Übungsblatt 23 zur Reellen Algebraischen Geometrie

Aufgabe 82. Seien $n \in \mathbb{N}_0$ und $d \in \mathbb{N}$ gerade, $V \subseteq \mathbb{R}[X_1, \dots, X_n]$ der \mathbb{R} -Vektorraum aller d-Formen in n Variablen und $P \subseteq V$ der Kegel der positiv semidefiniten d-Formen in n Variablen. Zeige, dass P einen kompakten konvexen Querschnitt besitzt.

Aufgabe 83. Sei V ein endlichdimensionaler \mathbb{R} -Vektorraum (versehen mit seiner eindeutigen Vektorraumtopologie). Sei $C \subseteq V$ ein Kegel. Wir nennen C spitz, wenn $C \cap -C = \{0\}$. Zeige, dass die folgenden Aussagen äquivalent sind:

- (a) C besitzt einen kompakten konvexen Querschnitt.
- (b) C ist spitz und abgeschlossen.

Aufgabe 84. Sei K ein euklidischer Körper und $f \in K[X,Y,Z]$ eine 4-Form. Es gebe linear unabhängige $v_1, v_2 \in K^3$ mit $f(v_1 + Tv_2) \in (T^3)$ und $f(v_2) = 0$. Zeige, dass folgende Aussagen äquivalent sind:

- (a) f ist positiv semidefinit.
- (b) $f \in \sum K[X, Y, Z]^2$
- (c) f ist eine Summe von drei Quadraten von quadratischen Formen.

Abgabe bis Donnerstag, den 4. Juli, um 11:44 Uhr in die Zettelkästen neben F411.