Übungsblatt 1 zur Linearen Algebra I

Aufgabe 1: Finde explizite Darstellungen für folgende Mengen:

- (a) ({Apfel, Seehund, Banane} \cup {1, 2, ..., 500}) \cap ({ $x \mid x \text{ Säugetier}$ } \cup { $x \mid x \text{ Kubikzahl}$ })
- (b) $\mathscr{P}(\mathscr{P}(\mathscr{P}(\emptyset)))$
- (c) $(\{2i \mid i \in \mathbb{N}\} \cap \{p \mid p \text{ ist Primzahl}\}) \setminus \{z \in \mathbb{Z} \mid z \leq 0\}$

Aufgabe 2: Beweise von jeder der folgenden Behauptungen jeweils, dass sie für beliebige Mengen A, B und C gilt oder finde Beispiele für A, B und C, für die sie falsch ist:

- (a) $A \cap B = (A \cup B) \setminus ((A \setminus B) \cup (B \setminus A))$
- (b) $A \cup (B \cup C) = (A \cup B) \cup C$
- (c) $A \cup (B \cap C) = (A \cup B) \cap C$
- (d) $A \not\subseteq \mathscr{P}(A)$

Aufgabe 3: Welche der folgenden Funktionen sind injektiv/surjektiv/bijektiv? Begründen Deine Antworten.

- (a) $\mathbb{R} \to \mathbb{R}$, $x \mapsto x^2$
- (b) $\mathbb{R} \to \mathbb{R}_{>0}$, $x \mapsto x^2$
- (c) $\mathbb{Z} \to \mathbb{Z}$, $x \mapsto x^3$
- (d) $\mathbb{R} \to \mathbb{R}$, $x \mapsto x^3$
- (e) Die Abbildung von der Menge aller (derzeit lebenden) Menschen nach

$$\{Montag, Dienstag, \dots, Sonntag\},\$$

die jedem Menschen den Wochentag zuordnet, an dem er geboren ist.

- (f) Die Abbildung von der Menge aller Menschen nach \mathbb{N} , die jedem Menschen sein Geburtsjahr zuordnet.
- (g) $t: \mathbb{N}_{\geq 2} \to \mathbb{P}$, wobei \mathbb{P} die Menge der Primzahlen bezeichnet und t die Funktion ist, die jeder natürlichen Zahl $n \geq 2$ die größte Primzahl p zuordnet, die n teilt.
- (h) $d: \mathbb{N} \to 2\mathbb{N}$, wobei $2\mathbb{N} := \{2n \mid n \in \mathbb{N}\}$ die Menge der geraden natürlichen Zahlen bezeichnet und d die Funktion ist, die jeder natürlichen Zahl n ihr Doppeltes 2n zuordnet.

Aufgabe 4: Es seien A und B endliche Mengen mit $\sharp A=a$ und $\sharp B=b$.

- (a) Wie viele Elemente hat $\mathcal{P}(A)$?
- (b) Wie viele bijektive Abbildungen $f: A \to A$ gibt es?
- (c) Wie viele injektive Abbildungen $f : A \to B$ gibt es?

Zusatzaufgabe für Interessierte: Es seien A, B und C endliche Mengen. Zeigen Sie: $\sharp(A \cup B \cup C) = \sharp A + \sharp B + \sharp C - \sharp(A \cap B) - \sharp(A \cap C) - \sharp(B \cap C) + \sharp(A \cap B \cap C).$

Bei jeder Aufgabe sind bis zu 10 Punkte zu erreichen. Abgabe bis Dienstag, den 29. Oktober 2013, um 9:55 Uhr in das Postfach Ihres Tutors in der 4. Etage des F-Gebäudes.