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Ubungsblatt 14 zur Einfithrung in die Algebra: Solutions

Aufgabe 1. Sei K ein Korper der Charakteristik p > 0, so dass der Frobenius-Homorphismus
®, : K — K kein Automorphismus ist. Sei a € K\®,(K). Zeige, dass X? — a € K[X] irreduzibel
und nicht separabel ist.

Solution

First we show irreducibility. Let f = X? —a, and assume that f = gh, where g,h € K[X], monic
and of smaller degree than f. Let L be a splitting field of f over K. Then

f= (X7 —a) = (X =)

for some b € L. Hence g = (X —b)* and h = (X — b)? for some i,j € N such that i + j = p. If
1 # 0, since ged(i,p) = 1, we can find v,w € Z such that 1 = vi + wp. Hence

b= bvierp — (bz)v(bp)w — (bi)vaw.

But b= (b')"a® € K as b® € K (since g € K[X]), which is a contradiction. Hence i = 0, that is f
is irreducible.

To show that f is not separable, we can work over the splitting field L again. Let 6,6’ € L be
two roots of f, then 6 — 07 = a—a =0, and hence § — ¢’ € ker(®,(L)). But ®, is injective, hence
0 = 0'. That is, f is inseparable.

Aufgabe 2. Sei z € R mit 2* = 2 und L = Q(i,x). Finde alle Zwischenkorper von L|Q.
Solution

Let f = X* —2 € Q[X]. This is irreducible by Eisenstein. Let 7 € R be the positive fourth root
of 2. The f factorizes over C as

f=X =X +n)(X —in)(X +1in)

and hence f is separable, and Q(n,1)|Q is a Galois extension. Let a; = 1, as = —n, ag = in and
aq = —17.

We now find [Q(i,n) : Q]. The minimum polynomial of i over Q(n) is X?+1, since i ¢ Q(n) C R.
So [Q(1,n) : Q(n)] = 2. Moreover, as f is irreducible, [Q(n) : Q] = 4, and hence [Q(1,7) : Q] = 8,
and hence |Gal(Q(n,i)| = 8.

Let G = Gal(Q(n,1)|Q) € Ss. We have s = (34) € G (as a1 = a1, Gz = ag and a3 = ag).
One also sees that there is also a ¢ € G with (i) = ¢, and ¢(n) = in, that is r = (13)(24) € G.
Products of these yield distinct eight Q-automorphisms, as so

{1,(1324),(12)(34), (1423),(34), (13)(24), (12), (13)(24)} = {1,r,r% 13, 5,r5,72%5,735}.

We know |G| = 8, and hence this set is the whole Galois group. (Note one can show that G = Ds.)



The subgroups of G are as follows:

Order 8 : G
Order 4:  {1,r,r?r3}
{1,r% 5,725}

{1,72,rs,r3s}

Order 2 {1,r%}

{15}

{1,rs}

{1,725}

{1,r3s}
Order 1 {1}

There are three obvious subfields of degree 2, that is Q(i), Q(v/2) and Q(iv/2). These are the

fixed fields of {1,r,r%,r3}, {1,r2,s,r%s} and {1,r% rs,r3s} respectively.
We'll now find the fixed field of {1,7s}. Any element in Q(7,1) can be expressed in the form

T =ap+ain+ a2772 + a3773 + a4l + asin + a6]'1772 + a71'17]3
with ag,...,a7 € Q. Then

rs(r) = ag+ a1 — aon?® — asn® — asi + as(—1)in — asi(in)? — asi(in)?
= ag+asn — axn® — a7’ — asi + a1in + agin® — asin’.

Therefore z is fixed by rs if and only if

ap = ap, a1 =4as, as = —az,
a3 = —az, a4 = —0a4, a5 = aq,
ag = g, QA7 = —as.
Therefore ag and ag are arbitrary, as = a4 = 0, a1 = a5 and a3 = —ay. It follows that
. . 92 -\ 3
x = ao+a(1+1)n+ain®+az(l—1)py

= a0 ta((1+ i)+ T+ = T +im)’

and hence the field fixed by {1,7s} is Q((1 + 1)n).
Similarly, one can calculate that the field fixed by {1,r2} is Q(i,v/2), the field fixed by {1,s} is
Q(n), the field fixed by {1,72s} is Q(in) and the field fixed by {1,73s} is Q((1 — i)n).

Aufgabe 3. Sei K ()| K eine algebraische Kérpererweiterung von ungeradem Grad. Zeige K (22) =

Solution

It is clear that K(2?) C K(x ) We will show that » € K(2?) and hence K (22) O K (). Assume
that z ¢ K(2?), then K C K(2?) C K(z). Since K(2?) C K(z) we have [K(z) : K(2?)] > 1, and
clearly z is a root of X? —2? € K (2?)[X], hence [K () : (zz)] < 2. Therefore [K(x) : K(2?)] = 2.
By the tower law we have that

[K(2): K] = [K(x) : K(2?)] - [K(2®) : K],
but this is even, which contradicts our assumptions.

Aufgabe 4.



(i) Zeige, dass die Galoisgruppe des Zerfillungskorpers eines irreduziblen separablen Polynoms
vom Grad 3 iiber einem Korper isomorph zu S3 oder Cj ist

(i) Bestimme die Galoisgruppe des Zerfillungskorpers von X3 — X — 1 iiber Q.

Solution

(i) Let K be a field and let f € K[X] be an irreducible polynomial of degree 3. Let L be
a splitting field of L. L|K is normal and separable, and [L : K| = |Gal(L|K)| < 6 and
Gal(L|K) C Ss.

Let a,b,c be the roots of f in L. Since f is irreducible, we have that [K(a) : K] = 3. Hence
we have a tower of fields K C K(a) C L with [L: K] < 6 and [K(a) : K] = 3. By the tower
law we have [L : K(a)] = 1 or 2. We consider both cases.

If [L: K(a)] =2, then [L : K] = 6, and so Gal(L|K) has 6 elements. But Gal(L|K) C Ss
and |Ss| = 6, hence Gal(L|K) = Ss.

If [L: K(a)] =1, then [L: K] = 3 and Gal(L|K) has 3 elements. However, there is only one
group of order 3, up to isomorphism, and that is Cj.

(i) Let f = X3 — X — 1 € Q[X] and L be a splitting field of f. Since the characteristic of Q is
0, the extension L|Q is separable. We now show that it is irreducible. If f is not irreducible,
then we may write f = fi fo for some f1,f> € Q[X] with deg f; = 1. Therefore f would have
a zero ¢ € Q. We can assume without loss of generality that a and b are coprime. Since
f(%) =0 it follows that a® — ab* — b* = 0, and hence that a® = b?(a + b). Let p be a prime
number such that pla. Then p must divide a 4+ b, as a and b are coprime. But this implies
that plb, a contradiction. Hence a = +1. Let ¢ be a prime number with p|b. Then, since
a® = b*(a +b) it follows that gla, a contradiction, hence b = +1. Therefore ¢ = %1, but
f(£1) # 0, and hence f must be irreducible.

We now find the zeros of f. We know that f has at least one real zero, x1, as it is a polynomial

of odd degree. Since f/ = 3X2 — 1, we see that f has turning points as i\/g, is increasing

in the range (—oo, — \/g), decreasing in the range (f\/g ,\/g) and increasing again in the
range (\/g, 00). We also have that f(—\/g) < 0, and hence f has only one real zero, ;.

The two other zeros, x5 and z3 must be in C\R. In particular we have

Q € Q(z1) € Q(z1,22,23),

where Q(z1,z2,x3) is the splitting field of f.

Since f is irreducible overQ, we have that [Q(z1) : Q] = 3. Since Q(z1) € Q(x1,x2,x3), we
have that [Q(z1,x2,x23) : Q(z1)] > 2, and by the tower law we must have [Q(x,x2,x3) :
Q(z1)] = 2 as [Q(x1,x2,x3) : Q] < 6. It follows that |Gal(Q(x1,22,23|)|Q)| = 6 and hence, by
the first part of the question, Gal(Q(x1,x2,23)[|Q) = Ss.

Aufgabe 5. Sei z € C eine Nullestelle von X6 + 3. Zeige, dass Q(x)|Q eine Galoiserweiterung ist.
Solution

We want to show that Q(z)|Q is normal and separable. It is irreducible over Q (by Eisenstein).
Since the characteristic of Q is 0 it follows that the extension is separable.
Since X6 + 3 is irreducible, [Q(z) : Q] = 6.
Consider now the polynomial f = X? + 3. This polynomial is also irreducible (by Eisenstein).
The splitting field for f over Q is Q(a,(), where a is any root of X3 + 3 and ¢ = e’5. We also
have that Q(a,(¢) : Q] = 6.



Note now that if Q(x)|Q is normal, then X%+ 3 would split in Q(z). In particular, f = X3 +3,
would also split over Q(x) as all zeros of f are squares of zeros of X% + 3.

We want to show that Q(z) = Q(a¢) (then Q(x) would be the splitting field of f, and hence
normal). Since [Q(z) : Q] = [Q(a,¢) : Q], it is enough to show that Q(a,() C Q(z). We have that

22 is a zero of f, so we may take a = 22, and hence a € Q(z). All that it remains to show is that

¢ € Q(a).

First we show that ( = % + ﬁ@. This is another proof easier to follow if you draw a picture!

We know that ( is the point on the unit circle given by the intersection in the upper half plane
with a line through the origin with 60° angle to the real axis. If we take the line from the point ¢ to
the intersection point of the circle with the positive part of the real axis, then we form a triangle,
which with points at the origin,  and another point on the real line, which we call r. This forms
an equilateral triangle (we know the length of 2 sides, and the angle between them. This uniquely
determines the triangle), hence the real part of ¢ must be %, as ( is directly above the mid-point
of the triangles base. The imaginary part can now be found using pythagorus.

Since ¢ = % + ﬁ?, it is clear that ¢ € Q(x) if iv3 € Q(z). But (2%)? = =3, so 2% = +i/3,

hence iv/3 € Q(x) and we are done.



