Universität Konstanz SS 2024

Fachbereich Mathematik und Statistik

J. Schropp

https://www.math.uni-konstanz.de/~schropp/wiwimathss.html

8. Übungsblatt

Aufgabe 1

Die Punkte $x^1 = (0,0,1)$ und $x^2 = (1,0,0)$ sind stationäre Punkte der Lagrangefunktion zu dem Problem mit Zielfunktion

$$f(x_1, x_2, x_3) = \exp(x_1) + x_2 + x_3$$

und den Nebenbedingungen

$$x_1 + x_2 + x_3 = 1, \quad x_1^2 + x_2^2 + x_3^2 = 1$$
 (1)

(vgl. Aufgabe 4 von Blatt 7). Untersuchen Sie, ob an den Stellen x^1 und x^2 lokale Maxima oder lokale Minima von f unter den Nebenbedingungen (1) vorliegen. Geben Sie zunächst eine Matrix an, an welcher dies entschieden werden kann.

Aufgabe 2

Es sei $A \in \mathbb{R}^{N,N}$ symmetrisch.

Zeigen Sie: Jeder lokale Extremwert von

$$f(x) = x^T A x$$

unter den Nebenbedingungen $x^Tx=1$ ist ein Eigenvektor von A. Wie lautet der dazugehörige Eigenwert?

<u>Hinweis:</u> Man zeige $\nabla f(x) = 2Ax$.

Aufgabe 3

Vorgegeben seien die Funktionen $f: D \to \mathbb{R}$ und $g_i: D \to \mathbb{R}$, i = 1, ..., l, $D \subset \mathbb{R}^N$. Gesucht sind lokale Extrema von f unter den Nebenbedingungen $g_1(x) = g_2(x) = ... = g_l(x) = 0$.

Schreiben Sie dieses Problem um in eine gleichwertige Aufgabe, welche nur Ungleichungsnebenbedingungen enthält. Wieviele Ungleichungsnebenbedingungen sind nötig?

Aufgabe 4

Es sei $m \geq 4.$ Gesucht sind lokale Extrema von

$$f(x_1, x_2) = \frac{1}{2} \ln(1 + x_1) + \frac{1}{4} \ln(1 + x_2)$$

unter der Nebenbedingung $2x_1 + 3x_2 = m$.

- a) Berechnen Sie in Abhängigkeit von m die stationären Punkte $(x_1^*(m), x_2^*(m))$ der Lagrangefunktion und den zugehörigen Lagrangemultiplikator $\lambda^*(m)$.
- b) Wie verhält sich $\lambda^*(m)$ zu $\frac{d}{dm}f(x_1^*(m), x_2^*(m))$?