Übungsblatt 9 zur Einführung in die Algebra: Solutions

Aufgabe 1. Bestimme die Menge $A:=\left\{a \in \mathbb{C} \mid \mathbb{C}[X] /\left(X^{2}+a\right) \cong \mathbb{C} \times \mathbb{C}\right\}$, also die Menge aller $a \in \mathbb{C}$, für die Ringe $\mathbb{C}[X] /\left(X^{2}+a\right)$ und $\mathbb{C} \times \mathbb{C}$ isomorph sind.

Solution

We will show that $A=\mathbb{C} \backslash\{0\}$.
First we consider the ring $\mathbb{C}[X] /\left(X^{2}\right)$. This is not isomorphic to $\mathbb{C} \times \mathbb{C}$, as in $\mathbb{C}[X] /\left(X^{2}\right)$ there is an nonzero element that squares to zero (namely the residue class of X), but there is no such element in $\mathbb{C} \times \mathbb{C}$.

Now, take $a \in \mathbb{C} \backslash\{0\}$. We will show that the rings $\mathbb{C}[X] /\left(X^{2}-a\right)$ and $\mathbb{C} \times \mathbb{C}$ are isomorphic. Choose $b \in \mathbb{C}$ with $b^{2}=-a$. Then

$$
X^{2}+a=(X+b)(X-b)
$$

and, since $b \neq 0$ we have $b \neq-b$. Hence we have that the ideals $I:=(X+b)$ and $J:=(X-b)$ are coprime as $\frac{1}{2 b}(X+b) \in I$ and $\frac{-1}{2 b}(X-b) \in J$ and therefore

$$
1=\frac{1}{2 b}(X+b)-\frac{1}{2 b}(X-b) \in I+J .
$$

By the Chinese remainder theorem we get the isomorphism

$$
\mathbb{C}[X] /\left(X^{2}+a\right) \cong(\mathbb{C}[X] /(X+b)) \times(\mathbb{C}[X] /(X-b))
$$

We have a map $\mathbb{C}[X] \rightarrow \mathbb{C}$ given by $f \mapsto f(b)$ for $f \in \mathbb{C}[X]$. This has kernel $(X-b)$, and hence $\mathbb{C}[X] /(X-b) \cong \mathbb{C}$. Similarly $\mathbb{C}[X] /(X+b) \cong \mathbb{C}$. Hence

$$
\mathbb{C}[X] /\left(X^{2}-a\right) \cong \mathbb{C} \times \mathbb{C}
$$

Aufgabe 2. Sei $G \in\left\{\mathrm{GL}_{2}(\mathbb{R}), \mathrm{SL}_{2}(\mathbb{R}), \mathrm{O}_{2}(\mathbb{R}), \mathrm{SO}_{2}(\mathbb{R}), T\right\}$ wobei T die Gruppe von invertierbaren unteren 2×2-Dreiecksmatrizen bezeichnet.

Sei $X \in\left\{\mathbb{R}^{2}, \mathbb{R}^{2} \backslash\{0\},\{0\}\right\}$. Es wirke G auf X in natürlicher Weise (d.h. durch Multiplikation einer Matrix mit einem Vektor).

Gebe für jeden $5 \cdot 3=15$ Fälle für (G, X) an, ob die Wirkung transitiv ist, ob sie treu ist und ob sie frei ist.

Solution

Note first that all $G \in\left\{\mathrm{GL}_{2}(\mathbb{R}), \mathrm{SL}_{2}(\mathbb{R}), \mathrm{O}_{2}(\mathbb{R}), \mathrm{SO}_{2}(\mathbb{R}), T\right\}$ are subgroups of $\mathrm{GL}_{2}(\mathbb{R})$.

Transitivity:

An action of G on X is transitive if for all $v, v^{\prime} \in X$, there exists an $A \in G$ such that $A v=v^{\prime}$.

The action does not act transitively when $X=\mathbb{R}^{2}$ for all $G \in\left\{\mathrm{GL}_{2}(\mathbb{R}), \mathrm{SL}_{2}(\mathbb{R}), \mathrm{O}_{2}(\mathbb{R}), \mathrm{SO}_{2}(\mathbb{R}), T\right\}$ as, for all $A \in \mathrm{GL}_{2}(\mathbb{R})$ we have that $A \cdot 0=0$.

The action does act transitively when $X=\{0\}$ for all $G \in\left\{\mathrm{GL}_{2}(\mathbb{R}), \mathrm{SL}_{2}(\mathbb{R}), \mathrm{O}_{2}(\mathbb{R}), \mathrm{SO}_{2}(\mathbb{R}), T\right\}$ as, for all $A \in \mathrm{GL}_{2}(\mathbb{R})$ we have that $A \cdot 0=0$.

The action does act transitively when $X=\mathbb{R}^{2} \backslash\{0\}$ and $G=\mathrm{GL}_{2}(\mathbb{R})$, as we now show. Pick a non-zero vector $v=\binom{a}{b} \in \mathbb{R}^{2} \backslash\{0\}$. We will find an $A \in \mathrm{GL}_{2}(\mathbb{R})$ such that $A\binom{1}{0}=v$, and hence every $v \neq 0$ is in the G-orbit of $\binom{1}{0}$. If $a \neq 0$, let $A=\left(\begin{array}{ll}a & 0 \\ b & 1\end{array}\right)$. If $b \neq 0$, let $A=\left(\begin{array}{ll}a & 1 \\ b & 0\end{array}\right)$. These matrices are invertible in each case, and they send $\binom{1}{0}$ to $\binom{a}{b}$.

This shows that the action is transitive, as for every $v, v^{\prime} \in \mathbb{R}^{2} \backslash\{0\}$ there exist $A, B \in \mathrm{GL}_{2}\left(\mathbb{R}^{2}\right)$ such that $A\binom{1}{0}=v$ and $B\binom{1}{0}=v^{\prime}$, and hence $B A^{-1} v=v^{\prime}$.

The action does act transitively when $X=\mathbb{R}^{2} \backslash\{0\}$ and $G=\mathrm{SL}_{2}(\mathbb{R})$. We pick a non-zero vector $v=\binom{a}{b} \in \mathbb{R}^{2} \backslash\{0\}$ and find an $A \in \mathrm{SL}_{2}(\mathbb{R})$ such that $A\binom{1}{0}=v$. Take the matrices $A=\left(\begin{array}{cc}a & 0 \\ b & 1 / a\end{array}\right)$ if $a \neq 0$, and $A=\left(\begin{array}{cc}a & -1 / b \\ b & 0\end{array}\right)$ if $b \neq 0$. That the action is transitive now follows as above.

The action does not act transitively when $X=\mathbb{R}^{2} \backslash\{0\}$ and $G=\mathrm{O}_{2}(\mathbb{R})$. Assume there exists an $A=\left(\begin{array}{ll}a & b \\ c & d\end{array}\right) \in \mathrm{O}_{2}(\mathbb{R})$ such that $A\binom{1}{0}=\binom{1}{1}$. Then by carrying out the multiplication, we see that $a=1$ and $c=1$. Since $A \in \mathrm{O}_{2}(\mathbb{R})$ we have $A A^{t}=I$, hence

$$
\left(\begin{array}{ll}
1 & b \\
1 & d
\end{array}\right)\left(\begin{array}{ll}
1 & 1 \\
b & d
\end{array}\right)=\left(\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right)
$$

which gives $1+b^{2}=1+d^{2}=1$, and hence $b=d=0$. But $\left(\begin{array}{ll}1 & 0 \\ 1 & 0\end{array}\right)$ is not invertible, hence $A \notin \mathrm{O}_{2}(\mathbb{R})$, a contradiction. Hence the action is not transitive.

The action does not act transitively when $X=\mathbb{R}^{2} \backslash\{0\}$ and $G=\mathrm{SO}_{2}(\mathbb{R})$. This follows from the previous case.

The action does not act transitively when $X=\mathbb{R}^{2} \backslash\{0\}$ and $G=T$. Let $w=\binom{d}{e} \in \mathbb{R}^{2} \backslash\{0\}$ and $A=\left(\begin{array}{ll}a & 0 \\ b & c\end{array}\right) \in T$. Then $A w=\binom{a d}{b d+c e}$. We must have that $a \neq 0$ as A is invertible, so $A w=\binom{0}{1}$ only if $w=\binom{0}{e}$ for some $e \in \mathbb{R}$. More specifically, there exists no $A \in T$ such that $A\binom{1}{0}=\binom{0}{1}$, and hence the action is not transitive.

Faithful (treu)

An action of G on X is faithful if, for any $A \in G$, we have that $A v=v$ for all $v \in X$ implies that $A=I$.

The action acts faithfully when $X \in\left\{\mathbb{R}^{2}, \mathbb{R} \backslash\{0\}\right\}$ for all $G \in\left\{\mathrm{GL}_{2}(\mathbb{R}), \mathrm{SL}_{2}(\mathbb{R}), \mathrm{O}_{2}(\mathbb{R}), \mathrm{SO}_{2}(\mathbb{R}), T\right\}$ as we now show. Take $A=\left(\begin{array}{ll}a & b \\ c & d\end{array}\right) \in \operatorname{GL}_{n}(\mathbb{R})$. Then if $A v=v$ for all $v \in X$, then in particular $A\binom{1}{0}=\binom{1}{0}$ and $A\binom{0}{1}=\binom{0}{1}$. Solving this gives $A=\left(\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right)$, the identity in all $G \in\left\{\mathrm{GL}_{2}(\mathbb{R}), \mathrm{SL}_{2}(\mathbb{R}), \mathrm{O}_{2}(\mathbb{R}), \mathrm{SO}_{2}(\mathbb{R}), T\right\}$.

The action does not act faithfully when $X=\{0\}$ for all $G \in\left\{\mathrm{GL}_{2}(\mathbb{R}), \mathrm{SL}_{2}(\mathbb{R}), \mathrm{O}_{2}(\mathbb{R}), \mathrm{SO}_{2}(\mathbb{R}), T\right\}$, as $A \cdot 0=0$ for all $A \in G$ and $G \neq\{1\}$.

Free

An action of G on X is free if, for any $A \in G$, we have that $A v=v$ for any $v \in X$ implies that $A=I$.

The action is not free when $X \in\left\{\mathbb{R}^{2},\{0\}\right\}$ for all $G \in\left\{\mathrm{GL}_{2}(\mathbb{R}), \mathrm{SL}_{2}(\mathbb{R}), \mathrm{O}_{2}(\mathbb{R}), \mathrm{SO}_{2}(\mathbb{R}), T\right\}$, as $A \cdot 0=0$ for all $A \in G$ and $G \neq\{1\}$.

The action is not free when $X=\mathbb{R}^{2} \backslash\{0\}$ for $G \in\left\{\mathrm{GL}_{2}(\mathbb{R}), \mathrm{SL}_{2}(\mathbb{R}), T\right\}$. Take $I \neq\left(\begin{array}{ll}1 & 0 \\ 2 & 1\end{array}\right) \in G$. Then

$$
\left(\begin{array}{ll}
1 & 0 \\
2 & 1
\end{array}\right)\binom{0}{1}=\binom{0}{1}
$$

Hence the action is not free.
The action is not free when $X=\mathbb{R}^{2} \backslash\{0\}$ and $G=\mathrm{O}_{2}(\mathbb{R})$. Take $I \neq\left(\begin{array}{ll}0 & 1 \\ 1 & 0\end{array}\right) \in G$. Then

$$
\left(\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right)\binom{1}{1}=\binom{1}{1}
$$

Hence the action is not free.
The action is free, however, when $X=\mathbb{R}^{2} \backslash\{0\}$ and $G=\mathrm{SO}_{2}(\mathbb{R})$. Let $A \in \mathrm{SO}_{2}(\mathbb{R})$. Suppose $A=\left(\begin{array}{ll}a & b \\ c & d\end{array}\right)$. Since A has determinant 1, it's inverse is given by $A^{-1}=\left(\begin{array}{cc}d & -b \\ -c & a\end{array}\right)$, and since $A^{-1}=A^{t}$, this gives $a=d$ and $b=-c$. So $A=\left(\begin{array}{cc}a & b \\ -b & a\end{array}\right)$ with $a^{2}+b^{2}=1$.

Suppose now that there exists a $v \in X$ such that $A v=v$. Then $(A-I) v=0$. If $A-I$ is invertible, this implies that $v=0 \notin X$. Hence $A-I$ is not invertible, that is $\operatorname{det}(A-I)=0$. This gives $(a-1)^{2}+b^{2}=0$, and hence $a^{2}+b^{2}-2 a+1=0$. But $a^{2}+b^{2}=1$, hence we get that $a=1$, and $b=0$, i.e. $A=I$. Hence the action is free.

Aufgabe 3. Sei G eine endliche Gruppe und sei $H \triangleleft G$ Normalteiler von G. Sei $\tau: G \times X \rightarrow X$ eine transitive Gruppenwirkung. Zeige, dass es zwischen je zwei Bahnen der Einschränkung von τ auf $H \times X$ eine Bijektion gibt.

Solution

Suppose $x, y \in X$. It will suffice to find a bijection between the orbits $H x$ and $H y$. Since G acts transitively on X, there exists some $g \in G$ such that $g x=y$. Since H is a normal subgroup of $G, g h g^{-1} \in H$ for all $h \in H$, so we can define a map $f: H x \rightarrow H y$ by $f(h x):=g h g^{-1} y$ for all $h \in H$. We first show that this is well defined. Let $h, h^{\prime} \in H$ such that $h x=h^{\prime} x$. Then $g h g^{-1} y=g h x=g h^{\prime} x=g h g^{-1} y$. Hence the map is well defined.
f is injective: If $h, h^{\prime} \in H$ are such that $g h g^{-1} y=g h^{\prime} g^{-1} y$, then $g h x=g h^{\prime} x$, so multiplying on the right by g^{-1} gives $h x=h^{\prime} x . f$ is surjective: If $h \in H$ is such that $h y \in H y$, then $g^{-1} h g \in H$, and $f\left(g^{-1} h g(x)\right)=h y$. Therefore f is a bijection.

Aufgabe 4. Sei G Gruppe und $H \triangleleft G$ abelsch. Zeige, durch $\tau(g H, h):=g h g^{-1}$ für $g \in G$ und $h \in H$ eine Abbildung $\tau: G / H \times H \rightarrow H$ definiert wird und dass diese Abbildung eine Wirkung der Gruppe G / H auf H ist.

Suche ein Beispiel für eine Untergruppe H, die nicht abelsch ist, so dass τ nicht wohldefiniert ist.

Solution

First we show that the map is well defined. For all $g \in G, h \in H$ we have $g h g^{-1} \in H$ as H is normal. Let $g, g^{\prime} \in G$ such that $g H=g^{\prime} H$, so $g=g^{\prime} a$ for some $a \in H$. For all $h \in H$, we have

$$
g h g^{-1}=g^{\prime} a h\left(g^{\prime} a\right)^{-1}=g^{\prime} a h a^{-1} g^{\prime-1}
$$

but H is abelian, so $a h a^{-1}=h$, hence

$$
g h g^{-1}=g^{\prime} h\left(g^{\prime}\right)^{-1}
$$

and the map is well-defined.
Now we show that it is a group action. Firstly, we clearly have that $\tau(H, h)=h$ for all $h \in H$. Now let $g, g^{\prime} \in G$. We have for all $h \in H$,

$$
\tau\left(g^{\prime} H, \tau(g H, h)\right)=\tau\left(g^{\prime} H, g h g^{-1}\right)=g^{\prime}\left(g h g^{-1}\right) g^{\prime-1}=\left(g^{\prime} g\right) h\left(g^{\prime} g\right)^{-1}=\tau\left(g^{\prime} g H, h\right),
$$

hence τ is a group action.
Now D_{3} is a subgroup in D_{6} given by $\left\{e, r^{2}, r^{4}, s, s r^{2}, s r^{4}\right\}$, where

$$
r:=\left(\begin{array}{cc}
\cos \left(\frac{2 \pi}{6}\right) & -\sin \left(\frac{2 \pi}{6}\right) \\
\sin \left(\frac{2 \pi}{6}\right) & \cos \left(\frac{2 \pi}{6}\right)
\end{array}\right) \quad \text { and } \quad s:=\left(\begin{array}{cc}
1 & 0 \\
0 & -1
\end{array}\right) .
$$

Note that $D_{3} \leqslant D_{6}$ has index 2, hence is normal, and that D_{3} is nonabelian. Moreover, r and $r s$ are distinct representatives of $r D_{3}$. However, $r r^{2} r^{-1}=r^{2}$ and $r s r^{2}(r s)^{-1}=r^{4}$, so that the action described above is not well defined.

