Aufgabe 1. Sei R ein kommutativer Ring, der genau 3 Ideale hat, (0), I und R. Zeige, dass:
(1) $a-1 \in R^{\times}$für alle $a \in I$.
(2) $a b=0$ für alle $a, b \in I$.

Finde ein Beispiel solches Ringes.

Solution

Let J be the ideal generated by $a-1$. We cannot have that $J=(0)$ as $a \neq 1$, since $1 \notin I$ as $I \neq R$. We cannot have that $J=I$ as this would imply that $a-(a-1)=1 \in I$ and $I=R$, which is again false. So, $J=R$ and hence $a-1$ must be a unit

For (2), we again note that the ideal generated by $a b$, which we call H, is either (0), I or R. We cannot have $H=R$ as $H \subseteq I \neq R$.

Assume $H=I$ then $a=(a b) c$ for some $c \in R$ as $a \in I$, hence $a(b c-1)=0$. But $b c \in I$, hence $b c-1$ is a unit, and we cannot have $a u=0$ for any $a \in R$ and $u \in R^{\times}$unless $a=0$, and in that case $a b=0$. Then $(0)=H \neq I$, a contradiction, so this case cannot occur.

Hence, $H=(0)$, and hence $a b=0$.
Finally, $R=\mathbb{Z} /(4)$ has only 3 ideals, (0), ($\overline{2})$ and the whole ring. This is clear, as if an ideal contains $\overline{3}$ or $\overline{1}$ then it must contain the whole ring.

Aufgabe 2. Sei R eine kommutativer Ring und $I, J \subset R$ Ideale von R. Sei

$$
I+J:=\{i+j \mid i \in I \text { und } j \in J\}
$$

und

$$
I J:=\left\{i_{1} j_{1}+\ldots+i_{n} j_{n} \mid i \in I \text { und } j \in J, i=1, \ldots, n\right\} .
$$

Zeige, dass $I+J=R \Rightarrow I \cap J=I J$.
Was ist wenn R nicht kommutativ ist?
(Hinweis: betrachte die 2×2 invertierbare untere Dreiecksmatrizen.)

Solution

We claim that $(I+J)(I \cap J) \subseteq I J$. This is true, because $(I+J)(I \cap J)=I(I \cap J)+J(I \cap J) \subseteq$ $I J+I J=I J$.

However, $I+J=R$, so, the above identity reduces to $I \cap J \subseteq I J$.
$I J \subseteq I \cap J$ is straightforward, since $I J$ consists of all finite sums of products of elements of I by elements of J. Each of these elements are in both I and J since ideals are closed under (ideal) addition and ring multiplication.

In the non-commutative case, this is not true. Let R be the right of lower triangular matrices over a ring with more than 1 element. Let $I \subseteq R$ be the ideal generated by $\left(\begin{array}{ll}1 & 0 \\ 0 & 0\end{array}\right)$ and $J \subseteq R$ be the ideal generated by $\left(\begin{array}{ll}0 & 0 \\ 0 & 1\end{array}\right)$.

Then clearly $I+J=R$ as it contains the identity.
$I J=\{0\}$ as $\left(\begin{array}{cc}a & 0 \\ 0 & 0\end{array}\right)\left(\begin{array}{cc}a^{\prime} & 0 \\ c^{\prime} & b^{\prime}\end{array}\right)\left(\begin{array}{ll}0 & 0 \\ 0 & b\end{array}\right)=0$ for all $a, b, a^{\prime}, b^{\prime}, c^{\prime} \in R$,
Finally we have $\left(\begin{array}{cc}0 & 0 \\ 0 & 1\end{array}\right)\left(\begin{array}{cc}0 & 0 \\ 1 & 0\end{array}\right)=\left(\begin{array}{cc}0 & 0 \\ 1 & 0\end{array}\right) \in J$ and $\left(\begin{array}{ll}0 & 0 \\ 1 & 0\end{array}\right)\left(\begin{array}{ll}1 & 0 \\ 0 & 0\end{array}\right)=\left(\begin{array}{ll}0 & 0 \\ 1 & 0\end{array}\right) \in$ I, so $\left(\begin{array}{ll}0 & 0 \\ 1 & 0\end{array}\right) \in I \cap J$ for all $c \in R$. So $I J \neq I \cap J$.

Aufgabe 3. Betrachte den \mathbb{R}-Vektorraum $\mathbb{R}^{\mathbb{N}}$ aller reellen Folgen und dessen Endomorphismenring $A:=\operatorname{End}\left(\mathbb{R}^{\mathbb{N}}\right)$. Finde ein $f \in A$, welches linksinvertierbar ist (d.h. es gibt $g \in A$ mit $g f=1_{A}$), aber nicht rechtsinvertierbar ist.

Solution

Let $f \in \operatorname{End}\left(\mathbb{R}^{\mathbb{N}}\right)$ be given by

$$
f\left(a_{0}, a_{1}, a_{2}, \ldots\right)=\left(0, a_{0}, a_{1}, \ldots\right)
$$

Then f has a left inverse given by

$$
g\left(a_{0}, a_{1}, a_{2}, \ldots\right)=\left(a_{1}, a_{2}, a_{3} \ldots\right)
$$

Assume f has a right inverse h. Then we must have $h=g$ as $g=g(f h)=(g f) h=h$. However $f g \neq 1$, so f has no right inverse.

Aufgabe 4. Betrachte den Ring $\mathbb{R}^{\mathbb{R}}$ aller Funktion $\mathbb{R} \rightarrow \mathbb{R}$ (mit punktweiser Addition und Multiplikation) und dem Einsetzungshomomorphismus

$$
\begin{gathered}
\varphi: \mathbb{R}[X, Y] \rightarrow \mathbb{R}^{\mathbb{R}} \\
f \mapsto f(\cos , \sin)
\end{gathered}
$$

Zeige $\operatorname{ker}(\varphi)=\left(X^{2}+Y^{2}-1\right)$.
(Hinweis: Betrachte zunächst Polynome der Form $g+Y h$ mit $g, h \in \mathbb{R}[X]$)
Bemerkung: Die Elemente vom im (φ) nennt man trigonometrische Polynome.

Solution

Firstly note that $\left(X^{2}+Y^{2}-1\right) \subseteq \operatorname{ker}(\varphi)$ as $\cos ^{2}+\sin ^{2}=1$.
Now assume that $f \in \operatorname{ker}(\varphi)$. Assume further, as in the hint, $f=g+Y h$ for $g, h \in \mathbb{R}[X]$. Then

$$
0=f(\cos , \sin)=g(\cos)+\sinh (\cos)
$$

However, since $\sin (x)=\sin (-x)$ and $\cos (x)=\cos (-x)$ for all $x \in \mathrm{R}$, we have

$$
0=f(\cos , \sin)=g(\cos)-\sinh (\cos)
$$

Adding these expressions together gives $g(\cos)=0$ and hence $g=0$ as $g(\cos (x))=0$ for all $x \in \mathrm{R}$, and therefore $g(Y)=0$ for all $Y \in[-1,1]$. Similarly we get $h=0$, so $f=0$.

Now assume that $f \in \operatorname{ker}(\varphi)$ but $f \notin\left(X^{2}+Y^{2}-1\right)$. We may write $f=g_{0}+g_{1} X+g_{2} X^{2}+$ $\cdots+g_{n} X^{n}$ for some $g_{i} \in \mathbb{R}[Y]$. Substituting X^{2} for $1-Y^{2}$ in this expression as many times as necessary results in a polynomial of the form $g+Y h$ with $g, h \in \mathbb{R}[X]$, which is congruent to f modulo $\left(X^{2}+Y^{2}-1\right) \subseteq \operatorname{ker}(\varphi)$. Thus we assume that f is of this form. But we have already shown that in this case $\bar{f}=0$. Hence $\operatorname{ker}(\varphi) \subseteq\left(X^{2}+Y^{2}-1\right)$, and hence the result.

