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Übungsblatt 12 zur Einführung in die Algebra: Solutions

Aufgabe 1. Sei M ⊆ C eine Menge mit {0,1} ⊆M . Zeige, dass für alle z ∈ C gilt

z ∈ ∧̂ M ⇒
√
z ∈ ∧̂ M.

Solution

First, note that it is always possible to bisect an angle with a ruler and compass. The cases of
an angle of radius 0 and π are trivial. Otherwise, draw a circle of any radius around point of the
angle.Take the intersection points of the circle with the lines making up the angle you wish to
bisect, and draw two circles of the same radius as above centered at these intersection point. Mark
the point where they intersect within the arch of the angle A. Draw a line from the point of the
angle to A. This line bisects the angle.

Suppose w2 = z = reiϕ. Letting
√
r be the positive square root of r ∈ R we have w = ±

√
reiϕ/2.

Since we can bisect this angle, we only need to show that for any r > 0 in ∧̂ M , the square root√
r is also in ∧̂ M .

To do this we raise a perpendicular to the line between −1 and r at 0. We then draw the circle
with diameter equal to the distance between −1 and r, which intersects the real line at −1 and
r. The point of intersection of this perpendicular and this circle with positive imaginary part, we
call v. Clearly, |v| belongs to ∧̂ M .

The triangle with vertices −1,v and r has a right angle at v by Thales’ theorem (that is, if
A,B and C are points on a circle where the line between A and C is a diameter of the circle, then
the angle at B is a right angle).

The formula for an altitude of a triangle now gives that |v|2 = 1 · r, and so x =
√
r.

Aufgabe 2. Sei K ein Körper und L ein Zerfällungskörper von K[X] \ {0} über K. Zeige, dass L
ein algebraischer Abschluss von K ist.

Solution

Clearly L is algebraic over K, so we need only show that L is algebraically closed.
Let f ∈ L[X] be a nonconstant polynomial, and θ ∈ L (some algebraic closure of L) be a root.

We must show that θ ∈ L, so denote F = L(θ). Then F/L and L/K are both algebraic extensions,
so the extension F/K is also algebraic. In particular, θ is algebraic over K, so consider its minimal
polynomial g ∈ K[X]. As L is the splitting field of K[X] \ {0}, this polynomial splits completely
over L, so in particular θ ∈ L.

Aufgabe 3. Sei K ein Körper, f ∈ K[X] \ {0} und n := deg f . Sei L der Zerfällungskörper von
f über K. Zeige, dass [L : K] ein Teiler von n! = n(n− 1)(n− 2) · · · 1 ist.

Solution



We prove by induction on n that [L : K] divides n!. Plainly, this assertion holds when n = 1.
Suppose then that the inductive hypothesis holds for polynomials of degree smaller than n, and

consider a polynomial f of degree n. Suppose first that f is not irreducible over K, so that f = gh
for some polynomials g, h ∈ K[X] of respective degrees s and t with 1 6 s, t < n and s + t = n.
There is a splitting field L for g over K , and by the induction hypothesis we have [L : K] | s!.
We have g = λ(X − α1)...(X − αs) for some λ ∈ K and αi ∈ L(1 6 i 6 s). The polynomial h
lies in L[X]. There is a splitting field M for h over L and by the induction hypothesis we have
[M : L] | t!. One then has h = µ(X − β1)...(X − βt) for some µ ∈ K and βj ∈ L(1 6 j 6 t). We
now have

M = L(β1, ..., βt) = K(α1, ..., αs, β1, ..., βt),

and M is a splitting field extension for f over K. By the tower law, moreover, one has [M : K] =
[M : L][L : K] divides s!t!, which divides (s+ t)! = n!.

When f is irreducible, there exists a simple algebraic extension K(α) over K, with [K(α) :
K] = n, and such that f = (x−α)h, for some h ∈ K(α)[X] of degree n−1. There exists a splitting
field extension L for h over K(α) and by the induction hypothesis we have [L : K(α)] | (n − 1)!.
We may write h = µ(X − β1)...(X − βn−1) for some µ ∈ K and βi ∈ L(1 6 i 6 n − 1). Since
L = K(α, β1, ..., βn−1), and f = µ(X − α)(X − β1)...(X − βn−1), we see that L is a splitting field
extension for f over K . But in this instance, the tower law yields [L : K] = [L : K(α)][K(α) : K]
divides n(n− 1)! = n!. The desired conclusion therefore follows by induction.

Aufgabe 4. Finde den Zerfällungskörper L von f über Q (genauer: beschreibe, wie er aus Q durch
Adjunktion von wenigen möglichst ”einfachen“ komplexen Zahlen entsteht) und berechne [L : Q],
wobei

(i) f = X3 − 1;

(ii) f = X4 + 5X2 + 6;

(iii) f = X6 − 8.

Solution

(i) One has f := X3−1 = (X−1)(X2 +X+1), and over C the polynomial X2 +X+1 splits as
(X + ω)(X + ω2), where ω = 1

2 (−1 + i
√

3). Consequently, one finds that Q(ω) is a splitting
field extension for f over Q . Since X2 +X+1 is irreducible over Q, the minimal polynomial
of ω over Q is X2 +X + 1, and hence [Q(ω) : Q] = 2.

(ii) One has g := X4 +5X2 +6 = (X2 +2)(X2 +3). Let L = Q(
√
−2,
√
−3). Then L is a splitting

field extension for g over Q, since over L one has

g = (X +
√
−2)(X −

√
−2)(X +

√
−3)(X −

√
−3).

Furthermore, the polynomial X2 + 2 is irreducible over Q, by Eisenstein’s criterion (for
example). It follows that

√
−2 has minimal polynomial X2 + 2 over Q, and hence [Q(

√
−2) :

Q] = 2. The polynomial X2 + 3 is irreducible over Q(
√
−2), for if

√
−3 = a+ b

√
−2 for some

a, b ∈ Q, then −3 = (a + b
√
−2)2 = (a2 − 2b2) + 2ab

√
−2, so that 2ab = 0. Then a = 0, in

which case −3 = −2b2 , or else b = 0, in which case a2 = −3. Neither of these equations are
soluble in Q, and so we must conclude that X2 + 3 is the minimal polynomial of

√
−3 over

Q(
√
−2), whence [Q(

√
−3,
√
−2) : Q(

√
−2)] = 2. We now deduce from the tower law that

[L : Q] = [Q(
√
−3,
√
−2) : Q(

√
−2)][Q(

√
−2) : Q] = 22 = 4.

(iii) One root of h := X6 − 8 over C is 8
1
6 =
√

2. Dividing through by (
√

2)6 and writing T for
X/
√

2, we obtain the polynomial T 6 − 1. Write ω for a primitive sixth root of unity, say
e2πi/6 = 1

2 (1 + i
√

3). Then

T 6 − 1 = (T − 1)(T − ω)(T − ω2)(T − ω3)(T − ω4)(T − ω5),



and hence

h = (X −
√

2)(X − ω
√

2)(X − ω2
√

2)(X − ω3
√

2))(X − ω4
√

2)(X − ω4
√

2).

Thus Q(
√

2,
√
−3) is a splitting field extension for h over Q, and an argument similar to that

of part (ii), save with
√

2 in place of
√
−2, shows that [Q(

√
2,
√
−3) : Q] = 4. In fact the

argument is simpler in this case, as it is clear that Q(
√
−3) * Q(

√
2) as Q(

√
2) ⊆ R.


