Sommersemester 2010 Übungsblatt 16 26.04.2010

Lineare Algebra II

Aufgabe 16.1:

Sei K ein Körper. Seien außerdem V,W zwei K-Vektorräume, B eine Teilmenge von V und $g\colon B\to W$ eine Abbildung. Zeigen Sie (vgl. §6.3): Ist B in V linear unabhängig, so gibt es mindestens eine lineare Abbildung $f\colon V\to W$ mit $f_{|_B}=g$.

Aufgabe 16.2:

Es sei K ein Körper. Seien V ein K-Vektorraum, W ein K-Vektorraum mit dim $W \geq 1$ und B eine Teilmenge von V. Es bezeichne W^B den K-Vektorraum aller Abbildungen von B nach W (vgl. §6.1). Zeigen Sie, dass für die Abbildung Φ : Hom $(V,W) \to W^B$, $f \mapsto f_{\mid B}$ folgende Aussagen gelten:

- (a) Φ ist ein K-Vektorraumhomomorphismus.
- (b) Φ ist genau dann injektiv, wenn B ein Erzeugendensystem von V ist.
- (c) Φ ist genau dann surjektiv, wenn B in V linear unabhängig ist.
- (d) Φ ist genau dann bijektiv, wenn B eine Basis von V ist.

Aufgabe 16.3:

Es sei K ein Körper. Seien V ein K-Vektorraum und B eine Teilmenge von V. Es bezeichne K^B den K-Vektorraum aller Abbildungen von B nach K (vgl. §6.1) und $K^{(B)}$ den Untervektorraum von K^B bestehend aus allen Abbildungen $f: B \to K$ mit endlichem Träger $\sup(f) := \{b \in B \mid f(b) \neq 0\}$. Für jedes $b \in B$ definieren wir die Abbildung $\delta_b \colon B \to K$ durch $\sup(\delta_b) = \{b\}$ und $\delta_b(b) = 1$.

- (a) Zeigen Sie, dass $\{\delta_b \mid b \in B\}$ eine Basis von $K^{(B)}$ ist.
- (b) Es bezeichne Ψ die eindeutig bestimmte (vgl. §6.3) lineare Abbildung $K^{(B)} \to V$ mit $\Psi(\delta_b) = b$ für alle $b \in B$. Zeigen Sie:
 - (i) Ψ ist genau dann injektiv, wenn B in V linear unabhängig ist.
 - (ii) Ψ ist genau dann surjektiv, wenn B ein Erzeugendensystem von V ist.
 - (iii) Ψ ist genau dann bijektiv, wenn B eine Basis von V ist.

Aufgabe 16.4:

Zeigen Sie oder widerlegen Sie: Es gibt einen Endomorphismus der abelschen Gruppe $(\mathbb{R}, +)$, welcher nicht von der Form $\mathbb{R} \to \mathbb{R}$, $x \mapsto ax$ für ein $a \in \mathbb{R}$ ist.

Abgabe bis Montag, den 3. Mai, 10 Uhr in die Briefkästen neben F411.