Übungsblatt 10 zur Einführung in die Algebra: Solutions

Aufgabe 1. Sei G eine Gruppe der Ordnung $p^{2} q$, für zwei Primzahlen $p \neq q$. Zeige, dass G eine p-Sylowgruppe oder eine q-Sylowgruppe enthält, die ein Normalteiler ist.

Solution

Since all p or q-Sylow subgroups are conjugate, if a Sylow p or q-subgroup is unique then it must be normal.

Assume $p>q$. Then the number of p-Sylow subgroups is $1+p k$ for some $k \in \mathbb{N}_{0}$ and divides $p^{2} q$. So $k=0$ and hence there is a unique p-Sylow subgroup.

Assume $p<q$. Then the number of q-Sylow subgroups is $1+q n$ for some $n \in \mathbb{N}_{0}$, and must divide p^{2}. Either $n=0$ (and hence there is a unique q-Sylow subgroup), or $1+n q=p^{2}$. In the latter case, this gives $(q-1) p^{2}$ elements of order q in G, as any two q-Sylow subgroups meet only in 1. G also contains at least one p-Sylow subgroup, which is of order p^{2} and only intersects the q-Sylow subgroups at the identity. Since there are only $p^{2} q-p^{2}(q-1)=p^{2}$ elements that are not of order q, these elements must form a unique p-Sylow subgroup of order p^{2}.

Aufgabe 2. Sei G eine Gruppe und $H \leqslant G$. Sei

$$
N_{G}(H):=\left\{g \in G \mid g H g^{-1}=H\right\} .
$$

Wir nennen $N_{G}(H)$ den Normalisator von H in G.
Zeige, dass
(1) $N_{G}(H) \leqslant G$.
(2) $H \triangleleft N_{G}(H)$.
(3) $H \triangleleft G \Leftrightarrow N_{G}(H)=G$.
(4) es eine Bijektion zwischen den Mengen $\left\{g N_{G}(H) \mid g \in G\right\}$ und $\left\{g H g^{-1} \mid g \in G\right\}$ gibt.

Solution

Let G act by conjugation on the set of subgroups of G. Then $N_{G}(H)$ is the stabilizer of H (this shows (1)) and $\left\{g H g^{-1} \mid g \in G\right\}$ is the orbit of H. By the orbit-stabilizer theorem there is a bijection between the set of left cosets of the stabilizer and the orbit. This shows (4).

If $H \triangleleft G$, it's orbit under this action consists of only one point and hence $N_{G}(H)=G$. Similarly if $N_{G}(H)=G$, then it's orbit is only point point, and $H \triangleleft G$. This shows (3).

Clearly $h H h^{-1}=H$ for all $h \in H$, so $H \leqslant N_{G}(H)$. Let $x \in N_{G}(S)$. Then $x H x^{-1}=H$ by definition. So $H \triangleleft N_{G}(H)$. This shows (2).

Aufgabe 3. Sei G eine endliche Gruppe und sei $H \leqslant G$. Sei $\tau: G \times X \rightarrow X$ eine transitive Gruppenwirkung und $x \in X$.
(i) Zeige, dass die Einschränkung von τ auf $H \times X$ genau dann transitiv ist, wenn $G=H G_{x}$, wobei $G_{x}=\{g \in G \mid \tau(g, x)=x\}$ und $H G_{x}=\left\{h g \mid g \in G_{x}, h \in H\right\}$.
(ii) Sei $M \triangleleft G$ und P eine p-Sylowgruppe von M. Zeige, dass $G=M N_{G}(P)$.

Solution

(i) Suppose $G=H G_{x}$. Since the group action is transitive, for each $x, y \in X$, there is a $g \in G$ such that $\tau(g, x)=y$. We can write $g=h g^{\prime}$ for $h \in H$ and $g^{\prime} \in G_{x}$. Then $y=\tau(g, x)=\tau\left(h g^{\prime}, x\right)=$ $\tau\left(h, \tau\left(g^{\prime}, x\right)\right)=\tau(h, x)$ as $g^{\prime} \in G_{x}$. Hence H acts transitively.

Conversely, let $g \in G$. If H acts transitively, then there exists an $h \in H$ such that $\tau(g, x)=$ $\tau(h, x)$. Then $h^{-1} g \in G_{x}$ and hence the result.
(ii) Let X be the set of p-Sylow subgroups of M and $\tau: G \times X \rightarrow X$ be the action given by conjugation. This is well defined as M is a normal subgroup of G. By the Sylow theorem, the restriction of τ to $H \times X$ is transitive. For $P \in X$, we have that $G_{P}=\left\{g \in G \mid g P g^{-1}=P\right\}=$ $N_{G}(P)$. Hence we apply the first part of the question to get $G=M N_{G}(P)$.

Aufgabe 4. Sei G eine Gruppe der Ordnung $p q$, für Primzahlen $p<q$. Zeige, dass G zyklisch ist, wenn p nicht $(q-1)$ teilt.

Solution

Then the number of q-Sylow subgroups is $1+q n$ for some $n \in \mathbb{N}_{0}$ and must divide p. Hence $n=0$ and G contains a unique q-Sylow subgroup, which we call Q.

The number of p-Sylow subgroups is $1+p k$ for some $k \in \mathbb{N}_{0}$ and divides q. Hence either $k=0$ or $1+p k=q$. But $1+p k=q$ implies that p divides $q-1$, contradicting our assumptions. Hence $k=0$, so there is also a unique p-Sylow subgroup, which we call P.

Since P and Q are unique, we have that elements in $G \backslash\{P \cup Q\}$ do not have prime order, otherwise they would be contained in another p or q-Sylow subgroup. Hence they must have order $p q$. Such an element must exist as $p q>p+q-1$. G must be generated by this element, and hence G is cyclic.

Aufgabe 5. Seien $p, q \in \mathbb{N}_{0}$ ungerade und prim (möglicherweise gleich). Sei G eine Gruppe der Ordnung $2 p q$. Zeige, dass G eine eindeutige p-Sylowgruppe oder eine eindeutige q-Sylowgruppe (oder beide) enhält.

Solution

If $p=q$ then G has order $2 p^{2}$. Therefore a p-Sylow group has index 2 and is therefore a normal subgroup, and hence unique.

Assume now that $p \neq q$. The number of p-Sylow groups in G is $1+p n$ for some $k \in \mathbb{N}_{0}$ and the number of q-Sylow subgroups in G is is $1+q n$ for some $n \in \mathbb{N}_{0}$.

Assume $n, k \geqslant 1$. Then $1+p k \geqslant p+1$ and $1+q n \geqslant q+1$, so there are at least $(p-1)(p+1)=p^{2}-1$ elements of order p in G (as each p-Sylow group has $p-1$ elements of order p and the intersection of each pair of p-Sylow groups is $\{1\}$) and at least $q^{2}-1$ elements of order q.

There is also at least one element of order 2 (see sheet 2 , question 2), and the trivial element. This implies that the order of G is $|G|=2 p q \geqslant\left(p^{2}-1\right)+\left(q^{2}-1\right)+2=p^{2}+q^{2}$. Rearranging, gives $(p-q)^{2} \leqslant 0$, and hence $p=q$, a contradiction. Hence either n or k (or both) must equal 1 , i.e. G must contain a unique p-Sylow subgroup or a unique q-Sylow subgroup (or both!).

Aufgabe 6. Sei K ein Körper. Zeige, dass die Gruppe von invertierbaren oberen 3×3-Dreiecksmatrizen über K auflösbar ist.

Solution

Let G be the group of invertible upper triangular 3×3 matrices.
For any invertible upper triangular matrix A, the entries on the main diagonal are non-zero, and the entries on the main diagonal of A^{-1} must therefore be the inverses of the entries of the main diagonal of A. So the entries on the main diagonal of $A B A^{-1} B^{-1}$, for two invertible upper triangular matrices A and B, are all 1 .

Let $G^{(1)}=G^{\prime}=\left\langle A B A^{-1} B^{-1} \mid x, y \in G\right\rangle$, the commutator subgroup of G. Consider elements of $G^{(2)}=\left(G^{(1)}\right)^{\prime}$, all of which have all 1's on the main diagonal. A simple calculation shows that if $A=\left(\begin{array}{ccc}1 & a & b \\ 0 & 1 & c \\ 0 & 0 & 1\end{array}\right)$ then $A^{-1}=\left(\begin{array}{ccc}1 & -a & y \\ 0 & 1 & -c \\ 0 & 0 & 1\end{array}\right)$ for some $y \in K$. Direct computation then shows that every element in $G^{(2)}$ is of the form $C=\left(\begin{array}{lll}1 & 0 & x \\ 0 & 1 & 0 \\ 0 & 0 & 1\end{array}\right)$ for some $x \in K$.

Calculating again shows that $C^{-1}=\left(\begin{array}{ccc}1 & 0 & -x \\ 0 & 1 & 0 \\ 0 & 0 & 1\end{array}\right)$, and that $\left(G^{(2)}\right)^{\prime}=\{e\}$, and hence G is solvable.

Aufgabe 7. Sei K ein Körper. Zeige, dass $\mathrm{GL}_{2}(K)^{\prime}=\mathrm{SL}_{2}(K)$.

Hinweis: Betrachte

$$
\left[\left(\begin{array}{ll}
1 & 1 \\
0 & 1
\end{array}\right),\left(\begin{array}{ll}
y & 0 \\
0 & 1
\end{array}\right)\right],\left[\left(\begin{array}{ll}
1 & 0 \\
1 & 1
\end{array}\right),\left(\begin{array}{ll}
1 & 0 \\
0 & y
\end{array}\right)\right],\left[\left(\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right),\left(\begin{array}{ll}
x & 0 \\
0 & 1
\end{array}\right)\right] \in \mathrm{GL}_{2}(K)^{\prime}
$$

Solution

It's clear that $[A, B]$ has determinant 1 for all $A, B \in \mathrm{GL}_{2}(F)$, hence $\mathrm{GL}_{2}(K)^{\prime} \subseteq \mathrm{SL}_{2}(K)$.
Now, consider the commutators from the hint. Direct calculation shows that

$$
\begin{aligned}
& {\left[\left(\begin{array}{ll}
1 & 1 \\
0 & 1
\end{array}\right),\left(\begin{array}{ll}
y & 0 \\
0 & 1
\end{array}\right)\right]=\left(\begin{array}{cc}
1 & 1-y \\
0 & 1
\end{array}\right),} \\
& {\left[\left(\begin{array}{ll}
1 & 0 \\
1 & 1
\end{array}\right),\left(\begin{array}{ll}
1 & 0 \\
0 & y
\end{array}\right)\right]=\left(\begin{array}{ll}
1 & 0 \\
y & 1
\end{array}\right)}
\end{aligned}
$$

and

$$
\left[\left(\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right),\left(\begin{array}{ll}
x & 0 \\
0 & 1
\end{array}\right)\right]=\left(\begin{array}{cc}
x & 0 \\
0 & 1 / x
\end{array}\right) .
$$

Hence, for all $x, y \in F$ matrices of the form

$$
\left(\begin{array}{ll}
1 & y \\
0 & 1
\end{array}\right),\left(\begin{array}{ll}
1 & 0 \\
y & 1
\end{array}\right) \text { and }\left(\begin{array}{cc}
x & 0 \\
0 & 1 / x
\end{array}\right)
$$

are elements of $\mathrm{GL}_{2}(K)^{\prime}$.
Now, take a matrix in $\mathrm{SL}_{2}(F)$, say $\left(\begin{array}{ll}a & b \\ c & d\end{array}\right)$ with $a \neq 0$. We multiply it on the right by $\left(\begin{array}{cc}1 & -b / a \\ 0 & 1\end{array}\right) \in \mathrm{GL}_{2}(K)^{\prime}$ to reduce to the case of $b=0$. Given a matrix $\left(\begin{array}{ll}a & 0 \\ c & d\end{array}\right)$, we multiply it on the left by $\left(\begin{array}{cc}1 & 0 \\ -c / a & 1\end{array}\right) \in \mathrm{GL}_{2}(K)^{\prime}$ to see that we may assume $c=0$, and we are left with a form $\left(\begin{array}{cc}a & 0 \\ 0 & 1 / a\end{array}\right)$ (as the determinant must be 1), which is a commutator by the above. This shows that any matrix in $\mathrm{SL}_{2}(K)$ of the form $\left(\begin{array}{ll}a & b \\ c & d\end{array}\right)$ with $a \neq 0$ is in the commutator subgroup.

If $a=0$ the we have $\left(\begin{array}{ll}0 & b \\ c & d\end{array}\right)$ and $c \neq 0$. Multiply on the left by $\left(\begin{array}{ll}1 & 1 \\ 0 & 1\end{array}\right) \in \mathrm{GL}_{2}(K)^{\prime}$ to get back to the case $a \neq 0$.

