Übungsblatt 11 zur Einführung in die Algebra: Solutions

Aufgabe 1. Für jede Teilmenge M der komplexen Zahlenebene $\mathbb{C}=\mathbb{R} \oplus \mathbb{R} i \cong \mathbb{R}^{2}$ sei
$\operatorname{Ge}(M)=$ Menge der Geraden, die zwei verschiedene Punkte von M enthalten
$\operatorname{Kr}(M)=$ Menge der Kreise, deren Mittelpunkt in M liegt und deren Radius gleich dem Abstand zweier Punkte aus M ist.

Wir betrachten dann die folgenden elementaren Konstruktionsschritte:
(\times) Schnitt zweier verschiedener Geraden aus $\operatorname{Ge}(M)$
(\varnothing) Schnitt einer Geraden aus $\operatorname{Ge}(M)$ mit einem Kreis aus $\operatorname{Kr}(M)$
(@) Schnitt zweier verschiedener Kreise aus $\operatorname{Kr}(M)$.
Für jede Menge $M \subseteq \mathbb{C}$ sei $M^{\prime} \subseteq \mathbb{C}$ die Menge M vereinigt mit den Schnittpunkten, die man durch Anwendung von $(\times),(\varnothing)$ und ((\varnothing) erhalten kann. Man nennt die Elemente von M^{\prime} die in einem Schritt aus M konstruierbaren Punkte. Nun definieren wir für $M \subseteq \mathbb{C}$ induktiv die Menge $M^{(n)}$ der in n Schritten $\left(n \in \mathbb{N}_{0}\right)$ aus M konstruierbaren Punkte durch $M^{(0)}:=M$ und $M^{(n+1)}:=\left(M^{(n)}\right)^{\prime}$ für $n \in \mathbb{N}_{0}$. Schließlich sagen wir, die Punkte aus

$$
\not A M:=\bigcup\left\{M^{(n)} \mid n \in \mathbb{N}\right\}
$$

sind mit Zirkel und Lineal aus M konstruierbar. Zeige durch geometrische Konstruktionen (stichpunktartig kommentierte Skizzen), dass für jedes $M \subseteq \mathbb{C}$ mit $\{0,1\} \subseteq M$, die Menge $A M$ einen Zwischenkörper von $\mathbb{C} \mid \mathbb{Q}(i)$ bildet.

Solution

The reasoning in these solutions is easier to follow if you draw a picture to go along with it! We'll show the following results, which together show that $A M$ is a field that contains $\mathbb{Q}(i)$.
(1) $\dot{1} \in \notin M$
(2) $z \in A M \Rightarrow \bar{z} \in \AA M$
(3) $z \in \AA M \Rightarrow \operatorname{Re}(z), \operatorname{Im}(z) \in \AA M$
(4) $z \in \notin M \Rightarrow-z \in \AA M$
(5) $z_{1}, z_{2} \in \AA M \Rightarrow z_{1}+z_{2} \in \wedge M$
(6) $z_{1}, z_{2} \in \AA M \Rightarrow z_{1} z_{2} \in \AA M$
(7) $z \in \AA M, z \neq 0 \Rightarrow \frac{1}{z} \in A M$.
(Note that (3) is not needed to prove our final result, but will be needed in order to prove some of the other statements)
(1) The line connecting 0 and 1 , that is, the real line \mathbb{R}, belongs to $\mathrm{Ge}(M)$ by definition. Intersecting \mathbb{R} with the unit circle, which belongs to $\operatorname{Kr}(M)$, we see that $-1 \in \notin M$. We can then construct the perpendicular bisector of the interval $[1: 1]$. That is, we construct a line passing through the intersection points of two circles, centered at 1 and -1 , of radius 2 . We then intersect this line with the unit circle, and we obtain $\dot{1} \in A M$.
(2) Drop a perpendicular from z to \mathbb{R}. This is done by drawing a circle around z of diameter large enough so that it crosses \mathbb{R} at two points. The perpendicular from z to \mathbb{R} is then found by constructing the perpendicular bisector of this point. From the foot of this perpendicular, say a, draw a circle whose radius is the distance from a to z . Its second intersection with the straight line through z and a gives $\bar{z} \in A M$
(3) As just verified, we have $a=\operatorname{Re}(z) \in \AA M$. To obtain $a=\operatorname{Im}(z) \in \notin M$, draw the perpendicular to the imaginary axis through z, and then transfer to \mathbb{R} the absolute value of the foot b of the perpendicular.
(4) Intersect the line through 0 and z with the circle of radius $|z|$ and center 0 .
(5) In the case where $z_{1} \neq z_{2}$, intersect the circle of center z_{1} and radius $\left|z_{2}\right|$ with the circle of center z_{2} and radius $\left|z_{1}\right|$. One of the intersections is the vertex $z_{1}+z_{2}$ of the parallelogram determined by z_{1}, z_{2}.
In the case $z_{1}=z_{2}$, intersect the line between 0 and z_{1} with the circle centre z_{1}, radius the length of the line between 0 and z_{1}. The intersection point not at 0 is $z_{1}+z_{1}$.
(6) If $z_{1}=a+\dot{\mathrm{i}} b_{1}$ and $z_{2}=a_{2}+\dot{\mathrm{i}} b_{2}$ we have

$$
z_{1} z_{2}=\left(a_{1} a_{2}-b_{1} b_{2}\right)+\left(a_{1} b_{2}+a_{2} b_{1}\right) i
$$

Now $z_{1}, z_{2} \in \AA M$ implies that $a_{1}, a_{2}, b_{1}, b_{2} \in \AA M$ by (3). So if this claim is true for real numbers, then it will also be true for arbitrary complex numbers by (4) and (5). Therefore we must prove that given real numbers r_{1} and r_{2},

$$
r_{1}, r_{2} \in \not A M \Rightarrow r_{1} r_{2} \in A M
$$

We may assume that $r_{1}, r_{2}>0$. Consider intersection point of the line through 0 and $1+\mathrm{i}$ with the circle of radius r_{2} and centre 0 with positive real part, which we call z. We then construct the line through z and 1 .
We now construct a line parallel to the line through z and 1 going through r_{1}. We do this by dropping a perpendicular from r_{1} to the line, then constructing a perpendicular to this second line through r_{1}.
This line crosses the line between 0 and z at y.
Now we have constructed 2 similar triangles, one with vertices at 0,1 and z with the length of the line between 0 and z being r_{2}, and one with vertices at $0, r_{1}$ and y with the length of the line between 0 and y being x. These triangles are similar, hence the ratio of x to r_{1} is equal to the ratio of r_{2} to 1 . That is, $x=r_{1} r_{2}$. Hence $r_{1} r_{2} \in \notin M$
(7) Since $z^{-1}=\bar{z} \cdot(z \bar{z})^{-1}$, it suffices in view of the earlier parts to show that if $r>0$ lies in A M, so does r^{-1}. We again construct a part of similar triangles.

For the first triangle, we draw a circle of radius 1, and take the intersect point of this circle with the line through 0 and $1+\dot{i}$ whose real part is positive, to give the first vertex, x. We then form a triangle with vertices at $0, r$ and x with the length of the line between 0 and x being 1 .

For the second triangle, we construct a parallel line through 1 to the line between x and r. This intersects the line between 0 and $1+i$ at the point y. We then form the triangle with
vertices at 0,1 and y. This triangle is similar to the previously drawn triangle, and hence the ratio of r to 1 is equal to the ratio of 1 to the length of the line between 0 and y. Hence the length of the line between 0 and y is $1 / r$.
We can hence construct r^{-1} by the intersection of \mathbb{R} and the circle, centre 0 , radius the length of the line between 0 and y.

Aufgabe 2. Sei $L \mid K$ eine Körpererweiterung und $a, b \in L$ mit $a^{2} \in K$ und $b^{2} \in K$.
(a) Finde ein Polynom $f \in K[X] \backslash\{0\}$ mit $f(a+b)=0$.
(b) Welche Grade kommen für das Minimalpolynom $\operatorname{irr}_{K}(a+b)$ von $a+b$ über K in Frage? Gebe jeweils ein Beispiel für jeden möglichen Grad und ein stichhaltiges Argument für jeden unmöglichen Grad.

Solution

(a) Since

$$
(a+b)^{4}=a^{4}+4 a^{3} b+6 a^{2} b^{2}+4 a b^{3}+b^{4}
$$

and

$$
\left(a^{2}+b^{2}\right)(a+b)^{2}=a^{4}+2 a^{3} b+2 a^{2} b^{2}+2 a b^{3}+b^{4}
$$

we have that $a+b$ is a root of the polynomial

$$
X^{4}-2\left(a^{2}+b^{2}\right) X^{2}-2 a^{2} b^{2}+a^{4}+b^{4}
$$

whose coefficients are in K.
(b) Higher degrees than 4 are clearly not possible, as $a+b$ is always a root of the polynomial $X^{4}-2(a+b) X^{2}-2 a b+a^{2}+b^{2}$ over K. Moreover, let $F:=K(a, b) \supseteq K(a+b) .[F: K]=$ $[F: K(a)][K(a): K]$, and hence is either 1,2 or 4 . We must have that $[K(a+b): K]$ divides $[F: K]$. Hence $[K(a+b): K] \neq 3$.
Degree one is possible. Take $a, b \in K$, then $K(a)=K$ and the minimal polynomial of $a+b$ is $X-a-b$. For example, $K=\mathbb{R}$ and $a=4, b=4$.
Degree two is possible. For example, let $K=\mathbb{Q}, a=\sqrt{2}, b=1$. Then the minimal polynomial of $a+b$ over K is $X^{2}-2 X-1$.
Degree four is possible. We shall see in the next question that $X^{4}-16 X^{2}+4$ is the minimal polynomial of $\sqrt{3}+\sqrt{5}$ over \mathbb{Q}

Aufgabe 3. Bestimme die Minimalpolynome von $\sqrt{3}+\sqrt{5}$ über $\mathbb{Q}, \mathbb{Q}(\sqrt{5})$ und $\mathbb{Q}(\sqrt{15})$.

Solution

Consider the tower $\mathbb{Q} \subset \mathbb{Q}(\sqrt{5}) \subset \mathbb{Q}(\sqrt{5}, \sqrt{3})$. As $\sqrt{5} \notin \mathbb{Q}, x^{2}-5$ is the minimal polynomial of $\sqrt{5}$ over \mathbb{Q} and we have that $[\mathbb{Q}(\sqrt{5}): \mathbb{Q}]=2$. Furthermore, $\sqrt{3} \notin \mathbb{Q}(\sqrt{5})$, as we now show.

Since the equation $3=(a+b \sqrt{5})^{2}=a^{2}+5 b^{2}-2 a b \sqrt{5}$ implies that a or b must be 0 . If $b=0$, this 3 implies that 3 is a square in \mathbb{Q}, which is false. If $a=0$, this implies that $3 / 5$ is a square in \mathbb{Q}. Assume $3 / 5=p^{2} / q^{2}$, where p and q are coprime. Then $3 q^{2}=5 p^{2}$, which is clearly impossible.

It follows, using the product formula, that $[\mathbb{Q}(\sqrt{5}, \sqrt{3}): \mathbb{Q}]=4$.
Consider the tower $\mathbb{Q} \subset \mathbb{Q}(\sqrt{15}) \subset \mathbb{Q}(\sqrt{3}+\sqrt{5}) \subset \mathbb{Q}(\sqrt{3}, \sqrt{5})$, where the second inclusion follows from $(\sqrt{3}+\sqrt{5})^{2}=8+2 \sqrt{15}$.

The first inclusion is proper as $\sqrt{15} \notin \mathbb{Q}$ and so is the second, as we now show. If $\mathbb{Q}(\sqrt{15})=$ $\mathbb{Q}(\sqrt{3}+\sqrt{5})$, then $\sqrt{3}+\sqrt{5}$ would be an element of $\mathbb{Q}(\sqrt{15})$ and hence so is

$$
\sqrt{15}(\sqrt{3}+\sqrt{5})=3 \sqrt{5}+5 \sqrt{3}
$$

and hence

$$
\frac{1}{2}(3 \sqrt{5}+5 \sqrt{3}-3(\sqrt{3}+\sqrt{5}))=\sqrt{3} \in \mathbb{Q}(\sqrt{15})
$$

Since $[\mathbb{Q}(\sqrt{3}): \mathbb{Q}]=[\mathbb{Q}(\sqrt{15}): \mathbb{Q}]$, this implies that $\mathbb{Q}(\sqrt{3})=\mathbb{Q}(\sqrt{15})$. Similarly, one can argue that we would also get $\mathbb{Q}(\sqrt{4})=\mathbb{Q}(\sqrt{15})$. But $\mathbb{Q}(\sqrt{3})=\mathbb{Q}(\sqrt{5})$, as we argued above, hence the inclusion is proper.

It follows, by considering the possible degrees, that $\mathbb{Q}(\sqrt{3}+\sqrt{5})=\mathbb{Q}(\sqrt{3}, \sqrt{5})$.
Note that $\mathbb{Q}(\sqrt{5})(\sqrt{3}+\sqrt{5})=\mathbb{Q}(\sqrt{3}, \sqrt{5})$ and $\mathbb{Q}(\sqrt{15})(\sqrt{3}+\sqrt{5})=\mathbb{Q}(\sqrt{3}, \sqrt{5})$. Hence, the minimal polynomial of $\sqrt{3}+\sqrt{5}$ is of degree 4 over \mathbb{Q} and of degree 2 over $\mathbb{Q}(\sqrt{5})$ and $\mathbb{Q}(\sqrt{15})$.

Finally, using 2 (a), we obtain that $X^{4}-16 X^{2}+4$ is the minimal polynomial of $\sqrt{3}+\sqrt{5}$ over $\mathbb{Q}, X^{2}-2 \sqrt{5} X+2$ is the minimal polynomial over $\mathbb{Q}(\sqrt{5})$ and $X^{2}-8-2 \sqrt{15}$ over $\mathbb{Q}(\sqrt{15})$.

Aufgabe 4. Sei $L \mid K$ eine Körpererweiterung mit $2 \neq 0$ in K und gelte $[L: K]=2$.
(a) Zeige, dass es ein $x \in L$ gibt mit $L=K(x)$ und $x^{2} \in K$.
(b) Zeige $\left\{b^{2} \mid b \in L\right\} \cap K=\left\{a^{2} \mid a \in K\right\} \cup\left\{(a x)^{2} \mid a \in K\right\}$ für jedes x wie in (a).

Solution

(a) Let $\alpha \in L \backslash K$, then $L=K(\alpha)$. If $X^{2}+b X+c \in K[X]$, for $b, c \in K$ is the minimal polynomial of α over K. By completing the square, we can rewrite this minimal polynomial as $\left(X-\frac{b}{2}\right)^{2}-\frac{b^{2}}{2}+c$. Let $x=\left(\alpha+\frac{b}{2}\right) \in L$. Then $K(\alpha)=K(x)$ and $x^{2}=\frac{b^{2}}{4}-c \in K$
(b) Note that $1, x$ is a basis for L as a K-vector space. Let $\alpha \in K^{\times}$be a square in L, then $\alpha=(u+v x)^{2}=u^{2}+x^{2} v^{2}+2 u v x$ for some $u, v \in K$. Since $2 \neq 0$ in K, it follows that $u v=0$. If $u=0$ then $\alpha \in\left\{(a x)^{2} \mid a \in K\right\}$, if $v=0$ then $\alpha \in\left\{a^{2} \mid a \in K\right\}$.

