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Übungsblatt 14 zur Einführung in die Algebra: Solutions

Aufgabe 1. Sei K ein Körper der Charakteristik p > 0, so dass der Frobenius-Homorphismus
Φp : K → K kein Automorphismus ist. Sei a ∈ K\Φp(K). Zeige, dass Xp − a ∈ K[X] irreduzibel
und nicht separabel ist.

Solution

First we show irreducibility. Let f = Xp−a, and assume that f = gh, where g,h ∈ K[X], monic
and of smaller degree than f . Let L be a splitting field of f over K. Then

f = (Xp − a) = (X − b)p

for some b ∈ L. Hence g = (X − b)i and h = (X − b)j for some i,j ∈ N such that i + j = p. If
i 6= 0, since gcd(i,p) = 1, we can find v,w ∈ Z such that 1 = vi+ wp. Hence

b = bvi+wp = (bi)v(bp)w = (bi)vaw.

But b = (bi)vaw ∈ K as bi ∈ K (since g ∈ K[X]), which is a contradiction. Hence i = 0, that is f
is irreducible.

To show that f is not separable, we can work over the splitting field L again. Let θ,θ′ ∈ L be
two roots of f , then θp− θ′p = a−a = 0, and hence θ− θ′ ∈ ker(Φp(L)). But Φp is injective, hence
θ = θ′. That is, f is inseparable.

Aufgabe 2. Sei x ∈ R mit x4 = 2 und L = Q(i,x). Finde alle Zwischenkörper von L|Q.

Solution

Let f = X4 − 2 ∈ Q[X]. This is irreducible by Eisenstein. Let η ∈ R be the positive fourth root
of 2. The f factorizes over C as

f = (X − η)(X + η)(X − iη)(X + iη)

and hence f is separable, and Q(η,i)|Q is a Galois extension. Let a1 = η, a2 = −η, a3 = iη and
a4 = −iη.

We now find [Q(i,η) : Q]. The minimum polynomial of i over Q(η) is X2+1, since i /∈ Q(η) ⊆ R.
So [Q(i,η) : Q(η)] = 2. Moreover, as f is irreducible, [Q(η) : Q] = 4, and hence [Q(i,η) : Q] = 8,
and hence |Gal(Q(η,i)| = 8.

Let G = Gal(Q(η,i)|Q) ⊆ S4. We have s = (34) ∈ G (as a1 = a1, a2 = a2 and a3 = a4).
One also sees that there is also a ϕ ∈ G with ϕ(i) = i, and ϕ(η) = iη, that is r = (13)(24) ∈ G.
Products of these yield distinct eight Q-automorphisms, as so

{1, (1324),(12)(34), (1423),(34), (13)(24), (12), (13)(24)} = {1,r,r2,r3, s,rs,r2s,r3s}.

We know |G| = 8, and hence this set is the whole Galois group. (Note one can show that G ∼= D8.)



The subgroups of G are as follows:

Order 8 : G

Order 4 : {1,r,r2,r3}
{1,r2,s, r2s}
{1, r2, rs,r3s}

Order 2 {1,r2}
{1,s}
{1, rs}
{1,r2s}
{1,r3s}

Order 1 {1}

There are three obvious subfields of degree 2, that is Q(i),Q(
√

2) and Q(i
√

2). These are the
fixed fields of {1,r,r2,r3}, {1,r2,s, r2s} and {1, r2, rs,r3s} respectively.

We’ll now find the fixed field of {1, rs}. Any element in Q(η,i) can be expressed in the form

x = a0 + a1η + a2η
2 + a3η

3 + a4i + a5iη + a6iη
2 + a7iη

3

with a0, . . . ,a7 ∈ Q. Then

rs(x) = a0 + a1η − a2η
2 − a3η

3 − a4i + a5(−i)iη − a6i(iη)2 − a7i(iη)3

= a0 + a5η − a2η
2 − a7η

3 − a4i + a1iη + a6iη
2 − a3iη

3.

Therefore x is fixed by rs if and only if

a0 = a0, a1 = a5, a2 = −a2,

a3 = −a7, a4 = −a4, a5 = a1,

a6 = a6, a7 = −a3.

Therefore a0 and a6 are arbitrary, a2 = a4 = 0, a1 = a5 and a3 = −a7. It follows that

x = a0 + a1(1 + i)η + a6iη
2 + a3(1− i)η3

= a0 + a1((1 + i)η) +
a6

2
((1 + i)η)2 − a3

2
((1 + i)η)3

and hence the field fixed by {1, rs} is Q((1 + i)η).
Similarly, one can calculate that the field fixed by {1,r2} is Q(i,

√
2), the field fixed by {1,s} is

Q(η), the field fixed by {1,r2s} is Q(iη) and the field fixed by {1,r3s} is Q((1− i)η).

Aufgabe 3. Sei K(x)|K eine algebraische Körpererweiterung von ungeradem Grad. Zeige K(x2) =
K(x).

Solution

It is clear that K(x2) ⊆ K(x). We will show that x ∈ K(x2) and hence K(x2) ⊇ K(x). Assume
that x /∈ K(x2), then K ( K(x2) ( K(x). Since K(x2) ( K(x) we have [K(x) : K(x2)] > 1, and
clearly x is a root of X2−x2 ∈ K(x2)[X], hence [K(x) : K(x2)] 6 2. Therefore [K(x) : K(x2)] = 2.
By the tower law we have that

[K(x) : K] = [K(x) : K(x2)] · [K(x2) : K],

but this is even, which contradicts our assumptions.

Aufgabe 4.



(i) Zeige, dass die Galoisgruppe des Zerfällungskörpers eines irreduziblen separablen Polynoms
vom Grad 3 über einem Körper isomorph zu S3 oder C3 ist

(ii) Bestimme die Galoisgruppe des Zerfällungskörpers von X3 −X − 1 über Q.

Solution

(i) Let K be a field and let f ∈ K[X] be an irreducible polynomial of degree 3. Let L be
a splitting field of L. L|K is normal and separable, and [L : K] = |Gal(L|K)| 6 6 and
Gal(L|K) ⊆ S3.

Let a,b,c be the roots of f in L. Since f is irreducible, we have that [K(a) : K] = 3. Hence
we have a tower of fields K ⊆ K(a) ⊆ L with [L : K] 6 6 and [K(a) : K] = 3. By the tower
law we have [L : K(a)] = 1 or 2. We consider both cases.

If [L : K(a)] = 2, then [L : K] = 6, and so Gal(L|K) has 6 elements. But Gal(L|K) ⊆ S3

and |S3| = 6, hence Gal(L|K) = S3.

If [L : K(a)] = 1, then [L : K] = 3 and Gal(L|K) has 3 elements. However, there is only one
group of order 3, up to isomorphism, and that is C3.

(ii) Let f = X3 −X − 1 ∈ Q[X] and L be a splitting field of f . Since the characteristic of Q is
0, the extension L|Q is separable. We now show that it is irreducible. If f is not irreducible,
then we may write f = f1f2 for some f1,f2 ∈ Q[X] with deg f1 = 1. Therefore f would have
a zero a

b ∈ Q. We can assume without loss of generality that a and b are coprime. Since
f(a

b ) = 0 it follows that a3 − ab2 − b3 = 0, and hence that a3 = b2(a+ b). Let p be a prime
number such that p|a. Then p must divide a + b, as a and b are coprime. But this implies
that p|b, a contradiction. Hence a = ±1. Let q be a prime number with p|b. Then, since
a2 = b2(a + b) it follows that q|a, a contradiction, hence b = ±1. Therefore a

b = ±1, but
f(±1) 6= 0, and hence f must be irreducible.

We now find the zeros of f . We know that f has at least one real zero, x1, as it is a polynomial

of odd degree. Since f ′ = 3X2 − 1, we see that f has turning points as ±
√

1
3 , is increasing

in the range (−∞, −
√

1
3 ), decreasing in the range (−

√
1
3 ,

√
1
3 ) and increasing again in the

range (
√

1
3 ,∞). We also have that f(−

√
1
3 ) < 0, and hence f has only one real zero, x1.

The two other zeros, x2 and x3 must be in C\R. In particular we have

Q ( Q(x1) ( Q(x1,x2,x3),

where Q(x1,x2,x3) is the splitting field of f .

Since f is irreducible overQ, we have that [Q(x1) : Q] = 3. Since Q(x1) ( Q(x1,x2,x3), we
have that [Q(x1,x2,x3) : Q(x1)] > 2, and by the tower law we must have [Q(x1,x2,x3) :
Q(x1)] = 2 as [Q(x1,x2,x3) : Q] 6 6. It follows that |Gal(Q(x1,x2,x3|)|Q)| = 6 and hence, by
the first part of the question, Gal(Q(x1,x2,x3)||Q) ∼= S3.

Aufgabe 5. Sei x ∈ C eine Nullestelle von X6 + 3. Zeige, dass Q(x)|Q eine Galoiserweiterung ist.

Solution

We want to show that Q(x)|Q is normal and separable. It is irreducible over Q (by Eisenstein).
Since the characteristic of Q is 0 it follows that the extension is separable.

Since X6 + 3 is irreducible, [Q(x) : Q] = 6.
Consider now the polynomial f = X3 + 3. This polynomial is also irreducible (by Eisenstein).

The splitting field for f over Q is Q(a,ζ), where a is any root of X3 + 3 and ζ = e
i2π
3 . We also

have that Q(a,ζ) : Q] = 6.



Note now that if Q(x)|Q is normal, then X6 + 3 would split in Q(x). In particular, f = X3 + 3,
would also split over Q(x) as all zeros of f are squares of zeros of X6 + 3.

We want to show that Q(x) = Q(aζ) (then Q(x) would be the splitting field of f , and hence
normal). Since [Q(x) : Q] = [Q(a,ζ) : Q], it is enough to show that Q(a,ζ) ⊆ Q(x). We have that
x2 is a zero of f , so we may take a = x2, and hence a ∈ Q(x). All that it remains to show is that
ζ ∈ Q(x).

First we show that ζ = 1
2 + i

√
3

2 . This is another proof easier to follow if you draw a picture!
We know that ζ is the point on the unit circle given by the intersection in the upper half plane

with a line through the origin with 60o angle to the real axis. If we take the line from the point ζ to
the intersection point of the circle with the positive part of the real axis, then we form a triangle,
which with points at the origin, ζ and another point on the real line, which we call r. This forms
an equilateral triangle (we know the length of 2 sides, and the angle between them. This uniquely
determines the triangle), hence the real part of ζ must be 1

2 , as ζ is directly above the mid-point
of the triangles base. The imaginary part can now be found using pythagorus.

Since ζ = 1
2 + i

√
3

2 , it is clear that ζ ∈ Q(x) if i
√

3 ∈ Q(x). But (x3)2 = −3, so x3 = ±i
√

3,
hence i

√
3 ∈ Q(x) and we are done.


