Übungsblatt 3 zur Einführung in die Algebra

Aufgabe 1. Sei G eine Gruppe und $H \triangleleft G$ und $I \triangleleft G$, mit $H \subseteq I$. Zeige $I / H \triangleleft G / H$ und

$$
(G / H) /(I / H) \cong G / I
$$

Solution
As H is a normal subgroup in G, for all $g \in G, g H=H g$, and hence for all $i \in I$ we have $(g H)^{-1} i H(g H)=\left(g^{-1} i g\right) H$. This is an element of I / H, as I is normal, so $I / H \triangleleft G / H$.

Define p, q to be the natural homomorphisms from G to $G / I, G / H$ respectively:

$$
p(g)=g I \quad q(g)=g H \quad \forall g \in G
$$

H is a subset of $\operatorname{ker}(p)$, so there exists a unique homomorphism $\varphi: G / H \rightarrow G / I$ so that $\varphi \circ q=p$ by the homorphism theorem.
p is surjective, so φ is surjective as well; hence $\operatorname{im} \varphi=G / I$. The kernel of φ is $\operatorname{ker}(p) / H=I / H$. So by the first isomorphism theorem we have

$$
(G / H) / \operatorname{ker}(\varphi)=(G / H) /(I / H) \cong \operatorname{im}(\varphi)=G / I
$$

Aufgabe 2. Sei G eine Gruppe, $H \leq G$ und $N \triangleleft G$. Zeige $(H \cap N) \triangleleft H, N \triangleleft H N=N H \leq G$ und

$$
H /(H \cap N) \cong(H N) / N
$$

Solution

First, we shall prove that $H N$ is a subgroup of G : Since $e \in H$ and $e \in N$, clearly $e=e^{2} \in H N$. Take $h_{1}, h_{2} \in H, n_{1}, n_{2} \in N$. Clearly $h_{1} n_{1}, h_{2} n_{2} \in H N$. Further,

$$
h_{1} n_{1} h_{2} n_{2}=h_{1}\left(h_{2} h_{2}^{-1}\right) n_{1} h_{2} n_{2}=h_{1} h_{2}\left(h_{2}^{-1} n_{1} h_{2}\right) n_{2}
$$

Since N is a normal subgroup of G and $h_{2} \in G$, then $h_{2}^{-1} n_{1} h_{2} \in N$. Therefore $h_{1} h_{2}\left(h_{2}^{-1} n_{1} h_{2}\right) n_{2} \in$ $H N$, so $H N$ is closed under multiplication.

Also, $(h n)^{-1} \in H N$ for $h \in H, n \in N$, since

$$
(h n)^{-1}=n^{-1} h^{-1}=h^{-1} h n^{-1} h^{-1}
$$

and $h n^{-1} h^{-1} \in N$ since N is a normal subgroup of G. So $H N$ is closed under inverses, and is thus a subgroup of G.

Similarly, for $h \in H, n \in N$ we have

$$
h n=\left(n n^{-1}\right) h n=n\left(n^{-1} h n\right) \in N H
$$

so $H N \subset N H$. That $N H \subset H N$ follows similarly, and hence $N H=H N$.
Since $H N$ is a subgroup of G, the normality of N in $H N$ follows immediately from the normality of N in G. That $H \cap N$ is a subgroup of H follows similarly.

Clearly $H \cap N$ is a subgroup of G, since it is the intersection of two subgroups of G.
Finally, define $\phi: H \rightarrow H N / N$ by $\phi(h)=h N$. We claim that ϕ is a surjective homomorphism from H to $H N / N$. Let $h_{0} n_{0} N$ be some element of $H N / N$; since $n_{0} \in N$, then $h_{0} n_{0} N=h_{0} N$, and $\phi\left(h_{0}\right)=h_{0} N$. Now

$$
\operatorname{ker}(\phi)=\{h \in H \mid \phi(h)=N\}=\{h \in H \mid h N=N\}
$$

and if $h N=N$, then we must have $h \in N$. So

$$
\operatorname{ker}(\phi)=\{h \in H \mid h \in N\}=H \cap N
$$

Thus, since $\phi(H)=H N / N$ and $\operatorname{ker} \phi=H \cap N$, by the Isomorphism Theorem we see that $H \cap N$ is normal in H and that there is a canonical isomorphism between $H /(H \cap N)$ and $H N / N$.

Aufgabe 3. Sei R ein kommutativer Ring und $n \in \mathbb{N}_{0}$. Zeige

$$
Z\left(\operatorname{GL}_{n}(R)\right)=\left\{a I_{n} \mid a \in R^{\times}\right\} \quad \text { und } \quad Z\left(\mathrm{SL}_{n}(R)\right)=\left\{a I_{n} \mid a^{n}=1\right\}
$$

Solution The result is clear for $n=1$, assume $n>1$.
Let $E_{p q}$ be the matrix with 1 in the (p, q) th position, and 0 elsewhere. Let $B_{p q}=E_{p q}+I_{n}$. If a matrix commutes with $B_{p q}$ then it commutes with $E_{p q}$ by distributivity, and the fact that all matrices commute with the identity. $B_{p q}$ is invertible when $p \neq q$, hence if a matrix is in $Z\left(\mathrm{GL}_{n}(R)\right)$ it commutes with $E_{p q}$ for $p \neq q$.

Now suppose A is a matrix with $a_{j i} \neq 0$ for some $i \neq j$. Consider the matrix $E_{i j}$. Then, the (j, j) th entry of $A E_{i j}$ is nonzero, while the (j, j) th entry of $E_{i j} A$ is zero. Thus, any matrix that commutes with all the $E_{p q}$ for $p \neq q$ cannot have any non-zero off-diagonal entries.

Now note that conjugation by the matrix (which, note, is its own inverse)

$$
\left(\begin{array}{ccc}
0 & 1 & 0 \\
1 & 0 & 0 \\
0 & 0 & I_{n-2}
\end{array}\right)
$$

swaps the first two diagonal entries of the matrix, hence they must be the same. This shows that $Z\left(\operatorname{GL}_{n}(R)\right) \subseteq\left\{a I_{n} \mid a \in R^{\times}\right\}$. That $\left\{a I_{n} \mid a \in R^{\times}\right\} \subseteq Z\left(\mathrm{GL}_{n}(R)\right)$ is clear, hence the result for $\mathrm{GL}_{n}(R)$.

The proof follows similarly for $\mathrm{SL}_{n}(R)$. We can show that any element of the centre is a diagonal matrix exactly as above, as $B_{p q} \in \mathrm{SL}_{n}(R)$ for $p \neq q$. To show that all the diagonal entries are equal we cannot conjugate by the above matrix, as it is not in $\mathrm{SL}_{n}(R)$ (it has determinant -1). However, the matrix

$$
\left(\begin{array}{ccc}
0 & 1 & 0 \\
-1 & 0 & 0 \\
0 & 0 & I_{n-2}
\end{array}\right)
$$

is in $\mathrm{SL}_{n}(R)$, and conjugating by this matrix again gives that all the diagonal entries must be equal. Finally, that $a^{n}=1$ for $a I_{n} \in Z\left(\mathrm{SL}_{n}(R)\right)$ simply follows from the fact that the determinant is 1 for all elements in $Z\left(\operatorname{SL}_{n}(R)\right)$.

Aufgabe 4. Sei K ein endlicher Körper mit q Elementen. Was ist die Gruppenordnung von $\mathrm{SL}_{n}(K)$?

Solution

Consider the homomorphism det : $\mathrm{GL}_{n}(K) \rightarrow K^{\times}$. This map is surjective. Since $\mathrm{SL}_{n}(K)$ is the kernel of the homomorphism, it follows from the First Isomorphism Theorem that $\mathrm{GL}_{n}(K) / \mathrm{SL}_{n}(K) \cong$ K^{\times}. We know $\left|\mathrm{GL}_{n}(K)\right|=\prod_{k=0}^{n-1}\left(q^{n}-q^{k}\right)$, therefore

$$
\left|\mathrm{SL}_{n}(K)\right|=\frac{\left|\mathrm{GL}_{n}(K)\right|}{\left|\mathrm{SL}_{n}(K)\right|}=\frac{\prod_{k=0}^{n-1}\left(q^{n}-q^{k}\right)}{q-1} .
$$

