Übungsblatt 8 zur Einführung in die Algebra: Solutions

Aufgabe 1.

(a) Zeige, dass $4 X^{3}-15 X^{2}+60 X+180 \in \mathbb{Q}[X]$ irreduzibel ist.
(b) Zeige, dass $X^{3}+3 X^{2}+5 X+5 \in \mathbb{Q}[X]$ irreduzibel ist.
(c) Zeige, dass $X^{4}+2 X^{2}+4 \in \mathbb{Q}[X]$ irreduzibel ist.

Solution

(a) This is irreducible in $\mathbb{Z}[X]$ and $\mathbb{Q}[X]$ by Eisenstein's Criterion. It is a primitive polynomial in $\mathbb{Z}[X]$, and we apply the Criterion with the prime p taken to be 5 : for 5 does not divide the leading coefficient but it divides all the others, and its square, 25 , does not divide 180 .
(b)Call the polynomial f. Eisenstein's Criterion does not apply since there is no suitable prime. Substituting $X-1$ for X gives the polynomial $X^{3}+2 X+2$ to which Eisenstein does apply, with $p=2$. We deduce that $f(X-1)$ is irreducible in $\mathbb{Q}[X]$. Applying the automorphism of $\mathbb{Q}[X]$ sending X to $X+1$ it follows that $f=f(X+1-1)$ is irreducible in $\mathbb{Q}[X]$.
(c) For any rational number a / b, we have

$$
(a / b)^{4}+2(a / b)^{2}+4 \geqslant 0+2 \cdot 0+4=4>0
$$

so f has no rational roots, and hence no linear factors in $\mathbb{Q}[X]$. Since it is of degree 4 , the lack of roots also implies that it has no cubic factors either, since if $p=q r$ for some $q, r \in \mathbb{Q}[X]$, and $\operatorname{deg}(q)=3$, then $\operatorname{deg}(r)=\operatorname{deg}(p)-\operatorname{deg}(r)=4-3=1$. But r cannot have degree 1 , as f has no linear factors, and hence q has no factors of degree 3 .

It remains to show that the polynomial has no quadratic factors. Assume to the contrary that p has quadratic factors $g, h \in \mathbb{Q}[X]$ such that $p=g h$. Without loss of generality we assume that g is primitive in $\mathbb{Z}[X]$. Then Gauss' Lemma implies that we also have $h \in \mathbb{Z}[X]$. So $q=a X^{2}+b X+c$ and $r=d X^{2}+e X+f$ where $a, b, c, d, e, f \in \mathbb{Z}$.

If we multiply q, r, we can collect like terms to obtain

$$
p=q r=a d X^{4}+(a e+b d) X^{3}+(a f+b e+c d) X^{2}+(b f+c e) X+c f
$$

Two polynomials are equal if and only if their coefficients are equal, so

$$
\begin{aligned}
& 1=a d \\
& 0=a e+b d \\
& 2=a f+b e+c d \\
& 0=b f+c e \\
& 4=c f .
\end{aligned}
$$

Since a, d are integers and $a d=1$, we may assume that $a=d=1$. The system now becomes

$$
\begin{aligned}
& 0=e+b \\
& 2=f+b e+c \\
& 0=b f+c e \\
& 4=c f .
\end{aligned}
$$

Observe that $b=-e$, so we have

$$
\begin{align*}
& 2=f-b^{2}+c \tag{1}\\
& 0=b f-b c \tag{2}\\
& 4=c f \tag{3}
\end{align*}
$$

From equation (2), we know that $b=0$ or $f=c$. We consider two cases
Case 1: If $f=c$, equation (3) tells us that $c= \pm 2$. Substituting this into equation (1) we see that $b^{2}=2$ or $b^{2}=-4$, neither of which has an integer solution. Since b must be an integer, $f \neq c$.

Case 2: If $b=0$, equation (1) tells us that $f+c=2$, or $f=2-c$. Substituting into equation (3), we have

$$
\begin{aligned}
4 & =c(2-c) \\
4 & =2 c-c^{2} \\
c^{2}-2 c+4 & =0
\end{aligned}
$$

The quadratic formula shows that this has no integer solution for c. Since c must be an integer, $b \neq 0$.

Neither case gives a solution for the coefficients. Hence p cannot factor as the product of two quadratic polynomials. Thus p is irreducible in $\mathbb{Z}[X]$. By Gauss' Lemma, q is irreducible in $\mathbb{Q}[X]$.

Aufgabe 2. Sei $\sqrt{-3}:=\sqrt{3} \dot{\mathbb{i}} \in \mathbb{C}, R:=\mathbb{Z}[\sqrt{-3}]$ und $K=\mathrm{qf}(R)$.
(a) Zeige

$$
R=\{a+b \sqrt{-3} \mid a, b \in \mathbb{Z}\}
$$

und

$$
K=\{a+b \sqrt{-3} \mid a, b \in \mathbb{Q}\} .
$$

(b) Untersuche die Irreduzibilität von $X^{2}+X+1$ in $R[X]$ und in $K[X]$.
(c) Zeige, dass R nicht faktoriell ist.

Solution
Let $f=X^{2}+X+1$.
(a) That $R=\{a+b \sqrt{-3} \mid a, b \in \mathbb{Z}\}$ is clear from the definition.

Take $a, b \in \mathbb{Z}$ such that $x:=a+b \sqrt{-3} \neq 0$. To show that $K=\{a+b \sqrt{-3} \mid a, b \in \mathbb{Q}\}$, we must show that x is invertible in $\{a+b \sqrt{-3} \mid a, b \in \mathbb{Q}\}$. Take $y=\frac{a-b \sqrt{-3}}{a^{2}+3 b^{2}}$. If this is well defined, then it is clearly the inverse of x and an element of $\{a+b \sqrt{-3} \mid a, b \in \mathbb{Q}\}$. It is well defined if $a^{2}+3 b^{2} \neq 0$, which is clearly the case if either a or b is non-zero, and if $a=b=0$, then $x=0$.
(b) Over K (the fraction field of R), f factors as

$$
f=\left(X-\frac{-1+\sqrt{-3}}{2}\right)\left(X-\frac{-1-\sqrt{-3}}{2}\right) .
$$

We will now show that f is irreducible in R. Since f is of degree 2 , it is irreducible if and only if it has a root. Assume a root exists, of the form $\alpha=a+b \sqrt{-3}$ with $a, b \in \mathbb{Z}$. Then

$$
0=f(\alpha)=(a+b \sqrt{-3})^{2}+a+b \sqrt{-3}+1=\left(a^{2}-3 b^{2}+a+1\right)+\left(2 a b-b^{2}\right) \sqrt{-3}=0
$$

Hence $a^{2}-3 b^{2}+a+1=0$ and $2 a b-b^{2}=0$. From $2 a b-b^{2}=0$ we get either $b=0$ or $2 a-b=0$.
Case $b=0$. In this case we get that $a^{2}+a+1=0$ from the first equation. But we already know that $X^{2}+X+1$ has no roots in \mathbb{Z}.

Case $2 a=b$. In this case we get that $-11 a^{2}+a+1=0$. We can easily check with the equation for roots of a quadratic polynomial that $-11 X^{2}+X+1=0$ has no roots in \mathbb{Z}.

In both cases we get a contradiction, hence f is irreducible over $\mathbb{Z}[\sqrt{-3}]$.
(c) f is irreducible over R, but not over its field of fractions K. Since $\operatorname{deg} f \geqslant 1$ this would be a contradiction to Gauss' Lemma if R was a unique factorization domain (faktorieller Ring). Therefore R is not a unique factorization domain.

Aufgabe 3. Sei K ein Körper und $v: K \rightarrow \mathbb{Z} \cup\{\infty\}$ eine diskrete Bewertung auf K mit zugehörigem Bewertungsring \mathcal{O}_{v} und maximalem Ideal \mathfrak{m}_{v}.

Sei $\pi \in K \operatorname{mit} v(\pi)=1$.
(a) Zeige, dass $k \mapsto\left(\pi^{k}\right)$ eine Bijektion zwischen \mathbb{N}_{0} und der Menge der Ideale $I \neq\{0\}$ von \mathcal{O}_{v} definiert.
(b) Zeige, dass π bis auf Assoziiertheit das einzige irreduzible Element in \mathcal{O}_{v} ist.

Solution

(a) We will show that all non-zero ideals of \mathcal{O}_{v} are of the form $\left(\pi^{n}\right)$ for some $0 \neq n \in \mathbb{N}_{0}$ and that $\left(\pi^{n}\right) \neq\left(\pi^{m}\right)$ for all $n, m \in \mathbb{N}_{0}$ with $n \neq m$. Then the bijection is clear.

Note first that for all elements $a \in K^{\times}, v(a)+v\left(a^{-1}\right)=v\left(a \cdot a^{-1}\right)=v(0)$ and hence

$$
v(a)=-v\left(a^{-1}\right),
$$

and moreover, it is easy to show that

$$
v\left(a^{n}\right)=n v(a)
$$

for $n \in \mathbb{Z}$.
Take $0 \neq a \in \mathcal{O}_{v}$. If $v(a)=0$ then $a \in \mathcal{O}_{v}^{\times}$and trivially we have that $a=u \pi^{0}$ for some $u \in \mathcal{O}_{v}^{\times}$. Assume now that $v(a)=n>0$. We have that $v\left(\pi^{n}\right)=n$, and hence $v\left(a^{-1} \pi^{n}\right)=v\left(a^{-1}\right)+v\left(\pi^{n}\right)=$ 0 . Therefore $a^{-1} \pi^{n}=u$ for some $u \in \mathcal{O}_{v}^{\times}$. Hence $a=u \pi^{n}$.

Let I be an non-zero ideal of \mathcal{O}_{v} and assume $a \in I$ such that $v(a) \leqslant v(b)$ for all $b \in I$. If $a=0$ then $v(a)=\infty$ and hence $v(b)=\infty$ for all $b \in I$, and therefore $I=\{0\}$, a contradiction. Hence $a \neq 0$.

From the above we have that $a=u \pi^{n}$ for some $n \in \mathbb{N}_{0}$ and $u \in \mathcal{O}^{\times}$. We also have that for all $b \in I$,

$$
v\left(b a^{-1}\right)=v(b)+v\left(a^{-1}\right) \geqslant 0
$$

and hence $b a^{-1} \in \mathcal{O}_{v}$, therefore $b=a c=\pi^{n} u c \in\left(\pi^{n}\right)$ for some $c \in \mathcal{O}_{v}$. Hence $I \subseteq\left(\pi^{n}\right)$, and clearly $I \supseteq\left(\pi^{n}\right)$ as $a \in I$.

We now show that $\left(\pi^{n}\right) \neq\left(\pi^{m}\right)$ for all $n, m \in \mathbb{N}_{0}$ with $n \neq m$. Assume that $\left(\pi^{n}\right)=\left(\pi^{m}\right)$. Then $\pi^{m}=\pi^{n} \cdot a$ and $\pi^{m} \cdot b=\pi^{n}$ for some $a, b \in \mathcal{O}_{v}$. Taking valuations we see that $m=v\left(\pi^{m}\right)=$ $v\left(\pi^{n}\right)+v(a)=n+v(a)$. So $v(a)=m-n \geqslant 0$ as $a \in \mathcal{O}_{v}$, hence $m \geqslant n$. Similarly $v(b)=n-m \geqslant 0$, and hence $n \geqslant m$, and hence $n=m$.
(b) Assume that $\pi=a b$ for some $a, b \in \mathcal{O}_{v}$. Then

$$
v(\pi)=1=v(a)+v(b) .
$$

But $a, b \in \mathcal{O}_{v}$, and hence $v(a), v(b) \geqslant 0$. So, if $v(a)+v(b)=1$, we must have that $v(a)=0$ or $v(b)=0$, so either a or b is a unit. Hence π is irreducible.

That π is the only irreducible element up to associativity goes as follows. Suppose $p \in \mathcal{O}_{v}$ is irreducible. Then by the argument in (a), $p=u \pi^{n}$ for some $n \in \mathbb{N}_{0}$ and $u \in \mathcal{O}_{v}^{\times}$. Since $p \notin \mathcal{O}_{v}^{\times}$, we have $n \geqslant 1$. Further, since p is irreducible and $p=(u \pi)\left(\pi^{n-1}\right)$, we have that $\pi^{n-1} \in \mathcal{O}_{v}^{\times}$, which implies that $n=1$, hence $p=u \pi$, i.e. $p \cong \pi$.

