Übungsblatt 14 zur Einführung in die Algebra: Solutions

Aufgabe 1. Sei K ein Körper der Charakteristik $p>0$, so dass der Frobenius-Homorphismus $\Phi_{p}: K \rightarrow K$ kein Automorphismus ist. Sei $a \in K \backslash \Phi_{p}(K)$. Zeige, dass $X^{p}-a \in K[X]$ irreduzibel und nicht separabel ist.

Solution

First we show irreducibility. Let $f=X^{p}-a$, and assume that $f=g h$, where $g, h \in K[X]$, monic and of smaller degree than f. Let L be a splitting field of f over K. Then

$$
f=\left(X^{p}-a\right)=(X-b)^{p}
$$

for some $b \in L$. Hence $g=(X-b)^{i}$ and $h=(X-b)^{j}$ for some $i, j \in \mathbb{N}$ such that $i+j=p$. If $i \neq 0$, since $\operatorname{gcd}(i, p)=1$, we can find $v, w \in \mathbb{Z}$ such that $1=v i+w p$. Hence

$$
b=b^{v i+w p}=\left(b^{i}\right)^{v}\left(b^{p}\right)^{w}=\left(b^{i}\right)^{v} a^{w} .
$$

But $b=\left(b^{i}\right)^{v} a^{w} \in K$ as $b^{i} \in K$ (since $g \in K[X]$), which is a contradiction. Hence $i=0$, that is f is irreducible.

To show that f is not separable, we can work over the splitting field L again. Let $\theta, \theta^{\prime} \in L$ be two roots of f, then $\theta^{p}-\theta^{\prime p}=a-a=0$, and hence $\theta-\theta^{\prime} \in \operatorname{ker}\left(\Phi_{p}(L)\right)$. But Φ_{p} is injective, hence $\theta=\theta^{\prime}$. That is, f is inseparable.

Aufgabe 2. Sei $x \in \mathbb{R}$ mit $x^{4}=2$ und $L=\mathbb{Q}(\dot{i}, x)$. Finde alle Zwischenkörper von $L \mid \mathbb{Q}$.

Solution

Let $f=X^{4}-2 \in \mathbb{Q}[X]$. This is irreducible by Eisenstein. Let $\eta \in \mathbb{R}$ be the positive fourth root of 2 . The f factorizes over \mathbb{C} as

$$
f=(X-\eta)(X+\eta)(X-\dot{\mathrm{i}} \eta)(X+\dot{\mathrm{i}} \eta)
$$

and hence f is separable, and $\mathbb{Q}(\eta, \dot{\mathrm{i}}) \mid \mathbb{Q}$ is a Galois extension. Let $a_{1}=\eta, a_{2}=-\eta, a_{3}=\mathrm{i} \eta$ and $a_{4}=-\dot{\mathrm{i}} \eta$.

We now find $[\mathbb{Q}(\dot{\mathrm{i}}, \eta): Q]$. The minimum polynomial of i over $\mathbb{Q}(\eta)$ is $X^{2}+1$, since $\dot{\mathrm{i}} \notin \mathbb{Q}(\eta) \subseteq \mathbb{R}$. So $[\mathbb{Q}(\mathfrak{i}, \eta): \mathbb{Q}(\eta)]=2$. Moreover, as f is irreducible, $[\mathbb{Q}(\eta): \mathbb{Q}]=4$, and hence $[\mathbb{Q}(\mathbb{i}, \eta): Q]=8$, and hence $\mid \operatorname{Gal}(\mathbb{Q}(\eta, \mathrm{i}) \mid=8$.

Let $G=\operatorname{Gal}(\mathbb{Q}(\eta, \dot{\mathrm{i}}) \mid \mathbb{Q}) \subseteq S_{4}$. We have $s=(34) \in G\left(\right.$ as $\overline{a_{1}}=a_{1}, \overline{a_{2}}=a_{2}$ and $\left.\overline{a_{3}}=a_{4}\right)$. One also sees that there is also a $\varphi \in G$ with $\varphi(i)=i$, and $\varphi(\eta)=\dot{\mathrm{i}} \eta$, that is $r=(13)(24) \in G$. Products of these yield distinct eight \mathbb{Q}-automorphisms, as so

$$
\{1,(1324),(12)(34),(1423),(34),(13)(24),(12),(13)(24)\}=\left\{1, r, r^{2}, r^{3}, s, r s, r^{2} s, r^{3} s\right\}
$$

We know $|G|=8$, and hence this set is the whole Galois group. (Note one can show that $G \cong D_{8}$.)

The subgroups of G are as follows:

$$
\begin{array}{cc}
\text { Order 8: } & G \\
\text { Order 4: } & \left\{1, r, r^{2}, r^{3}\right\} \\
& \left\{1, r^{2}, s, r^{2} s\right\} \\
& \left\{1, r^{2}, r s, r^{3} s\right\} \\
\text { Order 2 } & \left\{1, r^{2}\right\} \\
& \{1, s\} \\
& \{1, r s\} \\
& \left\{1, r^{2} s\right\} \\
& \left\{1, r^{3} s\right\}
\end{array}
$$

Order 1
\{1\}
There are three obvious subfields of degree 2, that is $\mathbb{Q}(\dot{i}), \mathbb{Q}(\sqrt{2})$ and $\mathbb{Q}(i \sqrt{2})$. These are the fixed fields of $\left\{1, r, r^{2}, r^{3}\right\},\left\{1, r^{2}, s, r^{2} s\right\}$ and $\left\{1, r^{2}, r s, r^{3} s\right\}$ respectively.

We'll now find the fixed field of $\{1, r s\}$. Any element in $\mathbb{Q}(\eta, \dot{1})$ can be expressed in the form

$$
x=a_{0}+a_{1} \eta+a_{2} \eta^{2}+a_{3} \eta^{3}+a_{4} \dot{\mathrm{I}}+a_{5} \dot{\mathrm{I}} \eta+a_{6} \dot{\mathrm{i}} \eta^{2}+a_{7} \dot{\mathbf{⿺}} \eta^{3}
$$

with $a_{0}, \ldots, a_{7} \in \mathbb{Q}$. Then

$$
\begin{aligned}
r s(x) & =a_{0}+a_{1} \eta-a_{2} \eta^{2}-a_{3} \eta^{3}-a_{4} \dot{\mathbb{1}}+a_{5}(-\dot{\mathrm{i}}) \dot{\mathrm{i}} \eta-a_{6} \dot{\mathrm{i}(\dot{\mathrm{i}} \eta)^{2}-a_{7} \dot{\mathrm{I}}(\mathrm{i} \eta)^{3}} \\
& =a_{0}+a_{5} \eta-a_{2} \eta^{2}-a_{7} \eta^{3}-a_{4} \dot{\mathrm{I}}+a_{1} \dot{\mathrm{i}} \eta+a_{6} \dot{\mathrm{i}} \eta^{2}-a_{3} \dot{\mathrm{i}} \eta^{3} .
\end{aligned}
$$

Therefore x is fixed by $r s$ if and only if

$$
\begin{array}{rll}
a_{0}=a_{0}, & a_{1}=a_{5}, & a_{2}=-a_{2}, \\
a_{3}=-a_{7}, & a_{4}=-a_{4}, & a_{5}=a_{1}, \\
a_{6}=a_{6}, & a_{7}=-a_{3}
\end{array}
$$

Therefore a_{0} and a_{6} are arbitrary, $a_{2}=a_{4}=0, a_{1}=a_{5}$ and $a_{3}=-a_{7}$. It follows that

$$
\begin{aligned}
x & =a_{0}+a_{1}(1+\dot{\mathrm{i}}) \eta+a_{6} \dot{\mathrm{i}} \eta^{2}+a_{3}(1-\dot{\mathrm{i}}) \eta^{3} \\
& =a_{0}+a_{1}((1+\dot{\mathrm{i}}) \eta)+\frac{a_{6}}{2}((1+\dot{\mathrm{i}}) \eta)^{2}-\frac{a_{3}}{2}((1+\dot{\mathrm{i}}) \eta)^{3}
\end{aligned}
$$

and hence the field fixed by $\{1, r s\}$ is $\mathbb{Q}((1+\dot{i}) \eta)$.
Similarly, one can calculate that the field fixed by $\left\{1, r^{2}\right\}$ is $\mathbb{Q}(i, \sqrt{2})$, the field fixed by $\{1, s\}$ is $\mathbb{Q}(\eta)$, the field fixed by $\left\{1, r^{2} s\right\}$ is $\mathbb{Q}(\mathrm{i} \eta)$ and the field fixed by $\left\{1, r^{3} s\right\}$ is $\mathbb{Q}((1-\mathrm{i}) \eta)$.

Aufgabe 3. Sei $K(x) \mid K$ eine algebraische Körpererweiterung von ungeradem Grad. Zeige $K\left(x^{2}\right)=$ $K(x)$.

Solution

It is clear that $K\left(x^{2}\right) \subseteq K(x)$. We will show that $x \in K\left(x^{2}\right)$ and hence $K\left(x^{2}\right) \supseteq K(x)$. Assume that $x \notin K\left(x^{2}\right)$, then $K \subsetneq K\left(x^{2}\right) \subsetneq K(x)$. Since $K\left(x^{2}\right) \subsetneq K(x)$ we have $\left[K(x): K\left(x^{2}\right)\right]>1$, and clearly x is a root of $X^{2}-x^{2} \in K\left(x^{2}\right)[X]$, hence $\left[K(x): K\left(x^{2}\right)\right] \leqslant 2$. Therefore $\left[K(x): K\left(x^{2}\right)\right]=2$. By the tower law we have that

$$
[K(x): K]=\left[K(x): K\left(x^{2}\right)\right] \cdot\left[K\left(x^{2}\right): K\right]
$$

but this is even, which contradicts our assumptions.

Aufgabe 4.

(i) Zeige, dass die Galoisgruppe des Zerfällungskörpers eines irreduziblen separablen Polynoms vom Grad 3 über einem Körper isomorph zu S_{3} oder C_{3} ist
(ii) Bestimme die Galoisgruppe des Zerfällungskörpers von $X^{3}-X-1$ über \mathbb{Q}.

Solution

(i) Let K be a field and let $f \in K[X]$ be an irreducible polynomial of degree 3. Let L be a splitting field of $L . L \mid K$ is normal and separable, and $[L: K]=|\operatorname{Gal}(L \mid K)| \leqslant 6$ and $\operatorname{Gal}(L \mid K) \subseteq S_{3}$.
Let a, b, c be the roots of f in L. Since f is irreducible, we have that $[K(a): K]=3$. Hence we have a tower of fields $K \subseteq K(a) \subseteq L$ with $[L: K] \leqslant 6$ and $[K(a): K]=3$. By the tower law we have $[L: K(a)]=1$ or 2 . We consider both cases.
If $[L: K(a)]=2$, then $[L: K]=6$, and so $\operatorname{Gal}(L \mid K)$ has 6 elements. But $\operatorname{Gal}(L \mid K) \subseteq S_{3}$ and $\left|S_{3}\right|=6$, hence $\operatorname{Gal}(L \mid K)=S_{3}$.

If $[L: K(a)]=1$, then $[L: K]=3$ and $\operatorname{Gal}(L \mid K)$ has 3 elements. However, there is only one group of order 3, up to isomorphism, and that is C_{3}.
(ii) Let $f=X^{3}-X-1 \in \mathbb{Q}[X]$ and L be a splitting field of f. Since the characteristic of \mathbb{Q} is 0 , the extension $L \mid \mathbb{Q}$ is separable. We now show that it is irreducible. If f is not irreducible, then we may write $f=f_{1} f_{2}$ for some $f_{1}, f_{2} \in \mathbb{Q}[X]$ with $\operatorname{deg} f_{1}=1$. Therefore f would have a zero $\frac{a}{b} \in \mathbb{Q}$. We can assume without loss of generality that a and b are coprime. Since $f\left(\frac{a}{b}\right)=0$ it follows that $a^{3}-a b^{2}-b^{3}=0$, and hence that $a^{3}=b^{2}(a+b)$. Let p be a prime number such that $p \mid a$. Then p must divide $a+b$, as a and b are coprime. But this implies that $p \mid b$, a contradiction. Hence $a= \pm 1$. Let q be a prime number with $p \mid b$. Then, since $a^{2}=b^{2}(a+b)$ it follows that $q \mid a$, a contradiction, hence $b= \pm 1$. Therefore $\frac{a}{b}= \pm 1$, but $f(\pm 1) \neq 0$, and hence f must be irreducible.
We now find the zeros of f. We know that f has at least one real zero, x_{1}, as it is a polynomial of odd degree. Since $f^{\prime}=3 X^{2}-1$, we see that f has turning points as $\pm \sqrt{\frac{1}{3}}$, is increasing in the range $\left(-\infty,-\sqrt{\frac{1}{3}}\right)$, decreasing in the range $\left(-\sqrt{\frac{1}{3}}, \sqrt{\frac{1}{3}}\right)$ and increasing again in the range $\left(\sqrt{\frac{1}{3}}, \infty\right)$. We also have that $f\left(-\sqrt{\frac{1}{3}}\right)<0$, and hence f has only one real zero, x_{1}. The two other zeros, x_{2} and x_{3} must be in $\mathbb{C} \backslash \mathbb{R}$. In particular we have

$$
\mathbb{Q} \subsetneq \mathbb{Q}\left(x_{1}\right) \subsetneq \mathbb{Q}\left(x_{1}, x_{2}, x_{3}\right),
$$

where $\mathbb{Q}\left(x_{1}, x_{2}, x_{3}\right)$ is the splitting field of f.
Since f is irreducible over \mathbb{Q}, we have that $\left[\mathbb{Q}\left(x_{1}\right): \mathbb{Q}\right]=3$. Since $\mathbb{Q}\left(x_{1}\right) \subsetneq \mathbb{Q}\left(x_{1}, x_{2}, x_{3}\right)$, we have that $\left[\mathbb{Q}\left(x_{1}, x_{2}, x_{3}\right): \mathbb{Q}\left(x_{1}\right)\right] \geqslant 2$, and by the tower law we must have $\left[\mathbb{Q}\left(x_{1}, x_{2}, x_{3}\right)\right.$: $\left.\mathbb{Q}\left(x_{1}\right)\right]=2$ as $\left[\mathbb{Q}\left(x_{1}, x_{2}, x_{3}\right): \mathbb{Q}\right] \leqslant 6$. It follows that $\left|\operatorname{Gal}\left(\mathbb{Q}\left(x_{1}, x_{2}, x_{3} \mid\right) \mid \mathbb{Q}\right)\right|=6$ and hence, by the first part of the question, $\operatorname{Gal}\left(\mathbb{Q}\left(x_{1}, x_{2}, x_{3}\right) \| \mathbb{Q}\right) \cong S_{3}$.

Aufgabe 5. Sei $x \in \mathbb{C}$ eine Nullestelle von $X^{6}+3$. Zeige, dass $\mathbb{Q}(x) \mid \mathbb{Q}$ eine Galoiserweiterung ist.

Solution

We want to show that $\mathbb{Q}(x) \mid \mathbb{Q}$ is normal and separable. It is irreducible over \mathbb{Q} (by Eisenstein). Since the characteristic of \mathbb{Q} is 0 it follows that the extension is separable.

Since $X^{6}+3$ is irreducible, $[\mathbb{Q}(x): \mathbb{Q}]=6$.
Consider now the polynomial $f=X^{3}+3$. This polynomial is also irreducible (by Eisenstein). The splitting field for f over \mathbb{Q} is $\mathbb{Q}(a, \zeta)$, where a is any root of $X^{3}+3$ and $\zeta=e^{\frac{i 2 \pi}{3}}$. We also have that $\mathbb{Q}(a, \zeta): \mathbb{Q}]=6$.

Note now that if $\mathbb{Q}(x) \mid \mathbb{Q}$ is normal, then $X^{6}+3$ would split in $\mathbb{Q}(x)$. In particular, $f=X^{3}+3$, would also split over $\mathbb{Q}(x)$ as all zeros of f are squares of zeros of $X^{6}+3$.

We want to show that $\mathbb{Q}(x)=\mathbb{Q}(a \zeta)$ (then $\mathbb{Q}(x)$ would be the splitting field of f, and hence normal). Since $[\mathbb{Q}(x): \mathbb{Q}]=[\mathbb{Q}(a, \zeta): \mathbb{Q}]$, it is enough to show that $\mathbb{Q}(a, \zeta) \subseteq \mathbb{Q}(x)$. We have that x^{2} is a zero of f, so we may take $a=x^{2}$, and hence $a \in \mathbb{Q}(x)$. All that it remains to show is that $\zeta \in \mathbb{Q}(x)$.

First we show that $\zeta=\frac{1}{2}+\mathrm{i} \frac{\sqrt{3}}{2}$. This is another proof easier to follow if you draw a picture!
We know that ζ is the point on the unit circle given by the intersection in the upper half plane with a line through the origin with 60° angle to the real axis. If we take the line from the point ζ to the intersection point of the circle with the positive part of the real axis, then we form a triangle, which with points at the origin, ζ and another point on the real line, which we call r. This forms an equilateral triangle (we know the length of 2 sides, and the angle between them. This uniquely determines the triangle), hence the real part of ζ must be $\frac{1}{2}$, as ζ is directly above the mid-point of the triangles base. The imaginary part can now be found using pythagorus.

Since $\zeta=\frac{1}{2}+\dot{\mathrm{i}} \frac{\sqrt{3}}{2}$, it is clear that $\zeta \in \mathbb{Q}(x)$ if $\dot{\mathrm{i}} \sqrt{3} \in \mathbb{Q}(x)$. But $\left(x^{3}\right)^{2}=-3$, so $x^{3}= \pm \dot{\mathrm{i}} \sqrt{3}$, hence $\dot{\mathrm{i}} \sqrt{3} \in \mathbb{Q}(x)$ and we are done.

