a hypersurface moves with velocity F , we use
a function u : Rn × [0,∞) → R such that for each c ∈ R, the set Mt := {x ∈
Rn : u(x, t) = c} (if it is a smooth hypersurface) is an embedded hypersurface that
moves with velocity F .

We fix the unit normal ν = Du
|Du| . Recall that Ẋ = −Fν. If u is as described

above, we have u(X(p, t), t) = 0 along the flow. Differentiating this equation yields

0 = u̇+Du · Ẋ = u̇+Du · (−ν) · F = u̇− |Du| · F .
For mean curvature flow, we obtain

u̇ = |Du| · div

(
Du

|Du|

)
=

(
δij − uiuj

|Du|2

)
uij .

We leave it as an exercise that the converse implication is also true if the level sets
are regular in the sense that Du 6= 0, i. e. that {x : u(x, t) = c} evolves with normal
velocity F if u̇ = |Du| · F and Du 6= 0 along {x : u(x, t) = c}.

Short-time existence and avoidance principle. In the case of closed initial
hypersurfaces, short-time existence is guaranteed by the following

Theorem 3.7 (Short-time existence). Let X0 : Mn → Rn+1 be an embedding
describing a smooth closed hypersurface. Let F = F (λi) be smooth, symmetric, and
∂F
∂λi

> 0 everywhere on X(Mn) for all i. Then the initial value problem{
d
dtX = −Fν,
X(·, 0) = X0

has a smooth solution on some (short) time interval [0, T ), T > 0.
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Idea of Proof. Represent potential solutions locally as graphs in a tubular neigh-
bourhood of X0(Mn). Then ∂F

∂λi
> 0 ensures that the evolution equation for the

height function in this coordinate system is strictly parabolic. Linear theory and
the implicit function theorem guarantee that there exists a solution on a short time
interval.

For details see [10, Theorem 3.1]. �

On the other hand, starting with a closed hypersurface gives rise to solutions
that exist at most on a finite time interval. This is a consequence of the avoidance
principle. We will only consider the avoidance principle for mean curvature flow:

Theorem 3.8 (Avoidance principle). Let M1
t and M2

t ⊂ Rn+1 be two embedded
closed hypersurfaces and smooth solutions to d

dtX = −Hν on a common time in-

terval [0, T ). If M1
0 and M2

0 are disjoint, then M1
t and M2

t are also disjoint.
In particular, if M1

0 is contained in a bounded component of Rn+1 \M2
0 , then

M1
t is contained in a bounded component of Rn+1 \M2

t .

Proof. Otherwise there would be some minimal t0 > 0 such that M2
t0 touches M1

t0

at some point p ∈ Rn+1. We get for the normals ν1 = ±ν2 at p. Observe that if we
change ν to −ν, H also changes sign and Hν remains unchanged. Therefore it does
not matter for mean curvature flow, which normal we choose and we may assume
without loss of generality that ν1 = ν2 at p. Writing M i

t locally as graphui over
the common tangent hyperplane TpM

i
t0 ⊂ Rn+1, we see that the functions ui fulfill

u̇i =

√
1 + |Dui|2 · div

 Dui√
1 + |Dui|2

 ≡ F (D2ui, Dui
)
.

We may assume that u1 > u2 for t < t0. The evolution equation for the difference
w := u1 − u2 fulfills w > 0 for t < t0 locally in space-time and w(0, t0), if we have
p = (0, 0) in our coordinate system. The evolution equation for w can be computed
as follows

ẇ = u̇1 − u̇2 = F
(
D2u1, Du1

)
− F

(
D2u2, Du2

)
=

1∫
0

d

dτ
F
(
τD2u1 + (1− τ)D2u2, τDu1 + (1− τ)Du2

)
dτ

=

1∫
0

∂F

∂rij
(. . .) dτ ·

(
u1 − u2

)
ij

+

1∫
0

∂F

∂pi
(. . .) dτ ·

(
u1 − u2

)
i

≡ aijwij + biwi.

Hence we can apply the parabolic Harnack inequality or the strong parabolic max-
imum principle and see that it is impossible that w(x, t) > 0 for small |x| and
t < t0, but w(0, t0) = 0. Hence M1

t cannot touch M2
t in a point, where ν1 = ν2.

The theorem follows. �

Corollary 3.9 (Finite existence time). Let M0 be a smooth closed embedded hy-
persurface in Rn+1. Then a smooth solution Mt to d

dtX = −Hν can only exist on
some finite time interval [0, T ), T <∞.

Proof. Choose a large sphere that encloses M0. According to Lemma 3.4, that
sphere shrinks to a point in finite time. Thus the solution Mt can exist smoothly
at most up to that time. �
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Remark 3.10 (Maximal existence time). Consider T maximal such that a smooth
solution Mt as in Corollary 3.9 exists on [0, T ). Then the embedding vector X is
uniformly bounded according to Theorem 3.8. Then some spatial derivative of the
embedding X(·, t) has to become unbounded as t ↗ T . For otherwise we could
apply Arzelà-Ascoli and obtain a smooth limiting hypersurface MT such that Mt

converges smoothly to MT as t↗ T . This, however, is impossibly, as Theorem 3.7
would allow to restart the flow from MT . In this way, we could extend the flow
smoothly all the way up to T + ε for some ε > 0, contradicting the maximality of
T .

It can often be shown that extending a solution beyond T is possible provided
that ‖X(·, t)‖C2 is uniformly bounded. For mean curvature flow, this follows from
explicit estimates. For other normal velocities, additional assumptions (the princi-
pal curvatures stay in a region, where F has nice properties) and Krylov-Safonov-
estimates can imply such a result.

4. Evolution equations for submanifolds

In this chapter, we will compute evolution equations of geometric quantities, see
e. g. [9, 10, 13].

For a family Mt of hypersurfaces solving the evolution equation

(4.1)
d

dt
X = −Fν

with F = F (λi), where F is a smooth symmetric function, we have the following
evolution equations.

Lemma 4.1. The metric gij evolves according to

(4.2)
d

dt
gij = −2Fhij .

Proof. By definition, gij = 〈X,i, X,j〉 = Xα
,iδαβX

β
,j . We differentiate with respect

to time. Derivatives of δαβ vanish. The term Xα
,i involves only partial derivatives.

We obtain

d

dt
gij =

(
Ẋα
)
,i
δαβX

β
,j +Xα

,iδαβ

(
Ẋβ
)
,j

(we may exchange partial spatial and time derivatives)

= (−Fνα),iδαβX
β
,j +Xα

,iδαβ(−Fνβ),j

(in view of the evolution equation d
dtX = −Fν)

= − Fνα;iδαβX
β
,j −X

α
,iδαβFν;j

(terms involving derivatives of F vanish as ν and Xα
,i are orthogonal to each other;

as the background metric gαβ = δαβ is flat, covariant and partial derivatives of ν
coincide)

= − FhkiXα
,kδαβX

β
,j − FX

α
,iδαβh

k
jX

β
,k

(in view of the Weingarten equation (2.3))

= − Fhki gkj − Fgikhkj

(by the definition of the metric)

= − 2Fhij
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(by the definition of hij := hjkg
ki).

The lemma follows. �

Corollary 4.2. ? The evolution equation of the volume element dµ :=
√

det gij dx
is given by

(4.3)
d

dt
dµ = −FH dµ.

Proof. Exercise. Recall the formulae for differentiating the determinant. �

Lemma 4.3. The unit normal ν evolves according to

(4.4)
d

dt
να = gijF; iX

α
; j .

Proof. By definition, the unit normal vector ν has length one, 〈ν, ν〉 = 1 = ναδαβν
β .

Differentiating yields
0 = ν̇αδαβν

β .

Hence it suffices to show that the claimed equation is true if we take on both sides
the scalar product with an arbitrary tangent vector. The vectors X,i (which we
will also denote henceforth by Xi as there is no danger of confusion; we will also
use this convention if partial and covariant derivatives of some quantity coincide)
form a basis of the tangent plane at a fixed point. We differentiate the relation

0 = 〈ν,Xi〉 = ναδαβX
β
i

and obtain

0 =
d

dt
ναδαβX

β
i + ναδαβ

d

dt
Xβ
i

=
d

dt
ναδαβX

β
i + ναδαβ

(
d

dt
Xβ

)
i

=
d

dt
ναδαβX

β
i − ν

αδαβ
(
Fνβ

)
i
.

Hence

d

dt
ναδαβX

β
i = ναδαβν

βFi + Fναδαβν
β
i

=Fi + F 1
2 〈ν, ν〉i = Fi

and the lemma follows as taking the scalar product of the claimed evolution equation

with Xk, i. e. multiplying it with δαβX
β
k , yields

d

dt
ναδαβX

β
k = gijFiX

α
j δαβX

β
k = gijFigjk = δikFi = Fk. �

Lemma 4.4. The second fundamental form hij evolves according to

(4.5)
d

dt
hij = F; ij − Fhki hkj .

Proof. The Gauß formula (2.2) implies that hij = −Xα
;ijνα. Differentiating yields

d

dt
hij = − d

dt
〈X;ij , ν〉

= −
〈
d

dt
X;ij , ν

〉
−
〈
−hijν,

d

dt
ν

〉
= −

〈
d

dt
X;ij , ν

〉
+ hij

〈
ν,
d

dt
ν

〉
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= −
〈
d

dt
X;ij , ν

〉
= − d

dt

(
Xα
,ij − ΓkijX

α
k

)
να

= −
(
d

dt
Xα

)
,ij

να + Γkij

(
d

dt
Xα

)
,k

να

(where no time derivatives of Γkij show up as Xα
i να = 0)

= (Fνα),ijνα − Γkij(Fν
α),kνα

(in view of the evolution equation)

=F,ijν
ανα + F,iν

α
,jνα + F,jν

α
,iνα + Fνα,ijνα − ΓkijF,kν

ανα − ΓkijFν
α
,kνα

=F;ij + Fνα,ijνα

as F;ij = F,ij −ΓkijF,k and να,jνα = 1
2 (νανα)j = 0. It remains to show that να,ijνα =

−hki hkj . We obtain

να,ijνα = να;i,jνα

(as ναi = να;i )

= νa;ijνα

(να;ij = (να;i ),j − Γkijν
α
k and 0 = ναk να)

=
(
hkiX

α
k

)
;j
να

(according to the Weingarten equation (2.3))

=hki (−hkjνα)να

(due to the Gauß equation (2.2) and the orthogonality Xα
k να = 0)

= − hki hkj
as claimed. The Lemma follows. �

Lemma 4.5. The normal velocity F evolves according to

(4.6)
d

dt
F − F ijF;ij = FF ijhki hkj .

Proof. We have, see [14, Lemma 5.4], the proof of [8, Theorem 2.1.20], or check
this explicitly for the normal velocity considered,

∂F

∂gkl
= −F ilhki

and compute the evolution equation of the normal velocity F

d

dt
F − F ijF;ij =− F ilhki

d

dt
gkl + F ij

d

dt
hij − F ijF; ij
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=FF ijhki hkj ,

where we used (4.2) and (4.5). �

We will need more explicit evolution equations for geometric quantities � in-
volving d

dt �−F
ij�;ij .

Lemma 4.6. The second fundamental form hij evolves according to

d

dt
hij − F klhij; kl =F klhakhal · hij − F klhkl · hai haj

− Fhki hkj + F kl, rshkl; ihrs; j .
(4.7)

Proof. Direct calculations yield

d

dt
hij − F ijhij; kl =F;ij − Fhki hkj − F ijhij;kl by (4.5)

=F klhkl; ij + F kl, rshkl; ihrs; j

− Fhki hkj − F ijhij; kl
=F klhik; lj + F kl, rshkl; ihrs; j

− Fhki hkj − F ijhik; jl by Codazzi

=F kl (hakRailj + haiRaklj)− Fhki hkj
+ F kl, rshkl; ihrs; j by (2.5)

=F klhakhalhij − F klhakhajhil
+ F klhai halhkj − F klhai hajhkl
− Fhki hkj + F kl, rshkl; ihrs; j by (2.4)

=F klhakhalhij − F klhai hajhkl
− Fhki hkj + F kl, rshkl; ihrs; j . �

Remark 4.7. A direct consequence of (4.1) and (2.2) is

d

dt
Xα − F ijXα

; ij =
(
F ijhij − F

)
να.(4.8)

Hence

d

dt
|X|2 − F ij

(
|X|2

)
;ij

=2
(
F ijhij − F

)
〈X, ν〉 − 2F ijgij .

Proof. ? We have

d

dt
|X|2 − F ij

(
|X|2

)
;ij

= 2

〈
X,

d

dt
X

〉
− 2F ij〈Xi, Xj〉 − 2F ij〈X,X;ij〉

= 2〈X,−Fν〉 − 2F ijgij − 2F ij〈X,−hijν〉. �

Lemma 4.8. The evolution equation for the unit normal ν is

(4.9)
d

dt
να − F ijνα;ij = F ijhki hkj · να.

Proof. We compute

d

dt
να − F ijνα;ij =gijF; iX

α
; j − F ij

(
hkiX

α
; k

)
; j

by (4.4) and (2.3)

=gijF klhkl; iX
α
; j − F ijhki; jXα

; k − F ijhkiXα
; kj

=F ijhki hkjν
α by (2.2). �
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Lemma 4.9. ? The evolution equation for the scalar product 〈X, ν〉 is

(4.10)
d

dt
〈X, ν〉 − F ij〈X, ν〉;ij = −F ijhij − F + F ijhki hkj〈X, ν〉.

Proof. Exercise. �

Lemma 4.10. Let ηα = (−en+1)α = (0, . . . , 0,−1). Then ṽ := 〈η, ν〉 ≡ ηαν
α

fulfills

d

dt
ṽ − F ij ṽ;ij =F ijhki hkj ṽ(4.11)

and v := ṽ−1 fulfills

d

dt
v − F ijv;ij = − vF ijhki hkj − 2

1

v
F ijvivj .(4.12)

Proof. The evolution equation for ṽ is a direct consequence of (4.9). For the proof
of the evolution equation of v observe that

vi = − ṽ−2ṽi = −v2ṽi

and

v;ij = − ṽ−2ṽ;ij + 2ṽ−3ṽiṽj = −v2ṽ;ij + 2v−1vivj . �

5. Mean curvature flow of entire graphs

For mean curvature flow of entire graphs, K. Ecker and G. Huisken proved the
following existence theorem [6, Theorem 5.1]

Theorem 5.1. Let u0 : Rn → R be locally Lipschitz continuous. Then there exists
a function u ∈ C∞ (Rn × (0,∞)) ∩ C0 (Rn × [0,∞)) solvingu̇ =

√
1 + |Du|2 div

(
Du√

1+|Du|2

)
in Rn × (0,∞),

u(·, 0) = u0 in Rn.

The key ingredient in the existence proof is the following localised gradient esti-
mate.

Theorem 5.2. Let u : BR(0)× [0, T ]→ R be a smooth solution to graphical mean
curvature flow. Then√

1 + |Du|2(0, t) ≤ c(n) sup
BR(0)

√
1 + |Du|2(·, 0) · exp

(
c(n)R−2

(
osc

BR(0)×[0,T ]
u

)2
)
.

We do not prove this Theorem in this course. However, if we additionally assume
that u(x, 0) → ∞ as |x| → ∞, Theorem 6.6, that is much easier to prove, can be
used instead of Theorem 5.2.

Theorem 5.1 has been extended to continuous initial data by J. Clutterbuck [2]
and T. Colding and W. Minicozzi [4].

If u is initially close to a cone in an appropriate sense, graphical mean curvature
flow converges, as t→∞, after appropriate rescaling, to a self-similarly expanding
solution “coming out of a cone”, see the papers by K. Ecker and G. Huisken [6] and
N. Stavrou [15].

Stability of translating solutions to graphical mean curvature flow without rescal-
ing is considered in [3].
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6. Mean curvature flow of complete graphs

The material in this section is based on joint work with M. Sáez, see [12]. Have
a look at the article for illustrations.

Intuition.

Remark 6.1.
(i) Long time existence for entire graphs was shown before by K. Ecker and G.

Huisken [6], see Theorem 5.1.
(ii) We wish to study the evolution of complete graphs defined on subsets of

Euclidean space Rn+1. The additional dimension is related to Theorem 6.3.
(iii) We assume for the moment that such initial data have smooth solutions. Then

the following figures should give some intuition about the behaviour of these
solutions.
a) A rotationally symmetric solution defined on a ball: Figure 1 shows a

rotationally symmetric graph in Rn+2 defined on a ball in Rn+1. A cylinder
over the boundary of the ball encloses this graph. Asymptotically, these
two hypersurfaces coincide as xn+2 → ∞. Under mean curvature flow,
the cylinder in Rn+2 collapses to a line in finite time. The sphere in
Rn+1 collapses to a point in finite time. As the principal curvatures of
any cylinder Mn

t × R are λ1, . . . , λn, 0, where λ1, . . . , λn are the principal
curvatures of Mn

t , the projection of the evolving cylinder coincides at all
times with the evolving sphere.
The evolution of the graph stays graphical and asymptotic to the evolving
cylinder as xn+2 →∞. As the curvature near the tip is larger than that of
the cylinder, the tip moves faster and moves up to infinity at precisely the
time when the cylinder collapses to a line. Thus for all times, the boundary
of the projections of the graphs coincides with the evolving spheres and
hence fulfills mean curvature flow.

b) A solution initially defined on a domain that will form a neckpinch under

mean curvature flow: In Figure 2 , the graph is initially defined over a
domain whose boundary will develop a neckpinch in finite time, i. e. the
thin neck will collapse. There are methods to continue the flow past this
neckpinch singularity. After this singularity, the hypersurface splits into
two topologically spherical components. Once again, the evolution of the
graph above is such that the boundary of its projection or, equivalently,
of the domain of definition of the graph, fulfills mean curvature flow. This
happens as follows: As the neckpinch singularity forms downstairs, the
mean curvature in Rn+1 blows up. Meanwhile, above the neck region in
Rn+2, the mean curvature becomes even larger so that the graph over the
neck region moves to infinity while the rest of the graph remains finite.
Then the graph separates into two disjoint components.

c) A solution initially defined on an annulus: In Figure 3 , the domain of
definition is an annulus. Its boundary consists of two disjoint spheres
that disappear at different times. The graph above is asymptotic to two
cylinders as xn+2 → ∞. When the inner cylinder collapses, a “cap at
infinity” is added to the graph and its topology changes. Similarly to the
example of a contracting sphere, this cap can travel in finite time from
infinity downwards and become visible. Later, the situation is similar to

that of Figure 1 .
d) A solution defined on a domain in the plane bounded by possibly countably

many disjoint curves: For a planar domain with finitely many holes, see

Figure 3 , there are finitely many times, where boundary components
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shrink to points and vanish. At those times, caps at infinity are added to
the graphical solution similarly to the annulus situation above.
Finally, if a planar domain has countably many holes, we can arrange
so that the holes disappear on a dense set of times. We get a smoothly
evolving graph whose mean curvature is unbounded at all times.

Results. Let us consider mean curvature flow for graphs defined on a relatively
open set

(6.1) Ω ≡
⋃
t≥0

Ωt × {t} ⊂ Rn+1 × [0,∞).

Our existence result for bounded domains is

Theorem 6.2 (Existence). Let A ⊂ Rn+1 be a bounded open set and u0 : A → R
a locally Lipschitz continuous function with u0(x)→∞ for x→ x0 ∈ ∂A.

Then there exists (Ω, u), where Ω ⊂ Rn+1 × [0,∞) is relatively open, such that
u solves graphical mean curvature flow

u̇ =
√

1 + |Du|2 · div

(
Du√

1 + |Du|2

)
in Ω ∩ {t > 0},

u is smooth for t > 0 and continuous up to t = 0, Ω0 = A, u(·, 0) = u0 in A and
u(x, t) → ∞ as (x, t) → (x0, t0) ∈ ∂Ω, where ∂Ω is the relative boundary of Ω in
Rn+1 × [0,∞).

Such smooth solutions yield weak solutions to mean curvature flow. We have

Theorem 6.3 (Weak flow). ? Let (A, u0) and (Ω, u) be as in Theorem 6.2. Let
∂Dt be the level set evolution of ∂Ω0 with D0 = Ω0. If ∂Dt does not fatten, the
measure theoretic boundaries of Ωt and Dt coincide for every t ≥ 0.

Here, Dt =
{
x ∈ Rn+1 : w(x, t) < 0

}
and w solves ẇ = |Dw| · div

(
Dw
|Dw|

)
as in

Remark 3.6. The equation is solved in the viscosity sense, see e. g. [1, 7] for more
details.

Strategy of proof.

Strategy of the proof of Theorem 6.2.
(i) Fix L > 0. Then there exists a solution with initial value min{u0, L} for all

t ∈ [0,∞], see [6].
(ii) If L1 < L, we prove a priori estimates for the part of the evolving graphs

which is below L1. This is done in Theorem 6.6 for the (spatial) first order
derivatives of u. See Theorem 6.11 for the second derivative bounds. Similar
techniques imply bounds for all higher derivatives.

(iii) We let L → ∞ and use a variant of the Theorem of Arzelà-Ascoli to pass to
a subsequence which is our solution. �

Sketch of the strategy of the proof of Theorem 6.3.
In the following sketch of a proof we try to give an idea of the argument without
mentioning technical details, e. g. approximations or fattening. None of the steps
works exactly as described below.

(i) The constructed solution corresponds to a level-set solution.
(ii) The level-set solution starting from ∂A×R is an outer barrier to the graphical

solution graphu(·, t). Observe that Ωt is the projection of the evolving graph
at time t to Rn+1. Hence Ωt is contained in the level-set evolution of A.

(iii) By shifting downwards the level set solution, we obtain convergence to the
level set solution starting with the cylinder ∂A×R. This prevents graphu(·, t)
from detaching near infinity from the evolution of the cylinder. �
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The a priori estimates. Recall the definition v =
√

1 + |Du|2, where we consider
u as a function defined on some subset of Rn+1 × [0,∞).

Let η := (ηα) = (0, . . . , 0, 1). In the following, whenever quantities like v or |A|2
are involved, we consider u and v as functions on the evolving hypersurfaces rather
than as functions depending on (x, t) ∈ Rn+1 × [0,∞), i. e. we consider u := Xαηα
and v := −〈ν, η〉−1.

Theorem 6.4. Let X be a solution to mean curvature flow. Then we have the
following evolution equations.(

d
dt −∆

)
u = 0,(

d
dt −∆

)
v = − |A|2v − 2

v |∇v|
2,(

d
dt −∆

)
|A|2 = − 2|∇A|2 + 2|A|4,(

d
dt −∆

)
G ≤ − 2k · G2 − 2ϕv−3〈∇v,∇G〉,

where G = ϕ|A|2 ≡ v2

1−kv2 |A|
2 and k > 0 is chosen so that kv2 ≤ 1

2 in the domain
considered.

Proof. We leave it to the reader to prove the evolution equations for u, v and |A|2.
For the evolution equation of G, see [5, 6]. �

Assumption 6.5. For the proof of the a priori estimates, we will assume that
u : Rn+1 × [0,∞) is a smooth solution to mean curvature flow such that

{x : u(x) ≤ 0} ⊂ BR(0)

for some R > 0. In order to be able to consider smooth solutions, a few extra
constructions are necessary.

Theorem 6.6 (C1-estimates). Let u be as in Assumption 6.5. Then

vu2 ≤ max
t=0

{u<0}

vu2

at points where u < 0.

Here and in the following, it is often possible to increase the exponent of u.

Proof. Exercise. Consider also v(−u). �

Remark 6.7. We recommend to consider Theorem 6.6 as an estimate for v(−u)2.

Corollary 6.8. Let u be as in Assumption 6.5. Then

v ≤ max
t=0

{u<0}

vu2

at points where u ≤ −1.

Remark 6.9. Corollaries similar to Corollary 6.8 also hold for the following a priori
estimates for points with u ≤ −ε < 0 or t ≥ ε > 0. We do not write them down
explicitly.

In Theorem 6.6 and later, we may replace every u by u− h for any constant h.

Remark 6.10. ? For later use, we estimate derivatives of u and v,

|∇u|2 = ηαX
α
i g

ijXβ
j ηβ = ηα

(
δαβ − νανβ

)
ηβ = 1− v−2 ≤ 1

and, according to (2.3),

|∇v|2 =
(

(−ηανα)
−1
)
i
gij
((
−ηβνβ

)−1
)
j

= v4ηαX
α
k h

k
i g
ijhljX

β
l ηβ ≤ v

4|A|2

≤ v2ϕ|A|2 = v2G.
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So we get

|〈∇u,∇v〉| ≤ |∇u| · |∇v| ≤ v2|A| ≤ v
√
G.

Theorem 6.11 (C2-estimates). ? Let u be as in Assumption 6.5.

(i) Then there exist λ > 0, c > 0 and k > 0 (the constant in ϕ and implicitly in
g), depending on the C1-estimates, such that

tu4G + λu2v2 ≤ sup
t=0

{u<0}

λu2v2 + ct

at points where u < 0 and 0 < t ≤ 1.
(ii) Moreover, if u is in C2 initially, we get C2-estimates up to t = 0: Then there

exists c > 0, depending only on the C1-estimates, such that

u4G ≤ sup
t=0

{u<0}

u4G + ct

at points where u < 0.

Proof. In order to prove both parts simultaneously, we set

w := (µt+ (1− µ))u4G + λu2v2 ≡ µtu4G + λu2v2.

If we set µ = 1, we obtain µt = t and later the first claim, if µ = λ = 0, we get
µt = 1 and deduce in the following the second claim. We calculate

ẇ =µu4G + 4µtu
3Gu̇+ µtu

4Ġ + 2λv2uu̇+ 2λu2vv̇,

wi = 4µtu
3Gui + µtu

4Gi + 2λv2uui + 2λu2vvi,

wij = 4µtu
3Guij + µtu

4Gij + 2λv2uuij + 2λu2vvij + 12µtu
2Guiuj

+ 4µtu
3(Giuj + Gjui) + 2λv2uiuj + 2λu2vivj + 4λvu(uivj + ujvi),

µtu
3∇G =

1

u
∇w − 4µtu

2G∇u− 2λv2∇u− 2λuv∇v,(
d
dt −∆

)
w ≤µu4G + µtu

4
(
−2kG2 − 2ϕv−3〈∇v,∇G〉

)
+ 2λu2v

(
−|A|2v − 2

v |∇v|
2
)

− 12µtu
2G|∇u|2 − 8µtu

3〈∇G,∇u〉 − 2λv2|∇u|2 − 2λu2|∇v|2

− 8λuv〈∇u,∇v〉.

In the following, we will use the notation 〈∇w, b〉 with a generic vector b. The
constants c are allowed to depend on sup{|u| : u < 0} (which does not exceed its
initial value) and the C1-estimates. It may also depend on an upper bound for
t, but we assume that 0 < t ≤ 1 whenever t appears explicitly. I. e., we suppress
dependence on already estimated quantities.

We estimate the terms involving ∇G separately. Let ε > 0 be a constant. We
fix its value below. Using Remark 6.10 for estimating terms, we get

−2ϕµtu
4v−3〈∇v,∇G〉 = − 2

ϕu

v3

〈
∇v, 1

u
∇w − 4µtu

2G∇u− 2λv2∇u− 2λuv∇v
〉

≤〈∇w, b〉+ 8µt
ϕ|u|3

v
G|A|+ 4λϕv|u||A|+ 4

λϕu2

v2
|∇v|2

= 〈∇w, b〉+ 8µtϕ
2 |u|3G3/2

ϕ3/2

1

v
+ 4λϕv|u||A|+ λu2|∇v|2 · 4 ϕ

v2

≤〈∇w, b〉+ εµtu
4G2 + ελu2v2|A|2 + λu2|∇v|2 · 4 ϕ

v2

+ c(ε, λ),

−8µtu
3〈∇G,∇u〉 = − 8

〈
∇u, 1

u
∇w − 4µtu

2G∇u− 2λv2∇u− 2λuv∇v
〉
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≤〈∇w, b〉+ 32µtu
2G + 16λv2 + 16λ|u|v3|A|

≤ 〈∇w, b〉+ εµtu
4G2 + ελu2v2|A|2 + c(ε, λ).

We obtain(
d
dt −∆

)
w ≤µu4G + µtu

4G2(−2k + 2ε) + 〈∇w, b〉

+ λu2v2|A|2(−2 + 3ε) + λu2|∇v|2
(

4
ϕ

v2
− 6
)

+ c(ε, λ).

Let us assume that k > 0 is chosen so small that kv2 ≤ 1
3 in {u < 0}. This implies

ϕ ≤ 2v2. We may assume that λ ≥ 2u2 in {u < 0} and get µu4G ≤ 1
2λu

2ϕ|A|2 ≤
λu2v2|A|2. We get

4
ϕ

v2
− 6 =

4

1− kv2
− 6 ≤ 0.

Finally, fixing ε > 0 sufficiently small, we obtain(
d
dt −∆

)
w ≤ 〈∇w, b〉+ c.

Now, both claims follow from the maximum principle. �

Appendix A. Parabolic maximum principles

The following maximum principle is fairly standard. For non-compact, strict or
other maximum principles, we refer to [6] or [11], respectively.

We will use C2;1 for the space of functions that are two times continuously dif-
ferentiable with respect to the space variables and once continuously differentiable
with respect to the time variable.

Theorem A.1 (Weak parabolic maximum principle). Let Ω ⊂ Rn be open and
bounded and T > 0. Let aij, bi ∈ L∞(Ω × [0, T ]). Let aij be strictly elliptic, i. e.
aij(x, t) > 0 in the sense of matrices. Let u ∈ C2;1(Ω × [0, T )) × C0

(
Ω× [0, T ]

)
fulfill

u̇ ≤ aijuij + biui in Ω× (0, T ).

Then we get for (x, t) ∈ Ω× (0, T )

u(x, t) ≤ sup
P(Ω×(0,T ))

u,

where P (Ω× (0, T )) := (Ω× {0}) ∪ (∂Ω× (0, T )).

Proof.

(i) Let us assume first that u̇ < aijuij + biui in Ω × (0, T ). If there exists a
point (x0, t0) ∈ Ω× (0, T ) such that u(x0, t0) > sup

P(Ω×(0,T ))

u, we find (x1, t1) ∈

Ω× (0, T ) and t1 minimal such that u(x1, t1) = u(x0, t0). At (x1, t1), we have
u̇ ≥ 0, ui = 0 for all 1 ≤ i ≤ n, and uij ≤ 0 (in the sense of matrices). This,
however, is impossible in view of the evolution equation.

(ii) Define for 0 < ε the function v := u− εt. It fulfills the differential inequality

v̇ = u̇− ε < u̇ ≤ aijuij + biui = aijvij + bivi.

Hence, by the previous considerations,

u(x, t)− εt = v(x, t) ≤ sup
P(Ω×(0,T ))

v = sup
P(Ω×(0,T ))

u− εt

and the result follows as ε↘ 0. �
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Appendix B. Some linear algebra

Lemma B.1. We have
∂

∂aij
det(ars) = det(ars)a

ji,

if aij is invertible with inverse aij, i. e. if aijajk = δik.

We skip the proof and point out that in two dimensions, this follows directly
from

det

(
a b
c d

)
= ad− bc.

Lemma B.2. Let aij(t) be differentiable in t with inverse aij(t). Then

d

dt
aij = −aikalj d

dt
akl.

Proof. We have
aikakj = δij .

Assume that there exists ãij such that

aikã
kj = δji .

Then aij = ãij , as

aij = aikδjk = aik
(
aklã

lj
)

=
(
aikakl

)
ãlj = ãij .

We differentiate and obtain

0 =
d

dt
δij =

d

dt

(
aikakj

)
=

d

dt
aikakj + aik

d

dt
akj .

Hence
d

dt
ail =

d

dt
aikδlk =

d

dt
aikakja

jl = −aik d
dt
akja

jl.

�

Appendix C. Exercises

Exercise C.1. Consider a solution (Mt)0≤t<T ) to mean curvature flow in Rn+1.

(1) Recall that H = λ1 + λ2 + . . .+ λn and |A|2 = λ2
1 + λ2

2 + . . .+ λ2
n.

Show that H = gijhij and |A|2 = hijhklg
ikgjl.

(2) Show that F ij = gij .
(3) Show that

(
d
dt −∆

)
X = 0 and

(
d
dt −∆

)
u = 0, where u = 〈X, en+1〉.

(4) Show that
(
d
dt −∆

)
v = −|A|2v − 2

v |∇v|
2.

(5) Show that
(
d
dt −∆

)
hij = |A|2hij − 2Hhki hkj .

(6) Compute the evolution equation for |X|2.
(7) Compute the evolution equation for H. You may use H = F or H = gijhij .
(8) Show that (

d
dt −∆

)
|A|2 = −2|∇A|2 + 2|A|4.

(9) Show that H > 0 is preserved for closed hypersurfaces.
(10) Show that

t 7→ max
Mt

|A|2

H2

is non-increasing for closed hypersurfaces with H > 0.
(11) Consider the case n = 2 and λ1 ≥ λ2 > 0. Deduce from the monotonicity

of |A|2/H2 that λ1/λ2 stays bounded. Hint: Rewrite (λ1−λ2)2

(λ1+λ2)2 in terms of

|A|2 and H and consider the function x 7→ x−1
x+1 .

(12) Prove Theorem 6.6 or a version with v(−u) instead of v(−u)2.
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(13) Derive an estimate of the form H2 ≤ c |A|2. Use the evolution equation of
H to derive an upper bound for T for closed hypersurfaces with H > 0.

(14) Show that H ≥ 0 is preserved for closed hypersurfaces.
(15) Read and understand the proof of Theorem 6.11.

Consider a solution (Mt)0≤t<T ) to mean curvature flow in Rn+1.

(1) Show that F ij = gij .
(2) Show that

(
d
dt −∆

)
X = 0 and

(
d
dt −∆

)
u = 0.

(3) Show that
(
d
dt −∆

)
v = −|A|2v − 2

v |∇v|
2.

(4) Show that
(
d
dt −∆

)
hij = |A|2hij − 2Hhki hkj .

(5) Compute the evolution equation for |X|2.
(6) Recall that H = λ1 + λ2 + . . .+ λn and |A|2 = λ2

1 + λ2
2 + . . .+ λ2

n.
Show that H = gijhij and |A|2 = hijhklg

ikgjl.
(7) Compute the evolution equation for H. You may use F = H or H = gijhij .
(8) Show that (

d
dt −∆

)
|A|2 = −2|∇A|2 + 2|A|4.

(9) Show that

t 7→ max
Mt

|A|2

H2

is non-increasing for closed hypersurfaces.
Hint: Use Kato’s inequality |∇|A||2 ≤ |∇A|2.

(10) Consider the case n = 2. Deduce from the monotonicity of |A|2/H2 that

λ1/λ2 stays bounded. Hint: Rewrite (λ1−λ2)2

(λ1+λ2)2 in terms of |A|2 and H and

consider the function x 7→ 1−x
1+x .

(11) Prove Theorem 6.6. Consider v(−u) and v(−u)2.
(12) Show that H > 0 is preserved for closed hypersurfaces.
(13) Derive an estimate between H2 and |A|2. Use the evolution equation of H

to derive an upper bound for T for closed hypersurfaces with H > 0.
(14) Show that H ≥ 0 is preserved for closed hypersurfaces.
(15) Read and understand the proof of Theorem 6.11.
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