Übungsblatt 13 zur Algorithmischen Algebraischen Geometrie

Aufgabe 1. (3P) (Transitivität der algebraischen Unabhängigkeit I)

Sei K ein Körper und A eine K-Algebra. Seien $E \subseteq A$ und $F \subseteq A$ mit $E \cap F = \emptyset$. Zeige, dass $E \cup F$ genau dann algebraisch unabhängig ist, wenn gilt

- (a) E ist algebraisch unabhängig und
- (b) F ist K[E]-unabhängig (d.h. in der K[E]-Algebra A).

Aufgabe 2. (2P) (Transitivität der Algebraischen Unabhängigkeit II)

Sei L|K eine Körpererweiterung. Seien $E \subseteq L$ und $F \subseteq A$ mit $E \cap F = \emptyset$. Zeige, dass $E \cup F$ genau dann K-algebraisch unabhängig ist (d.h. in der K-Algebra L) wenn gilt:

- (a) E ist K-algebraisch unabhängig und
- (b) F ist K(E)-unabhängig (d.h. in der K(E)-Algebra L).

Aufgabe 3. (4P) (Ein Kriterium für algebraische Unabhängigkeit)

Sei L|K eine Körpererweiterung und $E\subseteq L$. Zeige, dass E genau dann K-algebraisch unabhängig ist, wenn kein $x\in E$ algebraisch über $K(E\setminus \{x\})$ ist.

Abgabe bis Mittwoch, den 3. Februar 2015, 11:44 Uhr in die Zettelkästen neben F411.