Klausur zur Einführung in die Algebra, Lösungsvorschlag

Aufgabe 1 (10 Punkte). Betrachte die Gruppe $GL_2(\mathbb{F}_2)$ aller invertierbaren 2×2 -Matrizen über dem zweielementigen Körper \mathbb{F}_2 .

- (a) Gib alle Untergruppen von $GL_2(\mathbb{F}_2)$ explizit an! Führe dabei jede nur einmal auf! Eine Begründung ist nicht erforderlich. Notation aus der Vorlesung darf natürlich benutzt werden.
- (b) Argumentiere, warum es außer den in (a) aufgeführten Untergruppen keine weiteren mehr gibt. (5 Punkte)

Lösungsvorschlag. (a) $GL_2(\mathbb{F}_2)$, $\{1\}$, $\bigvee_2(\mathbb{F}_2)$, $\bigcup_2(\mathbb{F}_2)$, $\{1, \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}\}$, $\{1, \begin{pmatrix} 0 & 1 \\ 1 & 1 \end{pmatrix}\}$

(b) Wegen $\operatorname{GL}_2(\mathbb{F}_2)=\left\{1,\left(\begin{smallmatrix}1&0\\1&1\end{smallmatrix}\right),\left(\begin{smallmatrix}0&1\\1&0\end{smallmatrix}\right),\left(\begin{smallmatrix}0&1\\1&1\end{smallmatrix}\right),\left(\begin{smallmatrix}1&1\\0&1\end{smallmatrix}\right),\left(\begin{smallmatrix}1&1\\1&0\end{smallmatrix}\right)\right\}$ gilt $\#\operatorname{GL}_2(\mathbb{F}_2)=6=2\cdot3$. Daher gibt es neben den trivialen Untergruppen $\operatorname{GL}_2(\mathbb{F}_2)$ und $\{1\}$ nach dem Satz von Lagrange nur Untergruppen der Ordnung 2 und der Ordnung 3. Zudem sind hier die nichttrivialen Untergruppen alles Sylowgruppen. Für die Anzahl n_2 der 2-Sylowgruppen gilt $n_2\equiv_{(2)}1$ und $n_2|6$, also $n_2\in\{1,3\}$. Daher gibt es höchstens 3 Untergruppen der Ordnung 2 und in (a) sind schon 3 solche aufgeführt. Für die Anzahl n_3 der 3-Sylowgruppen gilt $n_3\equiv_{(3)}1$ und $n_3|6$, also $n_3=1$. Daher gibt es höchstens eine Untergruppe der Ordnung 3 und in (a) ist eine solche aufgeführt.

Aufgabe 2 (20 Punkte). Sei *G* eine Gruppe der Ordnung 14. Zeige:

- (a) G besitzt genau eine Untergruppe N der Ordnung 7. (3 Punkte)
- (b) N ist ein Normalteiler von G (in Zeichen: $N \triangleleft G$).
- (c) G besitzt eine Untergruppe H der Ordnung 2. (Fixiere im folgenden eine solche.)
- (d) G ist semidirektes Produkt von N und H (in Zeichen: $G = N \times H$). (2 Punkte)
- (e) $H \cong C_2$ und $N \cong C_7$ (2 Punkte)
- (f) Bezeichnet h das eindeutig bestimmte Element von H mit $H = \{1, h\}$, so gibt es ein $k \in \{1, ..., 6\}$ derart, dass $hxh^{-1} = x^k$ für alle $x \in N$.
- (g) $x = x^{k^2}$ für alle $x \in N$ (2 Punkte)
- (h) $k \in \{1,6\}$

(i) Es gibt bis auf Isomorphie höchstens zwei Gruppen der Ordnung 14.

(2 Punkte)

(j)
$$G \cong C_{14}$$
 oder $G \cong D_7$

(2 Punkte)

Lösungsvorschlag. (a) Wegen $14 = 7 \cdot 2$ ist jede Untergruppe der Ordnung 7 sogar eine 7-Sylowgruppe von G. Für die Anzahl n_7 der 7-Sylowgruppen von G gilt $n_7 \equiv_{(7)} 1$ und $n_7|14$, also $n_7 = 1$.

- (b) Da *N* die einzige Untergruppe der Ordnung 7 von *G* ist, ist *N* offenbar eine charakteristische Untergruppe von *G* und damit insbesondere ein Normalteiler von *G*.
- (c) G besitzt mindestens eine 2-Sylowgruppe und diese hat wegen #G=14 die Ordnung 2.
- (d) Da N ein Normalteiler und H eine Untergruppe von G ist, wissen wir aus der Vorlesung, dass $NH = \{ab \mid a \in N, b \in H\}$ eine Untergruppe von G ist. Es ist NH = G und $N \cap H = \{1\}$ zu zeigen. Ersteres folgt daraus, dass nach dem Satz von Lagrange die Gruppenordnung von NH sowohl ein Vielfaches sowohl von 2 als auch von 7 ist (denn $N \leq NH$ und $H \leq NH$). Wäre $N \cap H \neq \{1\}$, so wäre $H \subseteq N$ (denn H hat ausser dem neutralen Element, welches auch in N enthalten ist, nur ein einziges anderes Element) im Widerspruch zu $NH = G \neq N$.
- (e) Es reicht zu zeigen, dass H und N zyklisch sind. Dies folgt aus der folgenden allgemeinen Tatsache, die sofort aus dem Satz von Lagrange folgt: Eine Gruppe von Primzahlordnung wird von jedem Element $\neq 1$ erzeugt.
- (f) Wähle gemäß (e) ein $y \in N$ mit $N = \{1, y, y^2, \dots, y^6\}$. Da N ein Normalteiler von G ist, können wir $k \in \{0, \dots, 6\}$ wählen mit $hyh^{-1} = y^k$. Wäre k = 0, so wäre $y = h^{-1}h = 1$, was absurd ist. Also ist $k \in \{1, \dots, 6\}$. Es folgt $hy^{\ell}h^{-1} = (hyh^{-1})^{\ell} = (y^k)^{\ell} = y^{k\ell} = (y^{\ell})^k$ für $\ell \in \{0, \dots, 6\}$ (sogar für $\ell \in \mathbb{Z}$) und daher $hxh^{-1} = x^k$ für alle $x \in N$.
- (g) Wegen #H = 2 muss $h^2 = 1$ gelten. Wegen (f) gilt daher

$$x = h^2 x h^{-2} = h(hxh^{-1})h^{-1} = hx^k h^{-1} = (x^k)^k = x^{k^2}$$

für alle $x \in N$.

- (h) Wähle $x \in N \setminus \{1\}$ fest. Nach (g) gilt $x^{k^2-1} = 1$. Da x die Ordnung 7 hat und nach Teilaufgabe (g) $x^{k^2-1} = 1$ gilt, muss 7 ein Teiler von $k^2 1$ sein. Zusammen mit $k \in \{1, \ldots, 6\}$ sieht man daraus leicht $k \in \{1, 6\}$.
- (i) Wähle wieder $y \in N \setminus \{1\}$ fest. Dann gilt $N = \{y^0, \dots, y^6\}$ mit #N = 7, $H = \{1, h\}$ mit #H = 2 und $G \stackrel{\text{(d)}}{=} NH = \{y^0, \dots, y^6, y^0h, \dots, y^6h\}$ mit #G = 14. Nun kann man die Multiplikationstabelle leicht ausfüllen. In Termini von y und h wird diese nur noch von k aus (h) abhängen, denn $y^iy^j = y^{i+j}$, $y^i(y^jh) = y^{i+j}h$, $(y^ih)y^j = y^i(hy^jh^{-1})h = y^i(y^j)^kh = y^{i+jk}h$ und $(y^ih)(y^jh) = y^i(hy^jh^{-1}) = y^i(y^j)^k = y^{i+jk}$ für alle $i, j \in \{0, \dots, 6\}$. Die Multiplikationstabelle von G kann also wegen (h) nur zwei mögliche Gestalten

annehmen. Daher kann es bis auf Isomorphie höchstens zwei Gruppen der Ordnung 14 geben.

(j) C_{14} und D_7 sind Gruppen der Ordnung 14, die nicht isomorph sind (denn C_{14} ist abelsch und D_7 nicht). Nach (i) muss also $G \cong C_{14}$ oder $G \cong D_7$ gelten.

Aufgabe 3 (12 Punkte). Betrachte das Polynom $f := 2X^5 - 6X + 6 \in \mathbb{Z}[X]$. In welchen der folgenden Ringe ist f irreduzibel? Begründe jeweils Deine Antwort.

(a) $\mathbb{Z}[X]$ (2 Punkte) (b) $(S^{-1}\mathbb{Z})[X]$ mit $S:=\{2^n\mid n\in\mathbb{N}_0\}$ (4 Punkte) (c) $\mathbb{Q}[X]$ (4 Punkte) (d) $\mathbb{R}[X]$

Lösungsvorschlag. (a) $f = 2(X^5 - 3X + 3) \in \mathbb{Z}[X]$ mit $2 \in \mathbb{Z}[X] \setminus \mathbb{Z}[X]^\times$ und $X^5 - 3X + 3 \in \mathbb{Z}[X] \setminus \mathbb{Z}[X]^\times$ ist eine Zerlegung von f in zwei Nichteinheiten von $\mathbb{Z}[X]$ (beachte $\mathbb{Z}[X]^\times = \mathbb{Z}^\times = \{-1,1\}$). Daher ist f nicht irreduzibel in $\mathbb{Z}[X]$.

(1 Punkt)

(e) $\mathbb{C}[X]$

- (c) Da 2 eine Einheit in $S^{-1}Z[X]$ ist, untersuchen wir das Polynom $g:=X^5-3X+3$ anstatt von f. Dieses Polynom g ist nach dem Kriterium von Eisenstein angewandt auf das Primelement 3 von $\mathbb Z$ irreduzibel über $\mathbb Z$ und dem Quotientenkörper $\mathbb Q$ von $\mathbb Z$, also in $\mathbb Q[X]$. Daher ist g und damit auch f irreduzibel in $\mathbb Q[X]$, was wir in Teilaufgabe (b) benutzen werden.
- (b) Wir behaupten, dass f auch irreduzibel im Unterring $(S^{-1}\mathbb{Z})[X]$ von $\mathbb{Q}[X]$ ist. Hierzu ist zunächst zu beachten, dass f als Polynom vom Grad ≥ 1 keine Einheit in $(S^{-1}\mathbb{Z})[X]$ ist. Da 2 auch eine Einheit in $S^{-1}\mathbb{Z}[X]$ ist, reicht es wieder das Polynom $g = X^5 3X + 3$ zu betrachten. Seien also $p, q \in (S^{-1}\mathbb{Z})[X]$ mit g = pq. Zu zeigen ist $p \in (S^{-1}\mathbb{Z})[X]^\times$ oder $q \in (S^{-1}\mathbb{Z})[X]^\times$. Dann gilt nach (c), dass mindestens eines der beiden Polynome p und q den Grad 0 hat (beachte $\mathbb{Q}[X]^\times = \mathbb{Q}^\times$). Œ habe p den Grad 0, also $p \in S^{-1}\mathbb{Z}$. Es teilt nun p im Ring $S^{-1}\mathbb{Z}$ jeden Koeffizienten von g, insbesondere auch dessen Leitkoeffizienten 1. Das bedeutet gerade, dass p eine Einheit ist.

Bemerkung: Es lässt sich alternativ auch zeigen, dass $S^{-1}\mathbb{Z}$ ein faktorieller Ring ist, in welchem 3 ein Primelement ist, was wir aber hier nicht weiter ausführen. Damit lässt sich das Kriterium von Eisenstein auch unmittelbar auf g und $S^{-1}\mathbb{Z}$ anwenden.

- (d) Offensichtlich gilt $\lim_{x\to\infty} f(x) = \infty$ und $\lim_{x\to-\infty} f(x) = -\infty$. Insbesondere nimmt f positive und negative Werte auf $\mathbb R$ an. Nach dem Zwischenwertsatz aus der Analysis hat f eine Nullstelle in $\mathbb R$. Da f ausserdem Grad ≥ 2 hat, ist f reduzibel in $\mathbb R[X]$.
- (e) Nach dem Fundamentalsatz der Algebra hat f eine Nullstelle in \mathbb{C} . Da f ausserdem Grad ≥ 2 hat, ist f reduzibel in $\mathbb{C}[X]$.

Aufgabe 5 (6 Punkte + 8 Bonuspunkte). Welche der folgenden drei Ideale in $\mathbb{C}[X,Y]$ sind Primideale? Welche sind maximale Ideale?

$$I := (XY), \qquad J := (X + Y), \qquad K := (X, Y)$$

Eine Begründung ist nicht erforderlich. Bei vollständiger Begründung gibt es aber bis zu 8 Bonuspunkten.

Lösungsvorschlag. *I* ist nicht prim und daher auch nicht maximal, *J* ist prim aber nicht maximal, *K* ist maximal und daher auch prim.

Zum Bonusteil:

I ein Primideal von $\mathbb{R}[X,Y]$ genau dann, wenn XY ein Primelement in $\mathbb{R}[X,Y]$. Da $X,Y \notin \mathbb{R}^{\times} = \mathbb{R}[X,Y]^{\times}$ ist aber XY nicht irreduzibel in $\mathbb{R}[X,Y]$ und damit insbesondere nicht prim (beachte $XY \neq 0$). Also ist I kein Primideal in $\mathbb{R}[X,Y]$.

J ist ein Primideal genau dann, wenn $\mathbb{R}[X,Y]/J$ ein Integritätsring ist. Dazu reicht es zu zeigen, dass $\mathbb{R}[X,Y]/J\cong\mathbb{R}[X]$, denn $\mathbb{R}[X]$ ist ein Integritätsring. Wir betrachten dazu den Einsetzungshomomorphismus $\varphi\colon\mathbb{R}[X,Y]\to\mathbb{R}[X]$, $p\mapsto p(X,-X)$. Wegen $\varphi(p)=p$ für alle $p\in\mathbb{R}[X]$ ist φ surjektiv. Wegen $\varphi(X+Y)=X+(-X)=0$ liegt J im Kern von φ . Ist $p\in\ker\varphi$, so gilt $p\equiv_J p(X,-X)=\varphi(p)=0$ und daher $p\in J$. Also gilt auch $\ker\varphi\subseteq J$ und daher $\ker\varphi\subseteq J$. Der Isomorphiesatz angewandt auf φ liefert jetzt einen Ringisomorphismus von $\mathbb{R}[X,Y]/J$ nach $\mathbb{R}[X]$.

J ist ein maximales Ideal genau dann, wenn $\mathbb{R}[X,Y]/K$ ein Körper ist. Dazu zeigen wir $\mathbb{R}[X,Y]/K\cong\mathbb{R}$. Wir betrachten dazu den Einsetzungshomomorphismus $\varphi\colon \mathbb{R}[X,Y]\to\mathbb{R},\ p\mapsto p(0,0)$. Offensichtlich ist φ surjektiv und K liegt im Kern von φ . Ist $p\in\ker\varphi$, so gilt $p\equiv_K p(0,0)=\varphi(p)=0$ und daher $p\in K$. Also gilt auch $\ker\varphi\subseteq K$ und daher $\ker\varphi=K$. Der Isomorphiesatz angewandt auf φ liefert jetzt einen Ringisomorphismus von $\mathbb{R}[X,Y]/K$ nach \mathbb{R} .

Aufgabe 6 (30 Punkte). Betrachte die reelle Zahl $x:=\sqrt{2+\sqrt{2}}$ und den Körper $L:=\mathbb{Q}(x)$.

- (a) Finde ein normiertes Polynom $f \in \mathbb{Q}[X]$ vom Grad 4 mit f(x) = 0.
- (b) Zeige, dass f aus (a) irreduzibel in $\mathbb{Q}[X]$ ist. (3 Punkte)
- (c) Begründe, warum es genau ein f wie in (a) gibt. (2 Punkte)
- (d) Bestimme alle vier verschiedenen Nullstellen a_1, a_2, a_3, a_4 von f in \mathbb{C} .
- (e) Zeige, dass L der Zerfällungskörper von f über $\mathbb Q$ ist.

 Hinweis: Betrachte Produkte a_ia_j .
- (f) Begründe, warum $L|\mathbb{Q}$ eine Galoiserweiterung ist. (2 Pur
- (g) Begründe, warum es für jedes $i \in \{1, ..., 4\}$ genau ein $\varphi_i \in \operatorname{Aut}(L|\mathbb{Q})$ gibt mit $\varphi_i(a_1) = a_i$.

(h) Zeige Aut
$$(L|\mathbb{Q}) = \{\varphi_1, \varphi_2, \varphi_3, \varphi_4\}.$$

- (i) Berechne $\varphi_i(\sqrt{2})$ für jedes $i \in \{1,2,3,4\}$. (2 Punkte) Hinweis: Betrachte $\varphi_i(a_1^2)$.
- (j) Berechne $\varphi_i(a_j)$ für alle $i,j \in \{1,2,3,4\}$.

 Hinweis: Es kann dabei helfen, gewisse $\varphi_i(a_ia_k)$ zu betrachten.
- (k) Zeige Aut $(L|\mathbb{Q}) \cong C_4$. (2 Punkte)
- (I) Bestimme alle Zwischenkörper von $L|\mathbb{Q}$. (2 Punkte)

Lösungsvorschlag. (a) Für $f := X^4 - 4X^2 + 2 \in \mathbb{Q}[X]$ gilt

$$f(x) = \left(\sqrt{2+\sqrt{2}}\right)^4 - 4\left(\sqrt{2+\sqrt{2}}\right)^2 + 2$$
$$= (2+\sqrt{2})^2 - 4(2+\sqrt{2}) + 2$$
$$= 4+4\sqrt{2}+2-8-4\sqrt{2}+2 = 0.$$

- (b) Es ist \mathbb{Z} ein faktorieller Ring, f primitiv in $\mathbb{Z}[X]$ (sogar normiert) und 2 ein Primelement in \mathbb{Z} , welches alle Nichtleitkoeffizienten von f teilt und dessen Quadrat den konstanten Koeffizienten von f nicht teilt. Nach dem Kriterium von Eisenstein ist daher f irreduzibel in ($\mathbb{Z}[X]$ und) $\mathbb{Q}[X]$.
- (c) Da f normiert und irreduzibel ist, ist f das Minimalpolynom von x. Also hat nach (a) das Minimalpolynom von x über $\mathbb Q$ den Grad 4. Jedes Polynom wie in (a) ist damit aber schon das Minimalpolynom von x über $\mathbb Q$.
- (d) Setze

$$a_1 := x = \sqrt{2 + \sqrt{2}}, \quad a_2 := -\sqrt{2 + \sqrt{2}}, \quad a_3 := \sqrt{2 - \sqrt{2}} \quad \text{und} \quad a_4 := -\sqrt{2 - \sqrt{2}}.$$

Man sieht sofort $a_2 < a_4 < 0 < a_3 < a_1$. Insbesondere sind a_1, a_2, a_3, a_4 paarweise verschieden. Durch ähnliche Rechnungen wie in (a) sieht man sofort $f(a_1) = f(a_2) = f(a_3) = f(a_4) = 0$.

- (e) Es gilt $\sqrt{2} = x^2 2 \in \mathbb{Q}(x)$, $xa_3 = a_1a_3 = \sqrt{2} \in \mathbb{Q}(x)$ und daher $a_3 = \frac{\sqrt{2}}{x} \in \mathbb{Q}(x)$. Damit gilt auch $a_2 = -x \in \mathbb{Q}(x)$ und $a_4 = -a_3 \in \mathbb{Q}(x)$. Also wird $\mathbb{Q}(x) = \mathbb{Q}(a_1, a_2, a_3, a_4)$ über \mathbb{Q} von den Nullstellen von f in \mathbb{C} erzeugt. Damit ist $\mathbb{Q}(x)$ der Zerfällungskörper von f über \mathbb{Q} .
- (f) Als Zerfällungskörper eines Polynoms aus $\mathbb{Q}[X]$ ist $\mathbb{Q}(x)|\mathbb{Q}$ eine normale Körpererweiterung. Ferner ist diese Körpererweiterung natürlich separabel, da \mathbb{Q} als Körper der Charakteristik 0 vollkommen ist.

- (g) Betrachte $\mathbb{Q}(x)$ als Teilkörper des algebraischen Abschlusses $\overline{\mathbb{Q}}$ von \mathbb{Q} . Da a_1,a_2,a_3,a_4 alle dasselbe Minimalpolynom über \mathbb{Q} haben, sind sie über \mathbb{Q} konjugiert, das heißt es gibt für jedes $i \in \{1,2,3,4\}$ ein $\varphi \in \operatorname{Aut}(\overline{\mathbb{Q}}|\mathbb{Q})$ mit $\varphi(a_i) = a_j$. Nach (f) ist aber $\mathbb{Q}(x)|\mathbb{Q}$ normal, das heißt $\varphi(\mathbb{Q}(x)) = \mathbb{Q}(x)$ für alle $\varphi \in \operatorname{Aut}(\overline{\mathbb{Q}}|\mathbb{Q})$. Daher gibt für jedes $i \in \{1,2,3,4\}$ ein $\varphi \in \operatorname{Aut}(\mathbb{Q}(x)|\mathbb{Q})$ mit $\varphi(a_i) = a_j$. Es reicht daher zu zeigen, dass ein Automorphismus φ der Körpererweiterung $\mathbb{Q}(x)|\mathbb{Q}$ schon durch $\varphi(x)$ bestimmt ist. Dies ist klar, denn sind $\varphi, \psi \in \operatorname{Aut}(\mathbb{Q}(x)|\mathbb{Q})$ mit $\varphi(x) = \psi(x)$, so liegt x im Zwischenkörper $F := \{a \in \mathbb{Q}(x) \mid \varphi(a) = \psi(a)\}$ von $\mathbb{Q}(x)|\mathbb{Q}$, das heißt es gilt $F = \mathbb{Q}(x)$, also $\varphi = \psi$.
- (h) " \supseteq " ist trivial. Zu " \subseteq ": Sei $\varphi \in \operatorname{Aut}(L|\mathbb{Q})$. Mit x ist dann auch $\varphi(x)$ eine Nullstelle von f. Daher gibt es ein $i \in \{1,2,3,4\}$ mit $\varphi(a_1) = a_i$. Dann gilt $\varphi = \varphi_i \in \{\varphi_1, \varphi_2, \varphi_3, \varphi_4\}$.
- (i) Es gilt $2 + \varphi_i(\sqrt{2}) = \varphi_i(2 + \sqrt{2}) = \varphi_i(a_1^2) = \varphi_i(a_1)^2 = a_i^2$ und daher $\varphi_i(\sqrt{2}) = a_i^2 2$. Also $\varphi_1(\sqrt{2}) = \sqrt{2}$, $\varphi_2(\sqrt{2}) = \sqrt{2}$, $\varphi_3(\sqrt{2}) = -\sqrt{2}$ und $\varphi_4(\sqrt{2}) = -\sqrt{2}$.
- (j) Es gilt $a_3\varphi_3(a_1) = \varphi_3(a_1)^2 = \varphi_3(a_1^2) = \varphi_3(2+\sqrt{2}) = 2+\varphi_3(\sqrt{2}) \stackrel{\text{(i)}}{=} 2-\sqrt{2}$ und daher $\varphi_3(a_1) = \frac{2-\sqrt{2}}{a_3} = \frac{a_3^2}{a_3} = a_3$. Weiter gilt $a_3\varphi_3(a_2) = \varphi_3(a_1)\varphi_3(a_2) = \varphi_3(a_1a_2) = \varphi_3(-2-\sqrt{2}) = -2-\varphi_3(\sqrt{2}) \stackrel{\text{(i)}}{=} -2+\sqrt{2}$ und daher $\varphi_3(a_2) = \frac{-2+\sqrt{2}}{a_3} = \frac{a_3a_4}{a_3} = a_4$. Schließlich gilt $a_3\varphi_3(a_3) = \varphi_3(a_1)\varphi_3(a_3) = \varphi_3(a_1a_3) = \varphi_3(\sqrt{2}) \stackrel{\text{(i)}}{=} -\sqrt{2}$ und daher $\varphi_3(a_3) = \frac{-\sqrt{2}}{a_3} = \frac{a_2a_3}{a_3} = a_2$. Da φ_3 als Automorphismus von Aut(L|Q) die Nullstellen a_1, a_2, a_3, a_4 von $f \in Q[X]$ permutiert, muss daher $\varphi_3(a_4) = a_1$ sein. Wir haben also $\varphi_3(a_1) = a_3, \ \varphi_3(a_3) = a_2, \ \varphi_3(a_2) = a_4$ und $\varphi_3(a_4) = a_1$. Wenn wir nun wie in der Vorlesung Aut(L|Q) mit einer Untergruppe der S_4 identifizieren, ist φ_3 ein Viererzykel in S_4 , nämlich $\varphi_3 = (1 \ 3 \ 2 \ 4)$. Damit gilt in Zykelschreibweise $\varphi_3^2 = (1 \ 2)(3 \ 4)$ und $\varphi_3^3 = (1 \ 4 \ 2 \ 3)$. Wegen der Eindeutigkeit von φ_i aus (g) folgt $\varphi_1 = \varphi_3^0 = 1$, $\varphi_2 = \varphi_3^2 = (1 \ 2)(3 \ 4)$, $\varphi_3 = (1 \ 3 \ 2 \ 4)$ und $\varphi_4 = \varphi_3^3 = (1 \ 4 \ 2 \ 3)$, was insbesondere auch die Frage beantwortet.
- (k) Nach (h) und dem, was wir in (j) gezeigt haben, gilt $\operatorname{Aut}(L|\mathbb{Q}) = \{\varphi_3^0, \varphi_3^1, \varphi_3^2, \varphi_3^3\}$ und # $\operatorname{Aut}(L|\mathbb{Q}) = 4$. Daher ist $\operatorname{Aut}(L|\mathbb{Q})$ zyklisch und somit $\operatorname{Aut}(L|\mathbb{Q}) \cong C_4$.
- (l) Nach (f) ist der Hauptsatz der Galoistheorie anwendbar und dieser sagt, dass die Zwischenkörper von $L|\mathbb{Q}$ genau die Fixkörper von Untergruppen von $\mathrm{Aut}(L|\mathbb{Q})=\{\varphi_3^0,\varphi_3^1,\varphi_3^2,\varphi_3^3\}$ sind. Die beiden trivialen Untergruppen $\{1\}$ und $\mathrm{Aut}(L|\mathbb{Q})$ haben also nach dem Hauptsatz der Galoistheorie natürlich die Fixkörper L und \mathbb{Q} . Die einzige nichttriviale Untergruppe ist $H:=\{1,\varphi_3^2\}=\{\varphi_1,\varphi_2\}$. Für ihren Fixkörper $F:=L^H$ gilt $[L:F]=[H:\{1\}]=\#H=2$. Da wir in (i) gezeigt haben, dass $\varphi_1(\sqrt{2})=\varphi_2(\sqrt{2})=\sqrt{2}$, gilt $\sqrt{2}\in L^H$ und damit $\mathbb{Q}(\sqrt{2})\subseteq L^H$. Da auch $[\mathbb{Q}(\sqrt{2}):\mathbb{Q}]=2$ gilt, folgt $L^H=\mathbb{Q}(\sqrt{2})$. Also gibt es genau drei verschiedene Zwischenkörper von $L|\mathbb{Q}$, nämlich \mathbb{Q} , $\mathbb{Q}(\sqrt{2})$ und L.

Bonusaufgabe 7 (12 Bonuspunkte). Sei L|K eine Körpererweiterung. Betrachte die multiplikativen Gruppen L^{\times} und K^{\times} sowie deren Quotientengruppe L^{\times}/K^{\times} .

(a) Gib eine Bijektion an zwischen L^{\times}/K^{\times} und der Menge \mathscr{U} der eindimensionalen Unterräume des K-Vektorraums L (mit Beweis).

Es sei nun L^{\times}/K^{\times} endlich und $L \neq K$.

(b) Zeige, dass *K* endlich ist.

(5 Punkte)

(c) Zeige, dass *L* endlich ist.

(2 Punkte)

Lösungsvorschlag. (a) Wir behaupten, dass

$$f: L^{\times}/K^{\times} \to \mathcal{U}, xK^{\times} \to Kx := \{ax \mid a \in K\} \quad (x \in L^{\times})$$

eine Bijektion ist. Hierbei ist für $x \in L^{\times}$ die Menge $xK^{\times} = \{ax \mid a \in K\}$ die zu x gehörige (Links- oder Rechts-)Nebenklasse von K^{\times} und Kx der von x aufgespannte eindimensionale K-Untervektorraum von L. Zur Wohldefiniertheit und Injektivität ist

$$xK^{\times} = yK^{\times} \iff Kx = Ky$$

zu zeigen für alle $x,y \in L^{\times}$ (Wohldefiniertheit ist dabei " \Longrightarrow " und Injektivität ist " \Leftarrow "). Dies ist praktisch offensichtlich, indem man für " \Longrightarrow " die Null auf beiden hinzufügt und sie für " \Leftarrow " auf beiden Seiten entfernt. Schließlich ist die Surjektivität von f klar.

(b) Da L^{\times}/K^{\times} nun als endlich vorausgesetzt ist, ist auch $\mathscr U$ nach (a) endlich. Für jedes $x \in L$ gibt es aber offensichtlich ein $U \in \mathscr U$ mit $x \in U$ (wähle U = Kx für $x \in L^{\times}$ und U = K für x = 0). Also gilt $L = \bigcup \mathscr U$. Der K-Vektorraum L ist also Vereinigung von $m := \#\mathscr U$ vielen Untervektorräumen $\neq L$ (beachte, dass jetzt $L \neq K$ vorausgesetzt ist). Nach einem Lemma aus der Vorlesung ist daher $\#K \leq m-1$. Insbesondere ist K endlich.

(c)
$$\#L^{\times} = [L^{\times} : K^{\times}] \#K^{\times} = (\#(L^{\times}/K^{\times})) \#K^{\times} < \infty$$