Übungsblatt 5 zur Linearen Algebra I

Wintersemester 2005/2006

Aufgabe 1: Welche der folgenden Mengen von Vektoren des \mathbb{R}^4 sind linear abhängig?

- (a) $\{(1,0,0,0),(2,0,0,0)\}$
- (b) $\{(1,1,1,1),(1,0,0,0),(0,1,0,0),(0,0,1,0),(0,0,0,2)\}$
- (c) $\{(17, 39, 50, 10), (13, 12, 198, 4), (16, 1, 0, 0)\}$
- (d) $\{(1,0,2,-1),(4,2,3,0),(5,0,5,-1),(6,3,\frac{3}{4},3)\}$ (e) $\{(1,\frac{1}{2},0,0),(2,-1,1,3),(0,0,1,1),(0,\frac{1}{2},\frac{1}{2},1)\}$

Aufgabe 2: Zeigen Sie, daß $\{(-i, 3, 1-i), (2i+1, 1, i), (3, 1, 2)\}$ ein Erzeugendensystem des \mathbb{C} -Vektorraumes \mathbb{C}^3 ist.

Aufgabe 3: Es sei V ein K-Vektorraum. Es seien n Vektoren v_1, \ldots, v_n in V gegeben, die linear abhängig sind, obwohl je n-1 von diesen linear unabhängig sind. Zeigen Sie:

- (a) Es gibt $\lambda_1, \ldots, \lambda_n \in K \setminus \{0\}$ mit $\sum_{i=1}^n \lambda_i v_i = 0$. (b) Sind $\lambda_1, \ldots, \lambda_n$ wie in (a) und $\mu_1, \ldots, \mu_n \in K$ mit $\sum_{i=1}^n \mu_i v_i = 0$, so existiert ein $\alpha \in K$ mit $\mu_1 = \alpha \lambda_1, \dots, \mu_n = \alpha \lambda_n$.

Aufgabe 4: Berechnen Sie eine Basis des Unterraums U des \mathbb{R} -Vektorraums \mathbb{R}^7 , dessen Elemente genau die $(x_1,\ldots,x_7)\in\mathbb{R}^7$ sind, für die folgende Gleichungen gelten:

$$3x_1 + 6x_2 - 2x_3 = -x_4 + 3x_5 - x_6 + 10x_7$$

$$4x_1 + 8x_2 - 8x_3 = 2x_4 - 2x_5 - 8x_6 + x_7$$

$$x_1 + x_2 + x_3 = x_4 + x_5 + x_6 + x_7$$

$$x_2 - 7x_3 = 2x_4 - 6x_5 - 8x_6 - 10x_7$$

Abgabe bis Freitag, den 25. November, vor Beginn der Vorlesung.