Ubungsblatt 13 zur Einführung in die Algebra: Solutions

Aufgabe 1. Zeige

- (a) $\operatorname{Aut}(\mathbb{Q}(\sqrt{2},\mathfrak{i})|\mathbb{Q}) \cong V_4.$
- (b) Aut $(\mathbb{Q}(\sqrt[3]{2})|\mathbb{Q}) \cong \{1\}.$
- (c) Aut($\mathbb{Q}(\sqrt[4]{2},i)|\mathbb{Q}(i)) \cong C_4$.

Solution

(a) $f = X^2 + 1$ and $g = X^2 - 2$ are the minimum polynomials of i and $\sqrt{2}$ over \mathbb{Q} respectively and hence $\mathbb{Q}(i,\sqrt{2})$ is a splitting field of the polynomial $fg = (X^2 + 1)(X^2 - 2)$. By 4.3.11 any automorphism of an algebraic closure of \mathbb{Q} must map i to either i or -i and $\sqrt{2}$ to either $\sqrt{2}$ or $-\sqrt{2}$. Hence $\operatorname{Aut}(\mathbb{Q}(\sqrt{2},i)|\mathbb{Q})$ has at most four elements.

 $\mathbb{Q}(i,\sqrt{2})|\mathbb{Q}$ is a normal extension as it is the splitting field of fg. Further $\mathbb{Q}(i)|\mathbb{Q}$ and $\mathbb{Q}(\sqrt{2})|\mathbb{Q}$ are also normal extensions, of degree 2, by example 4.3.13. Since $X^2 + 1$ is clearly irreducible over $\mathbb{Q}(\sqrt{2})$, since for all $x \in \mathbb{R}$ we have $X^2 + 1 \ge 1$, we have $\mathbb{Q}(i,\sqrt{2})|\mathbb{Q}(\sqrt{2})$ is normal and of degree 2, and hence, by the tower law, $\mathbb{Q}(i,\sqrt{2})|\mathbb{Q}(i)$ is also of degree 2, and hence also normal.

Let $\overline{\mathbb{Q}}$ be an algebraic closure of \mathbb{Q} . Note that this will also be an algebraic closure of $\mathbb{Q}(i)$, $\mathbb{Q}(\sqrt{2})$ and $\mathbb{Q}(\sqrt{2},i)$.

Since f is a minimum polynomial over $\mathbb{Q}(\sqrt{2})$ of i and -i, there exists an $\rho: \overline{\mathbb{Q}} \to \overline{\mathbb{Q}}$ such that $\rho(i) = -i$ and is the identity on $\mathbb{Q}(\sqrt{2})$ (by 4.3.11). By 4.3.14 (e), $\rho(\mathbb{Q}(\sqrt{2},i)) = \mathbb{Q}(\sqrt{2},i)$, and hence ρ defines an automorphism on $\mathbb{Q}(\sqrt{2},i)$, which (by abusing the notation) will we also call ρ . Since we know $\rho(i) = -i$, $\rho(\sqrt{2}) = \sqrt{2}$ and $\rho(\mathbb{Q}) = \mathbb{Q}$, we know how this automorphism acts on $\mathbb{Q}(\sqrt{2},i)$.

Similarly we have a element $\tau \in \operatorname{Aut}(\mathbb{Q}(\sqrt{2},i)|\mathbb{Q})$ such that $\tau(\sqrt{2}) = -\sqrt{2}, \tau(i) = i$ and $\tau(\mathbb{Q}) = \mathbb{Q}$.

Hence we have $\{id, \rho, \tau, \tau \circ \rho\} \subseteq Aut(\mathbb{Q}(\sqrt{2},i)|\mathbb{Q})$. But we know the automorphism has a maximum of four elements, therefore $\{id, \rho, \tau, \tau \circ \rho\} = Aut(\mathbb{Q}(\sqrt{2},i)|\mathbb{Q})$. This group is clearly isomorphic to V_4 .

(b) Let $\rho \in \operatorname{Aut}(\mathbb{Q}(\sqrt[3]{2})|\mathbb{Q})$ and $f = X^3 - 2$. Then

$$(\rho(\sqrt[3]{2}))^3 = \rho((\sqrt[3]{2})^3) = \rho(2) = 2.$$

So the $\rho(\sqrt[3]{2})$ must be another cube root of 2 for any automorphism in $\operatorname{Aut}(\mathbb{Q}(\sqrt[3]{2})|\mathbb{Q})$. But we know (since, for example, $f'(x) \ge 0$ for all $x \in \mathbb{R}$) that f has only one real root, so it must have two non-real roots. But $\mathbb{Q}(\sqrt[3]{2}) \subseteq \mathbb{R}$, so these two roots are not elements of $\mathbb{Q}(\sqrt[3]{2})$. Hence any automorphism in $\operatorname{Aut}(\mathbb{Q}(\sqrt[3]{2})|\mathbb{Q})$ has to map $\sqrt[3]{2}$ to itself, and since any element in $\operatorname{Aut}(\mathbb{Q}(\sqrt[3]{2})|\mathbb{Q})$ must also be identity on \mathbb{Q} , we have the result.

(c) Note that over \mathbb{C} , the polynomial $f = X^4 - 2$ splits as

$$f = (X - \sqrt[4]{2})(X + \sqrt[4]{2})(X - i\sqrt[4]{2})(X + i\sqrt[4]{2}).$$

In particular, as in (a), this implies that there are at most four elements in $\operatorname{Aut}(\mathbb{Q}(\sqrt[4]{2},i)|\mathbb{Q}(i))$, as every automorphism over an algebraic closure of $\mathbb{Q}(i)$ must map one of these roots to another.

This also shows that $\mathbb{Q}(\sqrt[4]{2},i)|\mathbb{Q}$ is a normal extension. The extension $\mathbb{Q}(\sqrt[4]{2})$ is of degree 4, as $\sqrt[4]{2}$ has minimum polynomial $X^4 - 2$ (which is irreducible by Eisenstein). Since we clearly have that $i \notin \mathbb{Q}(\sqrt[4]{2}) \subseteq \mathbb{R}$, it follows that $\mathbb{Q}(\sqrt[4]{2},i)|\mathbb{Q}(\sqrt[4]{2})$ is a normal extension of degree 2. We also clearly have that $\mathbb{Q}(i)|\mathbb{Q}$ is a normal extension of degree 2. The tower law now implies that $\mathbb{Q}(\sqrt[4]{2},i)|\mathbb{Q}(i)$ is of degree 4. Hence $X^4 - 2$ is a minimum polynomial of $\sqrt[4]{2}$ over $\mathbb{Q}(i)$, and hence $\mathbb{Q}(\sqrt[4]{2},i)|\mathbb{Q}(i)$ is a splitting field for $X^4 - 2$ over $\mathbb{Q}(i)$, and therefore $\mathbb{Q}(\sqrt[4]{2},i)|\mathbb{Q}(i)$ is a normal extension.

Now, 4.3.11 implies that there exists an automorphism on some algebraic closure of $\mathbb{Q}(i)$, such that $\rho(\mathbb{Q}(i)) = \mathbb{Q}(i)$ and $\rho(\sqrt[4]{2}) = i\sqrt[4]{2}$, as $\sqrt[4]{2}$ and $i\sqrt[4]{2}$ have the same irreducible polynomial over $\mathbb{Q}(i)$. Moreover, by 4.3.14 (e) $\rho(\mathbb{Q}(\sqrt[4]{2},i)) = \mathbb{Q}(\sqrt[4]{2},i)$. Hence ρ defines an automorphism on $\mathbb{Q}(\sqrt[4]{2},i)$, which we will again call ρ by abuse of notation.

The map ρ acts as follows

$$\sqrt[4]{2} \mapsto i\sqrt[4]{2} \mapsto -\sqrt[4]{2} \mapsto -i\sqrt[4]{2}.$$

In particular $\rho^4 = \text{id}$ and ρ^2 and ρ^3 are also distinct elements of $\operatorname{Aut}(\mathbb{Q}(\sqrt[4]{2},i)|\mathbb{Q}(i))$. That is $\{\text{id}, \rho, \rho^2, \rho^3\} \subseteq \operatorname{Aut}(\mathbb{Q}(\sqrt[4]{2},i)|\mathbb{Q}(i))$. But we know the automorphism has a maximum of four elements, therefore $\{\text{id}, \rho, \rho^2, \rho^3\} = \operatorname{Aut}(\mathbb{Q}(\sqrt[4]{2},i)|\mathbb{Q}(i))$. This group is clearly isomorphic to C_4

Aufgabe 2. Sei $\alpha \in \mathbb{R}$ mit $\alpha^4 = 5$. Zeige, dass

- (a) $\mathbb{Q}(i\alpha^2)$ normal über \mathbb{Q} ist.
- (b) $\mathbb{Q}(\alpha + i\alpha)$ normal über $\mathbb{Q}(i\alpha^2)$ ist.
- (c) $\mathbb{Q}(\alpha + i\alpha)$ nicht normal über \mathbb{Q} ist.

Solution

- (a) We have that $(i\alpha^2)^2 = -5$, so $i\alpha^2$ is a root of the polynomial $X^2 + 5 \in \mathbb{Q}[X]$. So, $\mathbb{Q}(i\alpha^2)$ is a splitting field of this polynomial (the other root is $-i\alpha^2 \in \mathbb{Q}(i\alpha^2)$), hence $\mathbb{Q}(i\alpha^2)$ is a normal extension of $\mathbb{Q}(i\alpha^2)$.
- (b) We have that $(\alpha + i\alpha)^2 = 2i\alpha^2$, so $\alpha + i\alpha$ is a root of the polynomial $X^2 2i\alpha^2 \in \mathbb{Q}(i\alpha^2)[X]$. So, $\mathbb{Q}(\alpha + i\alpha)$ is a splitting field of this polynomial (the other root is $-\alpha - i\alpha \in \mathbb{Q}(\alpha + i\alpha)$), hence $\mathbb{Q}(\alpha + i\alpha)$ is a normal extension of \mathbb{Q} .
- (c) We have that $\alpha + i\alpha$ is a root of the polynomial $X^4 + 20 \in \mathbb{Q}[X]$. This polynomial factories (over, say, \mathbb{C}) as

$$X^4 + 20 = (X - (\alpha + i\alpha))(X - (-\alpha - i\alpha))(X - (\alpha - i\alpha))(X - (-\alpha + i\alpha)).$$

So if $\mathbb{Q}(\alpha + i\alpha)$ is a normal extension of \mathbb{Q} , then we must have that $(\alpha + i\alpha), (-\alpha - i\alpha), (\alpha - i\alpha), (-\alpha + i\alpha) \in \mathbb{Q}$. This implies that $i, \alpha \in \mathbb{Q}(\alpha + i\alpha)$, and hence that $\mathbb{Q}(\alpha + i\alpha) = \mathbb{Q}(i, \alpha)$. We know that $[\mathbb{Q}(\alpha + i\alpha) : \mathbb{Q}] = 4$, and that $[\mathbb{Q}(\alpha) : \mathbb{Q}] = 4$ (because $X^4 - 5$ is irreducible by Eisenstein), so if $\mathbb{Q}(\alpha + i\alpha) = \mathbb{Q}(i, \alpha)$, then $\mathbb{Q}(\alpha + i\alpha) = \mathbb{Q}(\alpha)$ and hence $i \in \mathbb{Q}(\alpha)$. But $\mathbb{Q}(\alpha) \subseteq \mathbb{R}$, and hence $i \notin \mathbb{Q}(\alpha)$, and therefore $\mathbb{Q}(\alpha + i\alpha)$ is not a normal extension of \mathbb{Q} .

Note, this exercise shows that normal is not a transitive property of field extension. That is, a normal extension of a normal extension is not necessarily normal.

Aufgabe 3. Sei G eine Gruppe und $a, b \in G$. Gelte ab = ba und seien die Ordnungen von a und b teilerfremd (d.h. $1 \in (\operatorname{ord} a, \operatorname{ord} b)$). Zeige, dass $\operatorname{ord} (ab) = (\operatorname{ord} a)(\operatorname{ord} b)$.

Solution

Let $x = \operatorname{ord} a$, $y = \operatorname{ord} b$ and $z = \operatorname{ord} (ab)$. Then, since ab = ba, we have

$$(ab)^{xy} = a^{xy}b^{xy} = (a^x)^y (b^y)^x = 1^y 1^x = e,$$

so $z = \operatorname{ord}(ab) \leq (\operatorname{ord} a)(\operatorname{ord} b) = xy$.

We also have

$$(ab)^z = a^z b^z = 1,$$

so $a^z = (b^{-1})^z$, and so $((b^{-1})^z)^x = (a^z)^x = 1$, so ord $b^{-1} =$ ord b divides zx. But y is coprime to x, so y divides z. Similarly x divides z. Therefore $xy \leq z$, as x and y are coprime, and hence xy = z.

Aufgabe 4. Sei K ein endlicher Körper. Zeige, dass

$$K = \{b^2 + c^2 \mid b, c \in K\}.$$

Solution

Let K be a finite field having characteristic p and $|K| = p^n$. Define $\rho: K \to K$ by $\rho(x) = x^2$ for all $x \in K$.

If p = 2, then ρ is an isomorphism, and so for any $u \in K$ there is $v \in K$ with $u = v^2 + 0^2$. If p > 2, then for all $x, y \in K$, $x^2 = y^2$ implies that (x + y)(x - y) = 0. Hence, y = x or y = -x, and so $|\text{Im } \rho| \ge \frac{p^n + 1}{2}$ (0 is in the image, and otherwise there are at least $\frac{p^n - 1}{2}$ elements in the image as $\rho(y) \ne \rho(x)$ if $x \ne y$ and $x \ne -y$. Hence there are at least $1 + \frac{p^n - 1}{2} = \frac{p^n + 1}{2}$ elements in the image).

Let $m = \frac{p^n + 1}{2}$ and choose distinct elements $x_1^2, \ldots, x_m^2 \in K$. Hence, for any $u \in K$ and for all $1 \leq i \leq m, u - x_i^2$ are distinct elements in K. Since $2m > p^n$, there exists j and k such that $x_j^2 = u - x_k^2$. That is, $u = x_j^2 + x_k^2$, as desired.