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Übungsblatt 10 zur Einführung in die Algebra: Solutions

Aufgabe 1. Sei G eine Gruppe der Ordnung p2q, für zwei Primzahlen p 6= q. Zeige, dass G eine
p–Sylowgruppe oder eine q–Sylowgruppe enthält, die ein Normalteiler ist.

Solution

Since all p or q-Sylow subgroups are conjugate, if a Sylow p or q-subgroup is unique then it must
be normal.

Assume p > q. Then the number of p-Sylow subgroups is 1 + pk for some k ∈ N0 and divides
p2q. So k = 0 and hence there is a unique p-Sylow subgroup.

Assume p < q. Then the number of q-Sylow subgroups is 1 + qn for some n ∈ N0, and must
divide p2. Either n = 0 (and hence there is a unique q-Sylow subgroup), or 1 + nq = p2. In the
latter case, this gives (q− 1)p2 elements of order q in G, as any two q–Sylow subgroups meet only
in 1. G also contains at least one p-Sylow subgroup, which is of order p2 and only intersects the
q-Sylow subgroups at the identity. Since there are only p2q− p2(q− 1) = p2 elements that are not
of order q, these elements must form a unique p-Sylow subgroup of order p2.

Aufgabe 2. Sei G eine Gruppe und H 6 G. Sei

NG(H) := {g ∈ G | gHg−1 = H}.

Wir nennen NG(H) den Normalisator von H in G.
Zeige, dass

(1) NG(H) 6 G.

(2) H / NG(H).

(3) H / G⇔ NG(H) = G.

(4) es eine Bijektion zwischen den Mengen {gNG(H) | g ∈ G} und {gHg−1 | g ∈ G} gibt.

Solution

Let G act by conjugation on the set of subgroups of G. Then NG(H) is the stabilizer of H (this
shows (1)) and {gHg−1 | g ∈ G} is the orbit of H. By the orbit-stabilizer theorem there is a
bijection between the set of left cosets of the stabilizer and the orbit. This shows (4).

If H/G, it’s orbit under this action consists of only one point and hence NG(H) = G. Similarly
if NG(H) = G, then it’s orbit is only point point, and H / G. This shows (3).

Clearly hHh−1 = H for all h ∈ H, so H 6 NG(H). Let x ∈ NG(S). Then xHx−1 = H by
definition. So H / NG(H). This shows (2).

Aufgabe 3. Sei G eine endliche Gruppe und sei H 6 G. Sei τ : G × X → X eine transitive
Gruppenwirkung und x ∈ X.

(i) Zeige, dass die Einschränkung von τ auf H ×X genau dann transitiv ist, wenn G = HGx,
wobei Gx = {g ∈ G | τ(g,x) = x} und HGx = {hg | g ∈ Gx,h ∈ H}.

(ii) Sei M /G und P eine p–Sylowgruppe von M . Zeige, dass G = MNG(P ).



Solution

(i) Suppose G = HGx. Since the group action is transitive, for each x,y ∈ X, there is a g ∈ G
such that τ(g,x) = y. We can write g = hg′ for h ∈ H and g′ ∈ Gx. Then y = τ(g,x) = τ(hg′,x) =
τ(h,τ(g′,x)) = τ(h,x) as g′ ∈ Gx. Hence H acts transitively.

Conversely, let g ∈ G. If H acts transitively, then there exists an h ∈ H such that τ(g,x) =
τ(h,x). Then h−1g ∈ Gx and hence the result.

(ii) Let X be the set of p-Sylow subgroups of M and τ : G × X → X be the action given
by conjugation. This is well defined as M is a normal subgroup of G. By the Sylow theorem, the
restriction of τ to H ×X is transitive. For P ∈ X, we have that GP = {g ∈ G | gPg−1 = P} =
NG(P ). Hence we apply the first part of the question to get G = MNG(P ).

Aufgabe 4. Sei G eine Gruppe der Ordnung pq, für Primzahlen p < q. Zeige, dass G zyklisch ist,
wenn p nicht (q − 1) teilt.

Solution

Then the number of q-Sylow subgroups is 1 + qn for some n ∈ N0and must divide p. Hence
n = 0 and G contains a unique q-Sylow subgroup, which we call Q.

The number of p-Sylow subgroups is 1 + pk for some k ∈ N0 and divides q. Hence either k = 0
or 1 + pk = q. But 1 + pk = q implies that p divides q − 1, contradicting our assumptions. Hence
k = 0, so there is also a unique p-Sylow subgroup, which we call P .

Since P and Q are unique, we have that elements in G \ {P ∪ Q} do not have prime order,
otherwise they would be contained in another p or q-Sylow subgroup. Hence they must have order
pq. Such an element must exist as pq > p+ q− 1. G must be generated by this element, and hence
G is cyclic.

Aufgabe 5. Seien p,q ∈ N0 ungerade und prim (möglicherweise gleich). Sei G eine Gruppe der
Ordnung 2pq. Zeige, dass G eine eindeutige p–Sylowgruppe oder eine eindeutige q–Sylowgruppe
(oder beide) enhält.

Solution

If p = q then G has order 2p2. Therefore a p-Sylow group has index 2 and is therefore a normal
subgroup, and hence unique.

Assume now that p 6= q. The number of p-Sylow groups in G is 1 + pn for some k ∈ N0 and
the number of q-Sylow subgroups in G is is 1 + qn for some n ∈ N0.

Assume n,k > 1. Then 1+pk > p+1 and 1+qn > q+1, so there are at least (p−1)(p+1) = p2−1
elements of order p in G (as each p-Sylow group has p− 1 elements of order p and the intersection
of each pair of p-Sylow groups is {1}) and at least q2 − 1 elements of order q.

There is also at least one element of order 2 (see sheet 2, question 2), and the trivial element.
This implies that the order of G is |G| = 2pq > (p2 − 1) + (q2 − 1) + 2 = p2 + q2. Rearranging,
gives (p− q)2 6 0, and hence p = q, a contradiction. Hence either n or k (or both) must equal 1,
i.e. G must contain a unique p-Sylow subgroup or a unique q-Sylow subgroup (or both!).

Aufgabe 6. SeiK ein Körper. Zeige, dass die Gruppe von invertierbaren oberen 3×3–Dreiecksmatrizen
über K auflösbar ist.

Solution



Let G be the group of invertible upper triangular 3x3 matrices.
For any invertible upper triangular matrix A, the entries on the main diagonal are non-zero,

and the entries on the main diagonal of A−1 must therefore be the inverses of the entries of the
main diagonal of A. So the entries on the main diagonal of ABA−1B−1, for two invertible upper
triangular matrices A and B, are all 1.

Let G(1) = G′ = 〈ABA−1B−1 | x,y ∈ G〉, the commutator subgroup of G. Consider elements
of G(2) = (G(1))′, all of which have all 1’s on the main diagonal. A simple calculation shows that

if A =

1 a b
0 1 c
0 0 1

 then A−1 =

1 −a y
0 1 −c
0 0 1

 for some y ∈ K. Direct computation then shows

that every element in G(2) is of the form C =

1 0 x
0 1 0
0 0 1

 for some x ∈ K.

Calculating again shows that C−1 =

1 0 −x
0 1 0
0 0 1

, and that (G(2))′ = {e}, and hence G is

solvable.

Aufgabe 7. Sei K ein Körper. Zeige, dass GL2(K)′ = SL2(K).
Hinweis: Betrachte[(

1 1
0 1

)
,

(
y 0
0 1

)]
,

[(
1 0
1 1

)
,

(
1 0
0 y

)]
,

[(
0 1
1 0

)
,

(
x 0
0 1

)]
∈ GL2(K)′.

Solution

It’s clear that [A,B] has determinant 1 for all A,B ∈ GL2(F ), hence GL2(K)′ ⊆ SL2(K).
Now, consider the commutators from the hint. Direct calculation shows that[(

1 1
0 1

)
,

(
y 0
0 1

)]
=
(

1 1− y
0 1

)
,[(

1 0
1 1

)
,

(
1 0
0 y

)]
=
(

1 0
y 1

)
and [(

0 1
1 0

)
,

(
x 0
0 1

)]
=
(
x 0
0 1/x

)
.

Hence, for all x,y ∈ F matrices of the form(
1 y
0 1

)
,

(
1 0
y 1

)
and

(
x 0
0 1/x

)
are elements of GL2(K)′.

Now, take a matrix in SL2(F ), say
(
a b
c d

)
with a 6= 0. We multiply it on the right by(

1 −b/a
0 1

)
∈ GL2(K)′ to reduce to the case of b = 0. Given a matrix

(
a 0
c d

)
, we multiply it on

the left by
(

1 0
−c/a 1

)
∈ GL2(K)′ to see that we may assume c = 0, and we are left with a form(

a 0
0 1/a

)
(as the determinant must be 1), which is a commutator by the above. This shows that

any matrix in SL2(K) of the form
(
a b
c d

)
with a 6= 0 is in the commutator subgroup.

If a = 0 the we have
(

0 b
c d

)
and c 6= 0. Multiply on the left by

(
1 1
0 1

)
∈ GL2(K)′ to get

back to the case a 6= 0.


