Übungsblatt 4 zur Einführung in die Algebra: Solutions

Aufgabe 1. Sei G eine Gruppe und $H \leqslant G$, mit $[G: H]=2$. Zeige $H \triangleleft G$. Ist H notwendigerweise eine charakteristische Untergruppe?

Solution

Since $[G: H]=2, H$ has two left cosets and two right cosets. One coset must be H. Take $g \notin H$. Then $g H$ and $H g$ are the other cosets. We have $H \cup g H=G=H \cup H g$, and that these unions are disjoint unions. Therefore $g H=H g$ and hence H is normal.
H need not be characteristic. Let V be the Klein four-group. Since this group is abelian, every subgroup is normal; but every permutation of the three non-identity elements is an automorphism of V , so the three subgroups of order 2 are not characteristic. Here $V=\{e, a, b, a b\}$. Consider $H=\{e, a\}$ and consider the automorphism $T(e)=e, T(a)=b, T(b)=a, T(a b)=a b$. Then $T(H)$ is not contained in H.

Aufgabe 2. Sei G eine zyklische Gruppe und $H \leqslant G$. Zeige dass H zyklisch ist.
Solution
Let G be a cyclic group and $H \leqslant G$. Without loss of generality, $H \neq\left\{e_{G}\right\}$.
Let g be a generator of G. We have $G=\left\{g^{n} \mid n \in \mathbb{Z}\right\}$. Let n be the smallest positive integer such that $g^{n} \in H$.

Claim: $H=\left\langle g^{n}\right\rangle$. We have $\left\langle g^{n}\right\rangle \subseteq H$ since H is a subgroup containing g^{n} and $\left\langle g^{n}\right\rangle$ is the smallest such group.

Let $h \in H$. Then $h \in G$. Let x with $h=g^{x}$. By the division algorithm, there exist $q, r \in \mathbb{Z}$ with $0 \leqslant r<n$ such that $x=q n+r$. Thus, $h=g^{x}=g^{q n+r}=g^{q n} g^{r}=\left(g^{n}\right)^{q} g^{r}$. Therefore, $g^{r}=h\left(g^{n}\right)^{-q}$. Recall that $h, g^{n} \in H$. Hence, $g^{r} \in H$. By choice of n, r cannot be positive. Thus, $r=0$. Therefore, $h=\left(g^{n}\right)^{q} g^{0}=\left(g^{n}\right)^{q} e_{G}=\left(g^{n}\right)^{q}=\left\langle g^{n}\right\rangle$. Hence, $H \subseteq\left\langle g^{n}\right\rangle$.

This proves the claim. It follows that every subgroup of G is cyclic.
Aufgabe 3. Sei G eine Gruppe, $N \triangleleft G$. Betrachte

$$
X:=\{H \mid N \leq H \leq G\} \text { und } Y:=\{J \mid J \leq G / N\} .
$$

Zeige, dass

$$
X \rightarrow Y, H \mapsto H / N
$$

bijektiv ist. Seien $H, I \in X$. Zeige ferner, dass für alle $H, I \in X$ gilt:
(a) $H \leqslant I \Leftrightarrow H / N \leqslant I / N$.
(b) $H \leqslant I \Rightarrow[I: H]=[I / N: H / N]$.
(c) $H \triangleleft G \Leftrightarrow(H / N) \triangleleft(G / N)$.

Solution
Call the map in the question θ. Suppose $H, I \in X$ such that $H / N=I / N$, then for any $a \in H$ we have $a N=b N$ for some $b \in I$, and so $b^{-1} a \in N \subseteq I$. Hence $H \subseteq I$, and similarly $I \subseteq H$, so $H=I$ and θ is injective. Now suppose J is a subgroup of G / N and $\phi: G \rightarrow G / N$ by $\phi(g)=g N$. Then $\phi^{-1}(J)=\{j \in G: j N \in J\}$ is a subgroup of G (this must be proven!) containing N and $\theta\left(\phi^{-1}(J)\right)=\{j N: j N \in J\}=J$, proving that θ is bijective.
(a) $H \leq I$ iff $H / N \leq I / N$

First note that the elements of both H / N and I / N are cosets of N in G, so one must think in terms of cosets.
If $H \leq I$ then trivially $H / N \leq I / N$. Suppose now that $H / N \leq I / N$. Then $a N \in H / N \leq$ I / N, hence $a \in\{g \in G \mid g N \in I / N\}=I$, hence $H \leq I$.
(b) $H \leq I$ implies $[I: H]=[I / N: H / N]$

Let ψ map the cosets in I / \sim_{H} to the cosets in $(I / N) / \sim_{H / N}$ by mapping the coset $b H=\widetilde{b^{H}}$, $b \in I$ to the $\operatorname{coset}(b N)(H / N)=\widetilde{b H^{H / N}}=\widetilde{b^{H} H / N}$. Then ψ is well defined and injective because:

$$
\begin{aligned}
b_{1} H=b_{2} H & \Longleftrightarrow b_{1}^{-1} b_{2} \in H \\
& \Longleftrightarrow\left(b_{1} N\right)^{-1}\left(b_{2} N\right)=b_{1}^{-1} b_{2} N \in H / N \\
& \Longleftrightarrow\left(b_{1} N\right)(H / N)=\left(b_{2} N\right)(H / N)
\end{aligned}
$$

Finally, ψ is surjective since b ranges over all of I in $(b N)(H / N)$.
(c) $H \triangleleft G$ iff $(H / N) \triangleleft(G / N)$

Suppose $H \triangleleft G$. Then for any $g \in G$ we have $(g N)(H / N)(g N)^{-1}=\left(g H g^{-1}\right) / N=H / N$ and so $(H / N) \triangleleft(G / N)$.
Conversely suppose $(H / N) \triangleleft(G / N)$. Consider $\sigma: g \mapsto(g N)(H / N)$, the composition of the map from G onto G / N and the map from G / N onto $(G / N) /(H / N) . g \in \operatorname{ker} \sigma$ iff $(g N)(H / N)=(H / N)$ which occurs iff $g N \in H / N$ therefore $g N=a N$ for some $a \in A$. However N is contained in H, so this statement is equivalent to saying $g \in H$. So H is the kernel of a homomorphism, hence is a normal subgroup of G.

Aufgabe 4. Seien N und H Gruppen und $\varphi: H \rightarrow \operatorname{Aut}(N)$ ein Homomorphismus. Dann wird die Menge $N \times H$ vermöge

$$
(a, b)\left(a^{\prime}, b^{\prime}\right):=\left(a \varphi(b)\left(a^{\prime}\right), b b^{\prime}\right) \quad\left(a, a^{\prime} \in N, b, b^{\prime} \in H\right)
$$

eine Gruppe $N \rtimes_{\varphi} H$ und die Abbildungen $N \rightarrow N \rtimes_{\varphi} H, a \mapsto(a, 1)$ und $H \rightarrow N \rtimes_{\varphi} H, b \mapsto(1, b)$ sind Einbettungen.

Solution
First we show the group axioms hold.
Associativity:

$$
\begin{aligned}
\left((a, b)\left(a^{\prime}, b^{\prime}\right)\right)\left(a^{\prime \prime}, b^{\prime \prime}\right) & =\left(a \varphi(b)\left(a^{\prime}\right), b b^{\prime}\right)\left(a^{\prime \prime}, b^{\prime \prime}\right)=\left(a \varphi(b)\left(a^{\prime}\right) \varphi\left(b b^{\prime}\right)\left(a^{\prime \prime}\right), b b^{\prime} b^{\prime \prime}\right) \\
& =\left(a \varphi(b)\left(a^{\prime}\right) \varphi(b) \varphi\left(b^{\prime}\right)\left(a^{\prime \prime}\right), b b^{\prime} b^{\prime \prime}\right)=\left(a \varphi(b)\left(a^{\prime}\right) \varphi\left(b^{\prime}\right)\left(a^{\prime \prime}\right), b b^{\prime} b^{\prime \prime}\right) \\
& =(a, b)\left(a^{\prime} \varphi\left(b^{\prime}\right)\left(a^{\prime \prime \prime}\right), b^{\prime} b^{\prime \prime}\right)
\end{aligned}
$$

for all $(a, b),\left(a^{\prime}, b^{\prime}\right),\left(a^{\prime \prime}, b^{\prime \prime}\right) \in N \times H$.
Neutral element:

$$
(1,1)(a, b)=(1 \varphi(1)(a), 1 \cdot b)=(a, b)
$$

for all $(a, b) \in N \times H$.
Inverse: We will show that $(a, b)\left(\varphi\left(b^{-1}\right)\left(a^{-1}\right), b^{-1}\right)=(1,1)=\left(\varphi\left(b^{-1}\right)\left(a^{-1}\right), b^{-1}\right)(a, b)$ for all $(a, b) \in N \times H$. Let $(a, b) \in N \times H$ then

$$
\begin{aligned}
(a, b)\left(\varphi\left(b^{-1}\right)\left(a^{-1}\right), b^{-1}\right) & \left.=(a \varphi(b))\left(\varphi\left(b^{-1}\right)\left(a^{-1}\right)\right), b b^{-1}\right) \\
=\left(a\left(\varphi(b)\left(\varphi\left(b^{-1}\right)\right) a^{-1}\right), 1\right) & \left.=\left(a\left(\varphi\left(b b^{-1}\right)\right) a^{-1}\right), 1\right)=\left(a \varphi(1) a^{-1}, 1\right)=\left(a a^{-1}, 1\right)=(1,1) .
\end{aligned}
$$

The other calculation is similar.

Finally we show that the two maps in the question are embeddings:

$$
(a, 1)\left(a^{\prime}, 1\right)=\left(a \varphi(1)\left(a^{\prime}\right), 1\right)=\left(a a^{\prime}, 1\right)
$$

and

$$
(1, b)\left(1, b^{\prime}\right)=\left(1 \varphi(b) 1, b b^{\prime}\right)=\left(1, b b^{\prime}\right)
$$

for all $a, a^{\prime} \in N$ and $b, b^{\prime} \in H$, and therefore we our maps have kernel $\{1,1\}$.

