Wintersemester 2009/2010 Übungsblatt 9 21.12.2010

Lineare Algebra I

Die Aufgaben, die mit (*) gekennzeichnet sind, werden nicht korrigiert und fallen nicht unter die 50%-Regelung. Es wird aber eine Musterlösung für sie geben.

Aufgabe 9.1:

Sei K ein Körper mit $1+1 \neq 0$, und sei V ein K-Vektorraum. Zeigen Sie: Sind $u, v, w \in V$ linear unabhängig, so auch u+v, u+w, v+w.

Aufgabe 9.2:

Sei K ein Körper. Welche der folgenden Mengen sind Universen von Untervektorräumen der angegebenen K-Vektorräume?

- (a) $\{(x_1,\ldots,x_5)\in K^5\mid x_1-x_2=x_3+x_4+x_5\}\subseteq K^5$
- (b) $\{x \in K \mid f(x) = 0\} \subseteq K$ für ein Polynom $f \in K[X]$
- (c) $\{f \in K[X] \mid f(x) = 0\} \subseteq K[X]$ für ein $x \in K$

Aufgabe 9.3:

Sei K ein Körper, und seien V und W zwei K-Vektorräume. Zeigen Sie:

- (a) Sind U_1 und U_2 Untervektorräume von V, so ist $U_1 \cup U_2$ genau dann ein Untervektorraum von V, wenn $U_1 \subseteq U_2$ oder $U_2 \subseteq U_1$ gilt.
- (b) Ist $f: V \to W$ eine K-lineare Abbildung, so sind ker f und im f Untervektorräume von V.

Aufgabe 9.4:

Sei K ein Körper, sei $n \in \mathbb{N}$, und seien $a_1, \ldots, a_n \in K$, wobei nicht alle dieser Elemente die 0 sind. Zeigen Sie, dass die **Hyperebene**

$$H := \{(x_1, \dots, x_n) \in K^n \mid \sum_{i=1}^n a_i x_i = 0\}$$

ein Untervektorraum der Dimension n-1 des K-Vektorraumes K^n ist.

Aufgabe 9.5:

Sei K ein Körper, und seien V und W zwei K-Vektorräume. Sei $f\colon V\to W$ eine lineare Abbildung. Zeigen Sie:

- (a) Ist B eine Basis von V und C eine Basis von W, so ist $(B \times \{0\}) \cup (\{0\} \times C)$ eine Basis von $V \times W$.
- (b) Sind V und W endlich–dimensional, so auch $V \times W$ und es gilt dim $(V \times W) = \dim V + \dim W$.

- (c) Sind $v_1, \ldots, v_r \in V$ linear abhängig, so auch $f(v_1), \ldots, f(v_r)$.
- (d) Ist f injektiv und sind $v_1, \ldots, v_r \in V$ linear unabhängig, so sind auch $f(v_1), \ldots, f(v_r)$ linear unabhängig.
- (e) Ist V endlich-dimensional, sind $v_1, \ldots, v_r \in V$ linear unabhängig und $w_1, \ldots, w_r \in W$. Dann gibt es eine lineare Abbildung $g \colon V \to W$, die für alle $i \in \{1, \ldots, r\}$ den Vektor v_i auf den Vektor w_i abbildet.
- (f) Ist V endlich-dimensional, so auch im f.
- (g) Ist V endlich-dimensional, ist v_1, \ldots, v_n eine Basis von $\ker f$ und w_1, \ldots, w_m eine Basis von $\operatorname{im} f$, und ist für jedes $j \in \{1, \ldots, m\}$ ein $u_j \in f^{-1}(\{w_j\})$ gegeben, so ist $(v_1, \ldots, v_n, u_1, \ldots, u_m)$ eine Basis von V.
- (h) Es gilt, wenn dim $V < \infty$: dim $V = (\dim \ker f) + (\dim \operatorname{im} f)$.
- (i) Ist dim $V < \infty$, so gilt $V \cong (\ker f) \times (\operatorname{im} f)$.

Aufgabe 9.6:

Sei K ein Körper, und sei $d \in \mathbb{N}_0$.

- (a) Bestimmen Sie die Dimension des K-Vektorraumes $K[X]_d$.
- (b) Konstruieren Sie bezüglich einer von Ihnen gewählten Basis \underline{v} von $\mathbb{Q}[X]_6$ die Darstellungsmatrix $M(D,\underline{v},\underline{v})$ der formalen Ableitung $D\colon \mathbb{Q}[X]_6 \longrightarrow \mathbb{Q}[X]_6$.
- (c) Berechnen Sie den Kern von D (ebenfalls für $K=\mathbb{Q}$ und d=6).

Aufgabe 9.7:

Sei $W := \mathbb{F}_5[X]_4$.

- (a) Zeigen Sie, dass $\underline{v} = (X+1, X^4, X^3 X^2, X^2 1, X 1)$ und $\underline{w} = (2X^3 + X^2, X^2 + X, X^3 3X^2, X^4 + X^2, X^2 1)$ geordnete Basen von W sind.
- (b) Drücken Sie die Elemente von \underline{v} als Linearkombinationen der Elemente von \underline{w} aus und umgekehrt.
- (c) Betrachten Sie die Abbildung

$$F \colon W \longrightarrow W$$

 $p \longmapsto D((X+1)p).$

Zeigen Sie, dass F ein \mathbb{F}_5 -Vektorraumhomomorphismus ist, berechnen Sie die Darstellungsmatrix bezüglich \underline{v} und \underline{w} und bestimmen Sie den Kern von F.

(d) Man kann die Elemente aus \underline{v} auch als Polynome über dem Körper \mathbb{F}_2 auffassen. Zeigen Sie, dass \underline{v} keine Basis von $\mathbb{F}_2[X]_4$ ist.

Aufgabe 9.8:

Bestimmen Sie die Dimension des Zeilenraumes und des Spaltenraumes (als \mathbb{C} -Vektorraum) der folgenden Matrix:

$$\begin{pmatrix} 4 + \hat{\iota} & -1 + 4\hat{\iota} & 20 + 5\hat{\iota} & 7 + 23\hat{\iota} \\ 1 & \hat{\iota} & 3 & 1 + 3\hat{\iota} \\ -1 + \hat{\iota} & -1 - \hat{\iota} & -5 + 7\hat{\iota} & -10 \\ \hat{\iota} & -1 & 1 + 6\hat{\iota} & -4 + 5\hat{\iota} \end{pmatrix} \in \mathbb{C}^{4 \times 4}.$$

Aufgabe 9.9: (*)

Sie dürfen für die Lösung dieser Aufgabe keine Ergebnisse aus der Vorlesung verwenden. Sei K ein Körper.

- (a) Sei $v=(v_1,v_2)\in K^2$ nicht der Nullvektor, sowie $w=(w_1,w_2)\in K^2$ ein weiterer Vektor. Zeigen Sie, dass es genau dann ein $\lambda\in K$ mit $w=\lambda v$ gibt, wenn $v_1w_2-v_2w_1=0$ gilt.
- (b) Seien $v, w \in K^2$ linear unabhängig. Zeigen Sie, dass es zu jedem $u \in V$ eindeutig bestimmte Elemente $\alpha, \beta \in K$ mit $u = \alpha v + \beta w$ gibt.

Aufgabe 9.10: (*)

Sei $n \geq 1$ eine natürliche Zahl. Wir betrachten n Vektoren

$$v_i := (a_{i1}, a_{i2}, \dots, a_{in}) \in \mathbb{Q}^n \quad (1 \le i \le n)$$

mit $a_{jj} = 1$ und $\sum_{i=1}^{n} |a_{ij}| < 2$ für alle j = 1, ..., n. Dabei sei $|\cdot|$ der gewöhnliche Absolutbetrag auf \mathbb{Q} . Zeigen Sie, dass $(v_1, ..., v_n)$ eine Basis von \mathbb{Q}^n ist.

Aufgabe 9.11: (*)

Betrachten Sie den \mathbb{F}_{11} -Vektorraum $V := \{ f \mid f \colon \mathbb{F}_{11} \to \mathbb{F}_{11} \}$ aller Abbildungen von \mathbb{F}_{11} nach \mathbb{F}_{11} (vgl. Aufgabe 8.1).

- (a) Bestimmen Sie die Dimension von V.
- (b) Zeigen Sie, dass $U := \{ f \in V \mid f(0) = 0 \}$ und $W := \{ f \in V \mid f \text{ ist linear} \}$ Untervektorräume von V sind.
- (c) Bestimmen Sie jeweils eine Basis und die Dimension dieser Untervektorräume.
- (d) Wie viele Elemente enthalten U und W?

Aufgabe 9.12: (*)

Sei K ein Körper. Eine Matrix $A = (a_{ij})_{1 \le i,j \le n} \in K^{n \times n}$ heißt ein schwaches magisches Quadrat, falls es ein $s(A) \in K$ mit

$$\sum_{i=1}^{n} a_{ij} = s(A) \quad \text{für alle } i \in \{1, \dots, n\}$$

und

$$\sum_{i=1}^{n} a_{ij} = s(A) \quad \text{für alle } i \in \{1, \dots, n\}$$

gibt. Zeigen Sie:

- (a) $Q(n) := \{A \in K^{n \times n} \mid A \text{ ist ein schwaches magisches Quadrat}\}$ ist ein Untervektorraum des K-Vektorraumes $K^{n \times n}$ und $s : Q(n) \to K$, $A \mapsto s(A)$, ist eine lineare Abbildung.
- (b) Die Abbildung (ker s) $\to K^{(n-1)\times(n-1)}$, $(a_{ij})_{1\leq i,j\leq n} \mapsto (a_{ij})_{1\leq i,j\leq n-1}$, ist ein Isomorphismus.
- (c) dim $Q(n) = (n-1)^2 + 1$.

Abgabe bis Montag, den 11. Januar, 10 Uhr in die Briefkästen neben F411.