Übungsblatt 13 zur Einführung in die Algebra: Solutions

## Aufgabe 1. Zeige

(a) $\operatorname{Aut}(\mathbb{Q}(\sqrt{2}, \mathrm{i}) \mid \mathbb{Q}) \cong V_{4}$.
(b) $\operatorname{Aut}(\mathbb{Q}(\sqrt[3]{2}) \mid \mathbb{Q}) \cong\{1\}$.
(c) $\operatorname{Aut}(\mathbb{Q}(\sqrt[4]{2}, \mathrm{i}) \mid \mathbb{Q}(\mathrm{i})) \cong C_{4}$.

## Solution

(a) $f=X^{2}+1$ and $g=X^{2}-2$ are the minimum polynomials of i and $\sqrt{2}$ over $\mathbb{Q}$ respectively and hence $\mathbb{Q}(i, \sqrt{2})$ is a splitting field of the polynomial $f g=\left(X^{2}+1\right)\left(X^{2}-2\right)$. By 4.3.11 any automorphism of an algebraic closure of $\mathbb{Q}$ must map i to either $\dot{i}$ or $-\dot{i}$ and $\sqrt{2}$ to either $\sqrt{2}$ or $-\sqrt{2}$. Hence $\operatorname{Aut}(\mathbb{Q}(\sqrt{2}, i) \mid \mathbb{Q})$ has at most four elements.
$\mathbb{Q}(\dot{i}, \sqrt{2}) \mid \mathbb{Q}$ is a normal extension as it is the splitting field of $f g$. Further $\mathbb{Q}(\dot{i}) \mid \mathbb{Q}$ and $\mathbb{Q}(\sqrt{2}) \mid \mathbb{Q}$ are also normal extensions, of degree 2 , by example 4.3.13. Since $X^{2}+1$ is clearly irreducible over $\mathbb{Q}(\sqrt{2})$, since for all $x \in \mathbb{R}$ we have $X^{2}+1 \geqslant 1$, we have $\mathbb{Q}(\dot{\mathrm{i}}, \sqrt{2}) \mid \mathbb{Q}(\sqrt{2})$ is normal and of degree 2 , and hence, by the tower law, $\mathbb{Q}(\mathrm{i}, \sqrt{2}) \mid \mathbb{Q}(\mathrm{i})$ is also of degree 2 , and hence also normal.
Let $\overline{\mathbb{Q}}$ be an algebraic closure of $\mathbb{Q}$. Note that this will also be an algebraic closure of $\mathbb{Q}(i)$, $\mathbb{Q}(\sqrt{2})$ and $\mathbb{Q}(\sqrt{2}, \dot{\mathrm{i}})$.
Since $f$ is a minimum polynomial over $\mathbb{Q}(\sqrt{2})$ of in $-\dot{\mathrm{i}}$, there exists an $\rho: \overline{\mathbb{Q}} \rightarrow \overline{\mathbb{Q}}$ such that $\rho(\dot{\mathrm{i}})=-\dot{\mathrm{i}}$ and is the identity on $\mathbb{Q}(\sqrt{2})$ (by 4.3.11). By 4.3.14 (e), $\rho(\mathbb{Q}(\sqrt{2}, \dot{\mathrm{i}}))=\mathbb{Q}(\sqrt{2}, \dot{\mathrm{i}})$, and hence $\rho$ defines an automorphism on $\mathbb{Q}(\sqrt{2}, \dot{i})$, which (by abusing the notation) will we also call $\rho$. Since we know $\rho(\dot{\mathrm{i}})=-\dot{\mathrm{i}}, \rho(\sqrt{2})=\sqrt{2}$ and $\rho(\mathbb{Q})=\mathbb{Q}$, we know how this automorphism acts on $\mathbb{Q}(\sqrt{2}, \mathrm{i})$.
Similarly we have a element $\tau \in \operatorname{Aut}(\mathbb{Q}(\sqrt{2}, \dot{\mathrm{i}}) \mid \mathbb{Q})$ such that $\tau(\sqrt{2})=-\sqrt{2}, \tau(\dot{\mathrm{i}})=\dot{\mathrm{i}}$ and $\tau(\mathbb{Q})=\mathbb{Q}$.
Hence we have $\{\operatorname{id}, \rho, \tau, \tau \circ \rho\} \subseteq \operatorname{Aut}(\mathbb{Q}(\sqrt{2}, \dot{i}) \mid \mathbb{Q})$. But we know the automorphism has a maximum of four elements, therefore $\{\mathrm{id}, \rho, \tau, \tau \circ \rho\}=\operatorname{Aut}(\mathbb{Q}(\sqrt{2}, \mathrm{i}) \mid \mathbb{Q})$. This group is clearly isomorphic to $V_{4}$.
(b) Let $\rho \in \operatorname{Aut}(\mathbb{Q}(\sqrt[3]{2}) \mid \mathbb{Q})$ and $f=X^{3}-2$. Then

$$
(\rho(\sqrt[3]{2}))^{3}=\rho\left((\sqrt[3]{2})^{3}\right)=\rho(2)=2
$$

So the $\rho(\sqrt[3]{2})$ must be another cube root of 2 for any automorphism in $\operatorname{Aut}(\mathbb{Q}(\sqrt[3]{2}) \mid \mathbb{Q})$. But we know (since, for example, $f^{\prime}(x) \geqslant 0$ for all $x \in \mathbb{R}$ ) that $f$ has only one real root, so it must have two non-real roots. But $\mathbb{Q}(\sqrt[3]{2}) \subseteq \mathbb{R}$, so these two roots are not elements of $\mathbb{Q}(\sqrt[3]{2})$. Hence any automorphism in $\operatorname{Aut}(\mathbb{Q}(\sqrt[3]{2}) \mid \mathbb{Q})$ has to map $\sqrt[3]{2}$ to itself, and since any element in $\operatorname{Aut}(\mathbb{Q}(\sqrt[3]{2}) \mid \mathbb{Q})$ must also be identity on $\mathbb{Q}$, we have the result.
(c) Note that over $\mathbb{C}$, the polynomial $f=X^{4}-2$ splits as

$$
f=(X-\sqrt[4]{2})(X+\sqrt[4]{2})(X-\dot{\mathrm{i}} \sqrt[4]{2})(X+\dot{\mathrm{i}} \sqrt[4]{2})
$$

In particular, as in (a), this implies that there are at most four elements in $\operatorname{Aut}(\mathbb{Q}(\sqrt[4]{2}, \dot{\mathrm{i}}) \mid \mathbb{Q}(\mathrm{i}))$, as every automorphism over an algebraic closure of $\mathbb{Q}(i)$ must map one of these roots to another.
This also shows that $\mathbb{Q}(\sqrt[4]{2}, \dot{\mathrm{i}}) \mid \mathbb{Q}$ is a normal extension. The extension $\mathbb{Q}(\sqrt[4]{2})$ is of degree 4 , as $\sqrt[4]{2}$ has minimum polynomial $X^{4}-2$ (which is irreducible by Eisenstein). Since we clearly have that $\dot{\text { i }} \notin \mathbb{Q}(\sqrt[4]{2}) \subseteq \mathbb{R}$, it follows that $\mathbb{Q}(\sqrt[4]{2}, \dot{\mathrm{i}}) \mid \mathbb{Q}(\sqrt[4]{2})$ is a normal extension of degree 2. We also clearly have that $\mathbb{Q}(\dot{\mathrm{i}}) \mid \mathbb{Q}$ is a normal extension of degree 2. The tower law now implies that $\mathbb{Q}(\sqrt[4]{2}, \dot{\mathrm{i}}) \mid \mathbb{Q}(\dot{\mathrm{i}})$ is of degree 4 . Hence $X^{4}-2$ is a minimum polynomial of $\sqrt[4]{2}$ over $\mathbb{Q}(\mathrm{i})$, and hence $\mathbb{Q}(\sqrt[4]{2}, \dot{i})$ is a splitting field for $X^{4}-2$ over $\mathbb{Q}(\dot{i})$, and therefore $\mathbb{Q}(\sqrt[4]{2}, \dot{\mathrm{i}}) \mid \mathbb{Q}(\mathrm{i})$ is a normal extension.
Now, 4.3.11 implies that there exists an automorphism on some algebraic closure of $\mathbb{Q}(i)$, such that $\rho(\mathbb{Q}(\dot{\mathrm{i}}))=\mathbb{Q}(\mathrm{i})$ and $\rho(\sqrt[4]{2})=\mathrm{i} \sqrt[4]{2}$, as $\sqrt[4]{2}$ and i $\sqrt[4]{2}$ have the same irreducible polynomial over $\mathbb{Q}(\dot{\mathrm{i}})$. Moreover, by 4.3 .14 (e) $\rho(\mathbb{Q}(\sqrt[4]{2}, \dot{\mathrm{i}}))=\mathbb{Q}(\sqrt[4]{2}, \mathrm{i})$. Hence $\rho$ defines an automorphism on $\mathbb{Q}(\sqrt[4]{2}, \mathrm{i})$, which we will again call $\rho$ by abuse of notation.
The map $\rho$ acts as follows

$$
\sqrt[4]{2} \mapsto \dot{\mathrm{i}} \sqrt[4]{2} \mapsto-\sqrt[4]{2} \mapsto-\dot{\mathrm{i}} \sqrt[4]{2}
$$

In particular $\rho^{4}=\mathrm{id}$ and $\rho^{2}$ and $\rho^{3}$ are also distinct elements of $\operatorname{Aut}(\mathbb{Q}(\sqrt[4]{2}, \dot{i}) \mid \mathbb{Q}(\dot{i}))$. That is $\left\{\mathrm{id}, \rho, \rho^{2}, \rho^{3}\right\} \subseteq \operatorname{Aut}(\mathbb{Q}(\sqrt[4]{2}, \mathrm{i}) \mid \mathbb{Q}(\mathrm{i}))$. But we know the automorphism has a maximum of four elements, therefore $\left\{\mathrm{id}, \rho, \rho^{2}, \rho^{3}\right\}=\operatorname{Aut}(\mathbb{Q}(\sqrt[4]{2}, \mathrm{i}) \mid \mathbb{Q}(\mathrm{i}))$. This group is clearly isomorphic to $C_{4}$

Aufgabe 2. Sei $\alpha \in \mathbb{R}$ mit $\alpha^{4}=5$. Zeige, dass
(a) $\mathbb{Q}\left(\dot{\mathrm{i}} \alpha^{2}\right)$ normal über $\mathbb{Q}$ ist.
(b) $\mathbb{Q}(\alpha+\dot{\mathrm{i}} \alpha)$ normal über $\mathbb{Q}\left(\mathrm{i} \alpha^{2}\right)$ ist.
(c) $\mathbb{Q}(\alpha+\dot{\mathrm{i}} \alpha)$ nicht normal über $\mathbb{Q}$ ist.

## Solution

(a) We have that $\left(\mathrm{i} \alpha^{2}\right)^{2}=-5$, so $\dot{\mathrm{i}} \alpha^{2}$ is a root of the polynomial $X^{2}+5 \in \mathbb{Q}[X]$. So, $\mathbb{Q}\left(\mathrm{i} \alpha^{2}\right)$ is a splitting field of this polynomial (the other root is $\left.-\dot{\mathrm{i}} \alpha^{2} \in \mathbb{Q}\left(\dot{\mathrm{i}} \alpha^{2}\right)\right)$, hence $\mathbb{Q}\left(\dot{\mathrm{i}} \alpha^{2}\right)$ is a normal extension of $\mathbb{Q}\left(\mathrm{i} \alpha^{2}\right)$.
(b) We have that $(\alpha+\dot{\mathrm{i}} \alpha)^{2}=2 \dot{\mathrm{i}} \alpha^{2}$, so $\alpha+\dot{\mathrm{i}} \alpha$ is a root of the polynomial $X^{2}-2 \dot{\mathrm{i}} \alpha^{2} \in \mathbb{Q}\left(\dot{\mathrm{i}} \alpha^{2}\right)[X]$. So, $\mathbb{Q}(\alpha+\dot{\mathrm{i}} \alpha)$ is a splitting field of this polynomial (the other root is $-\alpha-\dot{\mathrm{i}} \alpha \in \mathbb{Q}(\alpha+\dot{\mathrm{i}} \alpha)$ ), hence $\mathbb{Q}(\alpha+\dot{\mathrm{i}} \alpha)$ is a normal extension of $\mathbb{Q}$.
(c) We have that $\alpha+\dot{\mathrm{i}} \alpha$ is a root of the polynomial $X^{4}+20 \in \mathbb{Q}[X]$. This polynomial factories (over, say, $\mathbb{C}$ ) as

$$
X^{4}+20=(X-(\alpha+\dot{\mathrm{i}} \alpha))(X-(-\alpha-\dot{\mathrm{i}} \alpha))(X-(\alpha-\dot{\mathrm{i}} \alpha))(X-(-\alpha+\dot{\mathrm{i}} \alpha))
$$

So if $\mathbb{Q}(\alpha+\dot{i} \alpha)$ is a normal extension of $\mathbb{Q}$, then we must have that $(\alpha+\dot{\mathrm{i}} \alpha),(-\alpha-\dot{i} \alpha),(\alpha-$ $\dot{\mathrm{i}} \alpha),(-\alpha+\dot{\mathrm{i}} \alpha) \in \mathbb{Q}$. This implies that $\dot{\mathrm{i}}, \alpha \in \mathbb{Q}(\alpha+\dot{\mathrm{i}} \alpha)$, and hence that $\mathbb{Q}(\alpha+\dot{\mathrm{i}} \alpha)=\mathbb{Q}(\dot{\mathrm{i}}, \alpha)$. We know that $[\mathbb{Q}(\alpha+\dot{\mathrm{i}} \alpha): \mathbb{Q}]=4$, and that $[\mathbb{Q}(\alpha): \mathbb{Q}]=4$ (because $X^{4}-5$ is irreducible by Eisenstein), so if $\mathbb{Q}(\alpha+\dot{\mathrm{i}} \alpha)=\mathbb{Q}(\dot{\mathrm{i}}, \alpha)$, then $\mathbb{Q}(\alpha+\dot{\mathrm{i}} \alpha)=\mathbb{Q}(\alpha)$ and hence $\dot{\mathrm{i}} \in \mathbb{Q}(\alpha)$. But $\mathbb{Q}(\alpha) \subseteq \mathbb{R}$, and hence $\dot{\mathrm{i}} \notin \mathbb{Q}(\alpha)$, and therefore $\mathbb{Q}(\alpha+\dot{\mathrm{i}} \alpha)$ is not a normal extension of $\mathbb{Q}$.
Note, this exercise shows that normal is not a transitive property of field extension. That is, a normal extension of a normal extension is not necessarily normal.

Aufgabe 3. Sei $G$ eine Gruppe und $a, b \in G$. Gelte $a b=b a$ und seien die Ordnungen von $a$ und $b$ teilerfremd (d.h. $1 \in(\operatorname{ord} a, \operatorname{ord} b))$. Zeige, dass ord $(a b)=(\operatorname{ord} a)(\operatorname{ord} b)$.

## Solution

Let $x=\operatorname{ord} a, y=\operatorname{ord} b$ and $z=\operatorname{ord}(a b)$. Then, since $a b=b a$, we have

$$
(a b)^{x y}=a^{x y} b^{x y}=\left(a^{x}\right)^{y}\left(b^{y}\right)^{x}=1^{y} 1^{x}=e,
$$

so $z=\operatorname{ord}(a b) \leqslant(\operatorname{ord} a)(\operatorname{ord} b)=x y$.
We also have

$$
(a b)^{z}=a^{z} b^{z}=1,
$$

so $a^{z}=\left(b^{-1}\right)^{z}$, and so $\left(\left(b^{-1}\right)^{z}\right)^{x}=\left(a^{z}\right)^{x}=1$, so ord $b^{-1}=$ ord $b$ divides $z x$. But $y$ is coprime to $x$, so $y$ divides $z$. Similarly $x$ divides $z$. Therefore $x y \leqslant z$, as $x$ and $y$ are coprime, and hence $x y=z$.

Aufgabe 4. Sei $K$ ein endlicher Körper. Zeige, dass

$$
K=\left\{b^{2}+c^{2} \mid b, c \in K\right\} .
$$

## Solution

Let $K$ be a finite field having characteristic $p$ and $|K|=p^{n}$. Define $\rho: K \rightarrow K$ by $\rho(x)=x^{2}$ for all $x \in K$.

If $p=2$, then $\rho$ is an isomorphism, and so for any $u \in K$ there is $v \in K$ with $u=v^{2}+0^{2}$.
If $p>2$, then for all $x, y \in K, x^{2}=y^{2}$ implies that $(x+y)(x-y)=0$. Hence, $y=x$ or $y=-x$, and so $|\operatorname{Im} \rho| \geqslant \frac{p^{n}+1}{2}$ ( 0 is in the image, and otherwise there are at least $\frac{p^{n}-1}{2}$ elements in the image as $\rho(y) \neq \rho(x)$ if $x \neq y$ and $x \neq-y$. Hence there are at least $1+\frac{p^{n}-1}{2}=\frac{p^{n}+1}{2}$ elements in the image).

Let $m=\frac{p^{n}+1}{2}$ and choose distinct elements $x_{1}^{2}, \ldots, x_{m}^{2} \in K$. Hence, for any $u \in K$ and for all $1 \leqslant i \leqslant m, \stackrel{u}{u}-x_{i}^{2}$ are distinct elements in $K$. Since $2 m>p^{n}$, there exists $j$ and $k$ such that $x_{j}^{2}=u-x_{k}^{2}$. That is, $u=x_{j}^{2}+x_{k}^{2}$, as desired.

