Sommersemester 2010 Übungsblatt 17 03.05.2010

Lineare Algebra II

Aufgabe 17.1:

Seien ℓ_1, \ldots, ℓ_k und ℓ Linearformen auf einem endlichdimensionalen Vektorraum V. Zeigen Sie unter Verwendung des kanonischen Isomorphismus $V \to V^{**}$ aus §13.1, dass folgende Bedingungen äquivalent sind:

- (i) Für alle $x \in V$ gilt: $(\ell_1(x) = \cdots = \ell_k(x) = 0) \implies \ell(x) = 0$.
- (ii) Es gilt $\ell \in \text{span}(\ell_1, \dots, \ell_k)$.

Bleibt die entsprechende Aussage gültig, wenn man

- 1. ℓ_1, \ldots, ℓ_k durch eine unendliche Folge $\ell_1, \ell_2, \ell_3, \ldots$ von Linearformen auf V ersetzt?
- 2. für V einen Vektorraum beliebiger Dimension zuläßt?
- 3. beide der vorangegangenen Änderungen vornimmt?

Geben Sie jeweils einen Beweis oder ein Gegenbeispiel an.

Aufgabe 17.2:

Sei V ein Vektorraum der Dimension $n \in \mathbb{N}_0$.

- (a) Seien $\ell_1, \ldots, \ell_k \in V^*$ Linearformen auf V. Zeigen Sie: $\dim \left(\bigcap_{i=1}^k \ker \ell_i \right) \geq n k$.
- (b) Seien $\ell_1, \dots, \ell_k \in V^*$ Linearformen auf V. Zeigen Sie, dass ℓ_1, \dots, ℓ_k genau dann linear unabhängig sind, wenn $\dim \left(\bigcap_{i=1}^k \ker \ell_i\right) = n-k$ gilt. (Hinweis: Verwenden Sie Aufgabe 17.1.)
- (c) Zeigen oder widerlegen Sie: Jede Basis von V^* ist dual zu einer Basis von V.

Aufgabe 17.3:

- (a) Bestimmen Sie die Darstellungsmatrix der Bilinearform aus Aufgabe 14.1 bezüglich der Standardbasis des \mathbb{R}^3 .
- (b) Bestimmen Sie die Darstellungsmatrix der Bilinearform $b \colon \mathbb{Q}^4 \times \mathbb{Q}^4 \to \mathbb{Q}$, $((x_1, x_2, x_3, x_4), (y_1, y_2, y_3, y_4)) \mapsto x_1 y_1 + (x_1 + x_2) y_2 + (x_1 + x_2 + x_3) y_3 + (x_1 + x_2 + x_3 + x_4) y_4,$ bezüglich der Standardbasis des \mathbb{Q}^4 .

Aufgabe 17.4:

Seien K ein Körper und $n \in \mathbb{N}_0$. Seien $b \colon V \times V \to K$ eine Bilinearform auf einem ndimensionalen K-Vektorraum V und $A \in K^{n \times n}$ eine Darstellungsmatrix von b. Zeigen
Sie, dass A genau dann Rang ≤ 1 hat, wenn es Linearformen $\ell_1, \ell_2 \in V^*$ gibt, so dass $b(v, w) = \ell_1(v)\ell_2(w)$ für alle $v, w \in V$ gilt.

(Hinweis: Zeigen Sie, dass die Matrix A genau dann Rang ≤ 1 hat, wenn sie von der Gestalt B^TC mit $B,C\in K^{1\times n}$ ist.)

Abgabe bis Montag, den 10. Mai, 10 Uhr in die Briefkästen neben F411.