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§1 Boolean functions and the Fourier
expansion

§1.1 Boolean values and operations

In computer science, the two-element set of Boolean values

B = {FALSE, TRUE}

together with the unary operation NOT and binary operations like AND, OR, XOR
(exclusive or) are omnipresent. If one encodes FALSE by 0 and TRUE by 1, as it is
common in computer science, the XOR and AND operations become just addition and
multiplication in the finite two-element field

F2 = {0, 1}.

It is therefore common to work with the field F2 rather than with B. Perhaps unexpect-
edly, we will work however most of the time with the field of real numbers R instead
of F2. At first sight, this seems to complicate things since the addition is no longer the
important XOR operation. If we encode FALSE by the real number 0 and TRUE by the
real number 1 and if we have a Boolean-valued function f : D → {0, 1} ⊆ R defined on a
finite set D, then we can count the number of all x ∈ D mapped to TRUE by ∑x∈D f (x).
For such matters, we often work with

{0, 1} ⊆ R.

In fact, it turns out that most of the time still another model is more advantageous: We
will preferably use

{−1, 1} ⊆ R

with the perhaps counterintuitive convention that

−1 stands for TRUE and 1 for FALSE.

The advantages of working with {−1, 1} will become clear shortly. For the time being,
just note that a Boolean-valued function f : D → {−1, 1} ⊆ R defined on a finite set
D attains both truth values equally often if and only if ∑x∈D f (x) = 0. The reasons
for our choice of the counterintuitive convention that −1 stands for TRUE are not very
important but note that −1 = (−1)1 and 1 = (−1)0. Also note that in this way the
multiplication on {−1, 1} gets the XOR operation.
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Remark 1.1.1. In the following, we will freely move between our different boolean
models which are resumed in the following table:

B F2 = {0, 1} {0, 1} ⊆ R {−1, 1} ⊆ R

FALSE 0 0 1
TRUE 1 1 −1
NOT x 7→ 1 + x x 7→ 1− x x 7→ −x
AND · · (x, y) 7→ 1+x+y−xy

2
OR (x, y) 7→ x + y + xy (x, y) 7→ x + y− xy (x, y) 7→ −1+x+y+xy

2
XOR + (x, y) 7→ x + y− 2xy ·

Priority will be given to the models from right to left.

§1.2 Real-valued Boolean functions and their Fourier transform

Definition 1.2.1. A real-valued Boolean function is a function from {−1, 1}n to R where
n ∈ N0. The number n is called its number of input bits. A Boolean function is a function
from {−1, 1}n to {−1, 1}, in other words a real-valued Boolean function that is Boolean-
valued.

The previous definition should be understood in a flexible sense according to Re-
mark 1.1.1. Often, we might use a different model for truth values on the source and
the target. For example, a function from F6

2 to {0, 1} ⊆ R is a Boolean function on 6 bits.
The main aim of this lecture is to investigate Boolean functions. However, many con-
cepts generalize automatically to real-valued Boolean functions and the latter are also an
important tool.

Remark 1.2.2. Remember that {−1, 1}0 is a singleton whose only element is the empty
tuple () (which equals the empty map ∅→ {−1, 1} or the empty set ∅). A real-valued
Boolean function on 0 bits is thus given by a real number, and a Boolean function on 0
bits is given by a truth value.

Notation 1.2.3. Let n ∈N0.

(a) We write [n] := {1, . . . , n}.

(b) For S ⊆ [n], we introduce the monomial function

χS : {−1, 1}n → R, x 7→ xS := ∏
i∈S

xi.

(c) For any set A, we denote by

P(A) := {S | S ⊆ A}

its power set, i.e., the set of its subsets.
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(d) For sets A and B, we denote by

A4 B := (A \ B) ∪ (B \ A)

their symmetric difference.

(e) For x ∈ {−1, 1}n, we introduce

δx : {−1, 1}n → R, y 7→
{

1 if y = x,
0 otherwise.

(f) For S ⊆ [n], we introduce

δS : P([n])→ R, T 7→
{

1 if S = T,
0 otherwise.

(g) We write x ∼ {−1, 1}n to denote that x is a uniformly chosen random element from
{−1, 1}n. Equivalently, the n components of x are independently chosen to be 1
with probability 1

2 and −1 with probability 1
2 . We always write random variables

in boldface. Probabilities Pr and expectations E will always be with respect to a
uniformly random x ∼ {−1, 1}n unless otherwise specified. Thus if f : {−1, 1} →
R, then Ex[ f (x)] stands for 1

2n ∑x∈{−1,1}n f (x). We also often write just E[ f ] instead.

Lemma 1.2.4. Let n ∈N0 and S, T ∈P([n]). Then χSχT = χS4T.

Proof. For x ∈ {−1, 1}n, we have

(χSχT)(x) = χS(x)χT(x) = ∏
i∈S

xi ∏
i∈T

xi = ∏
i∈S4T

xi ∏
i∈S∩T

x2
i = ∏

i∈S4T
xi = χS4T(x).

Lemma 1.2.5. Let n ∈N0 and S ∈P([n]). Then

E[χS] = E
x∼{−1,1}n

[
∏
i∈S

xi

]
= δ∅(S) =

{
1 if S = ∅,
0 if S 6= ∅.

Proof. If S = ∅, then Ex[χS(x)] = E[1] = 1. Otherwise,

E
x

[
∏
i∈S

xi

]
= ∏

i∈S
E
xi
[xi]

because the random bits x1, . . . , xn are independant. But each of the factors Exi [xi] in the
above nonempty product is 1

2 1 + 1
2 (−1) = 0.
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Definition 1.2.6. Let n ∈ N0. We define a scalar product on the finite-dimensional real
vector space R{−1,1}n

by

〈 f , g〉 :=
1
2n ∑

x∈{−1,1}n

f (x)g(x) = E
x∼{−1,1}n

[ f (x)g(x)] = E[ f g]

for f , g ∈ R{−1,1}n
. Equipped with this scalar product, the vector space R{−1,1}n

be-
comes an euclidean space. It also becomes a normed vector space since the scalar prod-
uct induces a norm given by

‖ f ‖2 :=
√
〈 f , f 〉 =

√
E[ f 2]

for f ∈ R{−1,1}n
.

Proposition 1.2.7. Let n ∈N0. The family (χS)S⊆[n] of monomial functions is an orthonormal
basis of the euclidean vector space R{−1,1}n

.

Proof. Since #P([n]) = 2n = #{−1, 1}n = dim R{−1,1}n
, it is enough to show that

〈χS, χT〉 = δS(T)

for all S, T ∈P([n]). But this follows immediately from Lemmata 1.2.4 and 1.2.5.

We call (χS)S⊆[n] the Fourier basis of R{−1,1}n
. Our most important tool will be the

Fourier expansion of a real-valued Boolean function.

Proposition 1.2.8. Let n ∈N0. For every f : {−1, 1}n → R, there is a unique map

f̂ : P([n])→ R

such that

(1.1) f (x) = ∑
S⊆[n]

f̂ (S)xS

for all x ∈ {−1, 1}n. The map

F : R{−1,1}n → RP([n]), f 7→ f̂

is a vector space isomorphism.

Proof. Equation (1.1) can be rewritten f = ∑S⊆[n] f̂ (S)χS. The f̂ (S) are therefore just the
coefficients of f with respect to the basis (χS)S⊆[n] of R{−1,1}n

.

Definition 1.2.9. Let n ∈ N0 and f : {−1, 1}n → R. The representation (1.1) of f is
called the Fourier expansion of f . For S ⊆ [n], the real number f̂ (S) is called the Fourier
coefficient of f on S. The function f̂ is called the Fourier transform of f . The map F is
called the (Boolean) Fourier transform (on n bits). The degree of f is defined by

deg f :=

{
max

{
#S | S ⊆ [n], f̂ (S) 6= 0

}
if f 6= 0

−∞ if f = 0.
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By Proposition 1.2.7 and linear algebra, it is clear that the Fourier coefficient f̂ (S) of
f on S ⊆ [n] can be calculated by

f̂ (S) = 〈χS, f 〉 = E
x∼{−1,1}n

[
xS f (x)

]
.

Another orthonormal basis of the euclidean space {−1, 1}n is the family (2
n
2 δx)x∈{−1,1}n

of needle functions. Consider now the Fourier transform F and its scaled version

Fscaled = 2
n
2 F : R{−1,1}n → RP([n]), g 7→ 2

n
2 ĝ.

If f ∈ R{−1,1}n
, then the functions g := 2−

n
2 f and f̂ give the coordinates of f with re-

spect to the basis of needle functions and the Fourier basis, respectively, and Fscaled(g) =
f̂ . Hence Fscaled transforms coordinates with respect to the orthonormal basis (2

n
2 δx)x∈{−1,1}n

into coordinates with respect to the orthonormal basis (χS)S⊆[n]. In particular, Fscaled

is an orthogonal linear map with respect to the standard scalar products on R{−1,1}n
and

RP([n]) (which is different on R{−1,1}n
from the one we use). Hence

∑
x∈{−1,1}n

f (x)g(x) = ∑
S⊆[n]

2
n
2 f̂ (S)2

n
2 ĝ(S)

for all f , g ∈ R{−1,1}n
. This is

Plancherel’s Theorem. For any f , g : {−1, 1}n → R,

〈 f , g〉 = E[ f g] = ∑
S⊆[n]

f̂ (S)ĝ(S).

Of course, it can also be directly verified. A special case of this is

Parseval’s Theorem. For any f : {−1, 1}n → R,

‖ f ‖2
2 = 〈 f , f 〉 = E[ f 2] = ∑

S⊆[n]
f̂ (S)2.

In particular, if f : {−1, 1}n → {−1, 1} is a Boolean function, then ‖ f ‖2 = 1.

Example 1.2.10. Reconsidering the rightmost column of the table in Remark 1.1.1, we
see that indeed

‖ FALSE ‖2 =
√

12 = 1,

‖TRUE ‖2 =
√
(−1)2 = 1,

‖NOT ‖2 =
√
(−1)2 = 1,

‖AND ‖2 =

√(
1
2

)2

+

(
1
2

)2

+

(
1
2

)2

+

(
−1

2

)2

= 1,

‖OR ‖2 =

√(
−1

2

)2

+

(
1
2

)2

+

(
1
2

)2

+

(
1
2

)2

= 1 and

‖ XOR ‖2 =
√

12 = 1
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Of course, if n ≥ 1 is fixed, not every f : {−1, 1}n → R lying on the unit sphere is a
Boolean function since the unit sphere contains infinitely many points.

Example 1.2.11. Fix x ∈ {−1, 1}n. Since δ̂x(S) = 〈χS, δx〉 = Ey∼{−1,1}n [ySδx(y)] = xS

2n ,
the Fourier expansion of 2nδx is

2nδx = ∑
S⊆[n]

xSχS.

Definition 1.2.12. Given two Boolean functions f , g : {−1, 1}n → {−1, 1}, we define
their (relative Hamming) distance to be

dist( f , g) := Pr
x
[ f (x) 6= g(x)]

the fraction of inputs on which they disagree.

Proposition 1.2.13. The relative Hamming distance is a metric on the set of boolean functions
on n bits.

Proof. Let f , g, h : {−1, 1}n → {−1, 1}. Then it is clear that dist( f , g) ≥ 0, dist( f , g) =
0 ⇐⇒ f = g and dist( f , g) = dist(g, f ). Finally, dist( f , g) ≤ dist( f , h) + dist(h, g)
since

dist( f , g) = Pr
x
[ f (x) 6= g(x)] ≤ Pr

x
[ f (x) 6= h(x) or h(x) 6= g(x)]

≤ Pr
x
[ f (x) 6= h(x)] + Pr

x
[h(x) 6= g(x)] = dist( f , h) + dist(h, g)

The relative Hamming distance gives a nice interpretation of the scalar product be-
tween two Boolean functions, namely as a measure of how similar they are.

Proposition 1.2.14. If f , g : {−1, 1}n → {−1, 1},

〈 f , g〉 = Pr
x
[ f (x) = g(x)]− Pr

x
[ f (x) 6= g(x)] = 1− 2 dist( f , g).

Proof.

〈 f , g〉 = E
x∼{−1,1}n

[ f (x)g(x)]

= Pr
x
[ f (x)g(x) = 1]− Pr

x
[ f (x)g(x) = −1]

= Pr
x
[ f (x) = g(x)]− Pr

x
[ f (x) 6= g(x)]

= (1− Pr
x
[ f (x) 6= g(x)])− Pr

x
[ f (x) 6= g(x)] = 1− 2 dist( f , g)

Tentative Lecture Notes
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The mean of f : {−1, 1}n → R is E[ f ]. When f has mean 0, we say that it is unbiased,
or balanced. In the particular case where f : {−1, 1}n → {−1, 1} is a Boolean function,
its mean is E[ f ] = Pr[ f = 1]− Pr[ f = −1] and thus f is unbiased if and only if it attains
each truth value at exactly half of the points of {−1, 1}n. The next proposition shows
that a real-valued Boolean function f is unbiased if and only if its empty-set Fourier
coefficient is 0.

Proposition 1.2.15. Let f : {−1, 1}n → R. Then E[ f ] = f̂ (∅).

Proof. E[ f ] = E[1 f ] = 〈1, f 〉 = 〈χ∅, f 〉 = f̂ (∅)

The Fourier coefficient f̂ (∅) thus yields already an important global information on
f . This is an instance of the following more general idea behind the Fourier basis:
Given f : {−1, 1}n → {−1, 1}, each Fourier coefficient of f gives information on the
global behavior of f . The coefficients f̂ (S) for small sets S give the rough global behavior,
and the coefficients f̂ (S) for big S are responsible for the global fine tuning. The overall
hope is that the fine tuning is not so important for many Boolean functions appearing
in practice and one can therefore get a good idea of the global behavior of f by just
studying f̂ (S) for small sets S. In contrast to this, the coefficients with respect to the
basis (2

n
2 δx)x∈{−1,1}n of needle functions give only information about the local behavior of

f , namely about the values of f at individual points. The Fourier transform F converts
all the local information to global information since its scaled version Fscaled performs
the base change from the basis of needle functions to the Fourier basis.

Next we obtain formulas for the variance of a real-valued Boolean function (with the
same conventions as for the expectation and the probability).

Proposition 1.2.16. (a) The variance of f : {−1, 1}n → R is

Var[ f ] = E[( f − E[ f ])2] = E[ f 2]− E[ f ]2 = ‖ f − E[ f ]‖2
2

Parseval
= ∑

∅ 6=S⊆[n]
f̂ (S)2.

(b) For f : {−1, 1}n → {−1, 1}, we have

Var[ f ] = 1− E[ f ]2 = 4 Pr
x
[ f (x) = 1] Pr

x
[ f (x) = −1] ∈ [0, 1]

and this is 0 if and only if f is constant, and 1 if and only if f is unbiased.

Proof. (a) Var[ f ] = E[( f − E[ f ])2] equals on the one hand

E[ f 2 − 2 f E[ f ] + E[ f ]2] = E[ f 2]− 2 E[ f ]2 + E[ f ]2 = E[ f 2]− E[ f 2]

and on the other ‖ f − E[ f ]‖2
2. From Proposition 1.2.15 and Proposition 1.2.8, we get

f − E[ f ] = ∑
∅ 6=S⊆[n]

f̂ (S)χS

Version of Friday 21st April, 2017, 08:40
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and therefore by Parseval

‖ f − E[ f ]‖2
2 = ∑

∅ 6=S⊆[n]
f̂ (S)2.

(b)

Var[ f ]
(a)
= E[ f 2]− E[ f ]2 = E[1]− E[ f ]2 = 1− E[ f ]2

= (Pr
x
[ f (x) = 1] + Pr

x
[ f (x) = −1])2 − (Pr

x
[ f (x) = 1]− Pr

x
[ f (x) = −1])2

= 4 Pr
x
[ f (x) = 1] Pr

x
[ f (x) = −1] = 4a(1− a)

with a := Prx[ f (x) = 1] ∈ [0, 1]. The rest follows by discussing the graph of

[0, 1]→ R, b 7→ 4b(1− b).

Proposition 1.2.17. Let f : {−1, 1}n → {−1, 1}. Then

2ε ≤ Var[ f ] ≤ 4ε

where ε := min{dist( f , 1), dist( f ,−1)}.

Proof. Set a := dist( f , 1). Then dist( f ,−1) = Prx[ f (x) 6= −1] = 1− Prx[ f (x) 6= 1] =
1− dist( f , 1) = 1− a and by Proposition 1.2.16(b) Var[ f ] = 4(1− a)a. If a ≤ 1

2 , then
1− a ≥ 1

2 and 2ε = 2a = 4 1
2 a ≤ 4(1− a)a = Var[ f ] ≤ 4a = 4ε. If a ≥ 1

2 , then 1− a ≤ 1
2

and 2ε = 2(1− a) = 4(1− a) 1
2 ≤ 4(1− a)a = Var[ f ] ≤ 4(1− a).

By using Plancherel in place of Parseval, we get a generalization of Proposition 1.2.16(a)
to covariance:

Proposition 1.2.18. The covariance of f , g : {−1, 1}n → R is

Cov[ f , g] = E[( f − E[ f ])(g− E[g])] = E[ f g]− E[ f ] E[g] = ∑
∅ 6=S⊆[n]

f̂ (S)ĝ(S).

§1.3 Probability densities and convolution

Definition 1.3.1. Let D 6= ∅ be a finite set. A function f : D → R≥0 is called a (proba-

bility)
{

mass
density

}
function on D if ∑x∈D f (x) =

{
1

#D

}
. We write x ∼ f to denote that a

random element x from D is drawn from the associated probability distribution which

is defined by Prx∼ f [x = y] =

{
f (y)
f (y)
#D

}
for y ∈ D.

Tentative Lecture Notes
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Definition 1.3.2. The (Fourier) weight of f : {−1, 1}n → R on the set S ⊆ [n] is defined
to be the squared Fourier coefficient f̂ (S)2.

The Fourier weights of a Boolean function sum up to 1 by Parseval’s Theorem. If f is
a Boolean function, then f̂ 2 is thus a probability mass function on P([n]).

Definition 1.3.3. Given f : {−1, 1}n → {−1, 1}, the spectral sample for f is the probabil-
ity distribution in P([n]) with probability mass function f̂ 2.

The spectral samples of AND and OR are uniformly distributed on {∅, {1}, {2}, {1, 2}}
as can be seen from the table in Remark 1.1.1.

Definition 1.3.4. Let f : {−1, 1}n → R and 0 ≤ k ≤ n. The degree k part of f is

f=k := ∑
S⊆[n]
#S=k

f̂ (S)χS

and we call
‖ f=k‖2

2 = ∑
S⊆[n]
#S=k

f̂ (S)2

the (Fourier) weight of f at degree k. If f is a Boolean function, then

‖ f=k‖2
2 = Pr

S∼ f̂ 2
[#S = k].

We will also sometimes use notation like

f≤k := ∑
S⊆[n]
#S≤k

f̂ (S)χS

and call
‖ f≤k‖2

2 = ∑
S⊆[n]
#S≤k

f̂ (S)2

the weight of f in degree ≤ k.

Remark 1.3.5. If ϕ is a density function on {−1, 1}n and g : {−1, 1}n → R, then

E
y∼ϕ

[g(y)] = 〈ϕ, g〉 = E
x∼{−1,1}n

[ϕ(x)g(x)].

Definition 1.3.6. If ∅ 6= A ⊆ {−1, 1}n, we write ϕA for the density function associated

to the uniform distribution on A, i.e., ϕA(x) =

{
2n

#A if x ∈ A
0 if x ∈ {−1, 1}n \ A

. We typically

write y ∼ A rather than y ∼ ϕA [→ 1.2.3(g)].

Example 1.3.7. By Example 1.2.11, every Fourier coefficient of ϕ{(1,...,1)} is 1,
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Reminder 1.3.8. A commutative real algebra is a real vector space (V,+, ·) together with
a binary operation ◦ such that

• (V,+, ◦) is a commutative ring (with one) and

• (λ · x) ◦ y = λ · (x ◦ y) for all λ ∈ R and x, y ∈ V, i.e., the scalar multiplication
and the ring multiplication are compatible.

As mentioned in Proposition 1.2.8, the Fourier transform F is a vector space isomor-
phism from R{−1,1}n

to RP([n]). Now both R{−1,1}n
and RP([n]) are not just real vector

spaces but even commutative real algebras with the pointwise multiplication we have al-
ready used in the case of R{−1,1}n

. We now introduce on either of R{−1,1}n
and RP([n])

an alternative multiplication called convolution and denoted by ∗ that corresponds to
pointwise multiplication “on the other side of the Fourier transform”.

Definition 1.3.9. (a) The convolution of f , g : {−1, 1}n → R is defined by

f ∗ g := F−1((F ( f ))(F (g))).

(b) The convolution of F, G : P([n])→ R is defined by

F ∗ G := F ((F−1(F))(F−1(G))).

By construction, we have F ( f ∗ g) = F ( f )F (g) for all f , g : {−1, 1}n → R and
F−1(F ∗ G) = (F−1(F))(F−1(G)) for all F, G : P([n]) → R. Therefore the convolu-
tion makes each of R{−1,1}n

and RP([n]) into a commutative algebra and F is not just a
vector space isomorphism but even an algebra isomorphism (i.e., in addition a ring ho-
momorphism) if one takes the pointwise multiplication on one of R{−1,1}n

and RP([n])

and the convolution on the other. As this will be extremely important, we formulate
part of this observation in the following proposition:

Proposition 1.3.10. For all f , g, h : {−1, 1}n → R,

(a) f̂ ∗ g = f̂ ĝ

(b) f̂ ∗ ĝ = f̂ g

(c) ( f ∗ g) ∗ h = f ∗ (g ∗ h)

(d) ( f̂ ∗ ĝ) ∗ ĥ = f̂ ∗ (ĝ ∗ ĥ)

(e) f ∗ g = g ∗ f

(f) f̂ ∗ ĝ = ĝ ∗ f̂ .

Theorem 1.3.11. Consider the abelian groups {−1, 1}n with pointwise multiplication and
P([n]) with the symmetric difference [→ 1.2.3(d)]. Consider the group isomorphism

ι : {−1, 1}n →P([n]), x 7→ {i | xi = −1}

Tentative Lecture Notes
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and the natural algebra isomorphism

ι∗ : RP([n]) → R{−1,1}n
, F 7→ F ◦ ι.

Up to this isomorphism, the scaled version of the Fourier transform Fscaled = 2
n
2 F is its own

inverse, i.e.,
ι∗ ◦Fscaled ◦ ι∗ ◦Fscaled = id .

Proof. Let f : {−1, 1}n → R. We have to show 2nι∗(F (ι∗( f̂ ))) = f , i.e.,

2n
(̂̂f ◦ ι ◦ ι

)
= f .

Evaluate this in a fixed x ∈ {−1, 1}n. Then the claim becomes

2n ̂̂f ◦ ι({i | xi = −1}) = f (x).

We rewrite this as
2n〈χ{i|xi=−1}, f̂ ◦ ι〉 = f (x).

This becomes
2n E

y∼{−1,1}n
[χ{i|xi=−1}(y) f̂ ({i | yi = −1})] = f (x).

The crucial trick is now to observe

χ{i|xi=−1}(y) = (−1)#{i|xi=−1,yi=−1} = χ{i|yi=−1}(x)

for all y ∈ {−1, 1}n from which we get the equivalent formulation

2n E
y∼{−1,1}n

[χ{i|yi=−1}(x) f̂ ({i | yi = −1})] = f (x).

This is equivalent to

∑
S⊆[n]

χS(x) f̂ (S) = f (x)

which is clearly fulfilled due to

f (x) =

(
∑

S⊆[n]
f̂ (S)χS

)
(x) = ∑

S⊆[n]
χS(x) f̂ (S).

Corollary 1.3.12. The scaled version ι∗scaled := 2nι∗ : RP([n]) → R{−1,1}n
of the natural algebra

isomorphism ι∗ [→ 1.3.11] remains an algebra isomorphism if one takes the convolution (instead
of pointwise multiplication) on both sides.
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Proof. Let f , g : {−1, 1}n → R. We have to show 2n(ι∗)−1( f ∗ g) = (ι∗)−1( f ) ∗ (ι∗)−1(g).
By Definition 1.3.9, this means

2n(ι∗)−1(F−1((F ( f ))(F (g)))) = F ((F−1((ι∗)−1( f )))(F−1((ι∗)−1(g)))),

which becomes immediately

2n(F ◦ ι∗)−1((F ( f ))(F (g))) = F (((ι∗ ◦F )−1( f ))((ι∗ ◦F )−1(g))).

In terms of Fscaled = 2
n
2 F , this means

(Fscaled ◦ ι∗)−1((Fscaled( f ))(Fscaled(g))) =

Fscaled(((ι
∗ ◦Fscaled)

−1( f ))((ι∗ ◦Fscaled)
−1(g))).

But Fscaled ◦ ι∗ and ι∗ ◦Fscaled are both self-inverse by Theorem 1.3.11 so that this re-
duces to

(Fscaled ◦ ι∗)((Fscaled( f ))(Fscaled(g))) = Fscaled(((ι
∗ ◦Fscaled)( f ))((ι∗ ◦Fscaled)(g)))

which is clear.

Theorem 1.3.13. Let f , g : {−1, 1}n → R. Then

(a) ( f ∗ g)(x) = Ey∼{−1,1}n [ f (y)g(xy)] = Ey∼{−1,1}n [ f (xy)g(y)] for all x ∈ {−1, 1}n and

(b) ( f̂ ∗ ĝ)(S) = ∑T⊆[n] f̂ (T)ĝ(S4 T) = ∑T⊆[n] f̂ (S4 T)ĝ(T) for all S ⊆ [n].

Proof. (b) follows easily from the Fourier expansion since

( f̂ ∗ ĝ)(S) = f̂ g(S) = ∑
T,U⊆[n]
T4U=S

f̂ (T)ĝ(U)

for S ⊆ [n] because

f g =

(
∑

T⊆[n]
f̂ (T)χT

)(
∑

U⊆[n]
ĝ(U)χU

)
= ∑

S⊆[n]

 ∑
T,U⊆[n]
T4U=S

f̂ (T)ĝ(U)

 χS.

To prove (a), we start with a reformulation of (b), namely that

(F ∗ G)(S) = ∑
T⊆[n]

F(T)G(S4 T)

for all F, G ∈ RP([n]) and S ⊆ [n]. Using the group isomorphism ι : {−1, 1}n →P([n])
from Theorem 1.3.11, this means

(F ∗ G)(ι(x)) = ∑
y∈{−1,1}n

F(ι(y))G(ι(xy)),
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or in other words

(ι∗(F ∗ G))(x) = ∑
y∈{−1,1}n

(ι∗(F))(y)(ι∗(G))(xy),

for all F, G ∈ RP([n]) and x ∈ {−1, 1}n. Using ι∗scaled from Corollary 1.3.12, this can be
rewritten as

((ι∗scaled(F)) ∗ (ι∗scaled(G)))(x) = E
y∈{−1,1}n

[(ι∗scaled(F))(y)(ι∗scaled(G))(xy)]

for all F, G ∈ RP([n]) and x ∈ {−1, 1}n.

Corollary 1.3.14. Let ϕ be a probability density function on {−1, 1}n.

(a) If f : {−1, 1}n → R, then (ϕ ∗ f )(x) = Ey∼ϕ[ f (xy)] for all x ∈ {−1, 1}n.

(b) If ψ is also a probability density function on {−1, 1}n, then so is ϕ ∗ ψ, and if x ∼ ϕ and
y ∼ ψ are drawn independently, then xy ∼ ϕ ∗ ψ.

§1.4 Application: The test of Blum, Luby and Rubinfeld

Proposition 1.4.1. Let f : {−1, 1}n → {−1, 1} be a boolean function. Then the following are
equivalent:

(a) ∀x, y ∈ {−1, 1}n : f (xy) = f (x) f (y)

(b) ∃S ⊆ [n] : f = χS

Proof. (b) =⇒ (a) If S ⊆ [n] and f = χS, then f (x) f (y) = xSyS = (xy)S = f (xy) for
all x, y ∈ {−1, 1}n.

(a) =⇒ (b) Suppose (a) holds. For i ∈ {1, . . . , n}, let e(i) ∈ {−1, 1}n be defined by

e(i)j := 1 if j 6= i and e(i)i := −1. Set S := {i | f (e(i)) = −1}. Then for all x ∈ {−1, 1}n,

f (x) = f

 n

∏
i=1

xi=−1

e(i)

 (a)
=

n

∏
i=1

xi=−1

f (e(i)) = ∏
i∈S

xi=−1

(−1) = xS.

Remark 1.4.2. In the preceding proposition, consider f as a function Fn
2 → F2 according

to Remark 1.1.1. Then condition (a) becomes ∀x, y ∈ Fn
2 : f (x + y) = f (x) + f (y). This

implies f (0) = 0 and therefore ∀λ ∈ F2 : f (λx) = λ f (x). So condition (a) is equivalent
to f being F2-linear. Condition (b) becomes ∃S ⊆ [n] : ∀x ∈ Fn

2 : f (x) = ∑i∈S xi which
means that f has a matrix representation. Indeed, Proposition 1.4.1 and its proof are
known from linear algebra.
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Lemma 1.4.3. Consider the function h :
[
0, 1

4

]
→ R, x 7→ 3x− 10x2 + 8x3.

(a) h is strictly monotonically increasing on
[
0, 2−

√
2

4

]
with h(0) = 0 and h

(
2−
√

2
4

)
= 1

4 .

(b) h(x) ≥ 1
4 for all x ∈

[
2−
√

2
4 , 1

4

]
Proof. (a) h′(x) = 3 − 20x + 24x2 = 24

(
x− 5−

√
7

12

) (
x− 5+

√
7

12

)
for all x ∈

[
0, 1

4

]
,

h′(0) = 3 > 0, 2−
√

2
4 < 5−

√
7

12

(b) h(x)− 1
4 = 8

(
x− 2−

√
2

4

)
(x− 1

4 )
(

x− 2+
√

2
4

)
for all x ∈

[
0, 1

4

]
Lemma 1.4.4. Let f : {−1, 1}n → {−1, 1} be a boolean function. Then

Pr
x,y∼{−1,1}n

independent

[ f (xy) = f (x) f (y)] =
1
2
+

1
2 ∑

S⊆[n]
f̂ (S)3.

Proof.

Pr
x,y∼{−1,1}n

independent

[ f (xy) = f (x) f (y)] = Pr
x,y
[ f (x) f (y) f (xy) = 1]

= E
x,y

[
1
2
+

1
2

f (x) f (y) f (xy)
]
=

1
2
+

1
2

E
x
[ f (x) E

y
[ f (y) f (xy)]]

1.3.13
=

1
2
+

1
2

E
x
[ f (x)( f ∗ f )(x)] Plancherel

=
1
2
+

1
2 ∑

S⊆[n]
f̂ (S) f̂ ∗ f (S)

1.3.10
=

1
2
+

1
2 ∑

S⊆[n]
f̂ (S)3

Theorem 1.4.5 (robust version of 1.4.1). Let f : {−1, 1}n → {−1, 1} be a boolean function.
Consider the following conditions for ε ∈ R≥0:

(aε) Prx,y∼{−1,1}n

independent
[ f (xy) = f (x) f (y)] ≥ 1− ε

(bε) ∃S ⊆ [n] : dist( f , χS) ≤ ε

Then (bε) implies (a3ε), and conversely

• (aε) implies (bε) for all ε ≥ 0, and

• (a3ε−10ε2+8ε3) implies (bε) if ε < 2−
√

2
4 ≈ 0.146.
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Proof. The proof of (bε) =⇒ (a3ε) is a robust version of the corresponding part of the
proof of 1.4.1: Choose S ⊆ [n] with dist( f , χS) ≤ ε. Then

Pr
x,y∼{−1,1}n

independent

[ f (xy) = f (x) f (y)] ≥ Pr
x,y
[ f (xy) = χS(xy) & f (x) = χS(x) & f (y) = χS(y)]

= 1− Pr
x,y
[ f (xy) 6= χS(xy) or f (x) 6= χS(x) or f (y) 6= χS(y)]

≥ 1− Pr
x,y
[ f (xy) 6= χS(xy)]− Pr

x
[ f (x) 6= χS(x)]− Pr

y
[ f (y) 6= χS(y)]

1.3.14(b)
= 1− 3 Pr

x
[ f (x) 6= χS(x)]

1.2.12
= 1− 3 dist( f , χS) ≥ 1− 3ε.

For the proof of (a3ε−10ε2+8ε3) =⇒ (bε), the ideas of the proof of 1.4.1 do not help. We
have to use Lemma 1.4.4. Choose T ⊆ [n] minimizing δ := dist( f , χT). For all S ⊆ [n]
we have dist( f , χS) ≥ dist( f , χT) and therefore f̂ (S) ≤ f̂ (T) = 1− 2δ by 1.2.14. Hence
we have by Lemma 1.4.4 that

(∗) Pr
x,y
[ f (xy) = f (x) f (y)] ≤ 1

2
+

1
2
(1− 2δ) ∑

S⊆[n]
f̂ (S)2 =

1
2
+

1
2
(1− 2δ) = 1− δ.

We first suppose that ε ≥ 0 satisfies (aε) and we will show that δ ≤ ε. Now

1− ε
(aε)

≤ Pr
x,y∼{−1,1}n

independent

[ f (xy) = f (x) f (y)]
(∗)
≤ 1− δ

from which δ ≤ ε indeed follows.

Now suppose that ε ∈
[
0, 2−

√
2

4

)
fulfills (a3ε−10ε2+8ε3). We have to show again δ ≤ ε.

Using the function h from Lemma 1.4.3, we have then

1− h(ε) ≤ Pr
x,y
[ f (xy) = f (x) f (y)]

(∗)
≤ 1− δ,

i.e.,

δ ≤ h(ε)
ε< 2−

√
2

4
<

1.4.3(a)
h

(
2−
√

2
4

)
1.4.3(a)
=

1
4

.

For S ⊆ [n] with S 6= T, we have 〈χS, χT〉 = 0 and therefore dist(χS, χT) = 1
2 from

which it follows that

1− 2 dist( f , χS) = 2(dist(χS, χT)− dist( f , χS))
1.2.13
≤ 2 dist( f , χT) = 2δ.
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and therefore f̂ (S) ≤ 2δ. We now get

1− h(ε) ≤ Pr
x,y∼{−1,1}n

independent

[ f (xy) = f (x) f (y)]

1.4.4
=

1
2
+

1
2 ∑

S⊆[n]
f̂ (S)3

≤ 1
2
+

1
2
(1− 2δ)3 +

1
2 ∑

S⊆[n]
S 6=T

2δ f̂ (S)2

=
1
2
+

1
2
(1− 2δ)3 + δ ∑

S⊆[n]
S 6=T

f̂ (S)2

=
1
2
+

1
2
(1− 2δ)3 + δ(1− f̂ (T)2)

=
1
2
+

1
2
(1− 2δ)3 + δ(1− (1− 2δ)2)

=
1
2
+

1
2
(1− 2δ)3 + 4δ2 − 4δ3

= 1− 3δ + 10δ2 − 8δ3

= 1− h(δ),

i.e., h(δ) ≤ h(ε) < 1
4 and so by Lemma 1.4.3(b) we have δ < 2−

√
2

4 and therefore by
Lemma 1.4.3(a) δ ≤ ε.

Remark 1.4.6. (a) Proposition 1.4.1 is the special case of Theorem 1.4.5 where ε = 0.

(b) In Theorem 1.4.5, for small ε ≥ 0, the condition (a3ε−10ε2+8ε3) is just a little stronger
than (a3ε), i.e., the shown implication (a3ε−10ε2+8ε3) =⇒ (bε) is just a little weaker
than (a3ε) =⇒ (bε). For small ε, Theorem 1.4.4 proves thus almost equivalence of
(a3ε) and (bε).
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§2 Basic concepts and social choice

§2.1 Social choice functions

A Boolean function f : {−1, 1}n → {−1, 1} can be thought of as a voting rule or a social
choice function for an election with 2 candidates and n voters. The most familiar voting
rule is the majority function:

Definition 2.1.1. Let n ∈N0.

(a) For odd n, the majority function Majn : {−1, 1}n → {−1, 1} is defined by Majn(x) :=
sgn(x1 + · · ·+ xn) for all x ∈ {−1, 1}n.

(b) A function f : {−1, 1}n → {−1, 1} is called a weighted majority or (linear) threshold
function if there are a0, . . . , an ∈ R such that f (x) = sgn(a0 + a1x1 + . . . + anxn) for
all x ∈ {−1, 1}n.

(c) ANDn, ORn : {−1, 1}n → {−1, 1} are defined by

ANDn(x) = −1 :⇐⇒ x1 = . . . = xn = −1 and
ORn(x) = 1 :⇐⇒ x1 = . . . = xn = 1.

for all x ∈ {−1, 1}n [→ 1.1.1].

(d) For i ∈ [n], χi := χ{i} is called the i-th dictator function.

(e) For k ∈ N0, a function f : {−1, 1}n → {−1, 1} is called a k-junta if it depends on
at most k of its input coordinates, i.e., there is ` ∈ {0, . . . , k}, pairwise different
i1, . . . , i` ∈ [n] and g : {−1, 1}` → {−1, 1} such that f (x) = g(xi1 , . . . , xi`) for all
x ∈ {−1, 1}`.

(f) For odd n and for d ∈N0, the depth-d recursive majority of n function, denoted Maj⊗d
n ,

is the Boolean function of nd bits defined inductively by Maj⊗0
n (x) := x and

Maj⊗d+1
n (x(1), . . . , x(n)) := Majn(Maj⊗d

n (x(1)), . . . , Maj⊗d
n (x(n)))

for all x(1), . . . , x(n) ∈ {−1, 1}nd
. In particular, Maj⊗1

n = Majn for all odd n.

(g) For w, s ∈ N0, the tribes function of width w and size s, Tribesw,s : {−1, 1}ws →
{−1, 1}, is defined by

Tribesw,s(x(1), . . . , x(s)) := ORs(ANDw(x(1)), . . . , ANDw(x(s)))

for all x(1), . . . , x(n) ∈ {−1, 1}w.
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While the tribes function seems implausible, it appears in practice: Consider s nuclear
states (tribes) each having w military commanders. A nuclear war is started if and only
if in at least one of the nuclear states the military commanders are unanimously in
favor of throwing a nuclear bomb. Here are some natural properties of 2-candidate
social choice functions which may be considered desirable:

Definition 2.1.2. We say that a function f : {−1, 1}n → R is

• monotone if f (x) ≤ f (y) whenever x, y ∈ {−1, 1}n with xi ≤ yi for all i ∈ {−1, 1}n,

• odd if f (x) = − f (−x) for all x ∈ {−1, 1}n,

• unanimous if f (1, . . . , 1) = 1 and f (−1, . . . ,−1) = −1,

• symmetric if f (xσ(1), . . . , xσ(n)) = f (x) for all x ∈ {−1, 1}n and all σ ∈ Sn,

• transitive-symmetric if for all i, j ∈ [n] there is some σ ∈ Sn such that σ(i) = j and
f (xσ(1), . . . , xσ(n)) = f (x) for all x ∈ {−1, 1}n.

Example 2.1.3. Let n ∈N0. Consider the properties from Definition 2.1.2.

(a) For odd n, Majn has all properties and it is the the only monotone odd symmetric
Boolean function on n bits.

(b) Majn (for odd n), ANDn, ORn and χi (for i ∈ [n]) are Boolean linear threshold
functions.

(c) ANDn and ORn satisfy all properties except oddness for n 6= 1 and unanimity for
n = 0.

(d) The dictator functions satisfy the first three properties but for n ≥ 2 they do not
satisfy the last two.

(e) There are exactly 2n + 2 1-juntas on n bits, namely the n dictators, the n negated
dictators and the two constant Boolean functions.

(f) For d ∈ N0 and for odd n, Maj⊗d
n satisfies all properties except, if n ≥ 3 and d ≥ 2,

symmetry.

(g) For w, s ∈ N≥2, Tribesw,s is monotone, not odd, unanimous, not symmetric but
transitive-symmetric.

§2.2 Influences and derivatives

Definition 2.2.1. For x ∈ {−1, 1}n and i ∈ [n], we set

x⊕i := (x1, . . . , xi−1,−xi, xi+1, . . . , xn).
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We say that the coordinate i ∈ [n] is pivotal for f : {−1, 1}n → {−1, 1} on input x if
f (x) 6= f (x⊕i). The influence of coordinate i ∈ [n] on f : {−1, 1}n → {−1, 1} is defined
to be the probability that i is pivotal on a random input:

Infi[ f ] := Pr
x∼{−1,1}n

[ f (x) 6= f (x⊕i)].

Example 2.2.2. Let n ∈N. Then Infi[ORn] = Infi[ANDn] = 21−n. For odd n,

Infi[Majn] =
(

n− 1
n−1

2

)
21−n.

Definition 2.2.3. For x ∈ {−1, 1}n, i ∈ [n] and b ∈ {−1, 1}, we set

x(i 7→b) := (x1, . . . , xi−1, b, xi+1, . . . , xn).

For i ∈ [n], we introduce the i-th (discrete) derivative operator

Di : R{−1,1}n → R{−1,1}n
, f 7→

(
x 7→ f (x(i 7→1))− f (x(i 7→−1))

2

)
.

The derivative operators just introduced are vector space endomorphisms. If

f : {−1, 1}n → {−1, 1}

is a Boolean function, then x 7→ Di f (x)2 is the 0-1-indicator for whether i is pivotal for
f on x ∈ {−1, 1}n and we conclude that Infi[ f ] = Ex∼{−1,1}n [Di f (x)2]. We take this
formula as a definition for the influences of real valued Boolean functions.

Definition 2.2.4. We generalize Definition 2.2.1 to functions f : {−1, 1}n → R by defin-
ing the influence of coordinate i ∈ [n] on f to be

Infi[ f ] := E
x∼{−1,1}n

[Di f (x)2] = ‖Di f ‖2
2.

Definition 2.2.5. We say that coordinate i ∈ [n] is relevant for f : {−1, 1}n → R if
Infi[ f ] > 0, i.e., f (x(i 7→1)) 6= f (x(i 7→−1)) for at least one x ∈ {−1, 1}n.

The discrete derivative operators are quite analogous to the usual partial derivatives.

Remark 2.2.6. Let i ∈ [n] and f : {−1, 1}n → R.

(a) Di f = ∑S⊆[n]
i∈S

f̂ (S)χS\{i}

(b) For i ∈ [n], Infi[ f ] = ∑S⊆[n]
i∈S

f̂ (S)2.

Proposition 2.2.7. Let f : {−1, 1}n → {−1, 1} be monotone and i ∈ [n]. Then

Infi[ f ] = f̂ ({i}).
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Proof.

Infi[ f ] 2.2.1
= Pr

x∼{−1,1}n
[ f (x) 6= f (x⊕i)] = Pr

x∼{−1,1}n
[ f (x(i 7→1)) 6= f (x(i 7→−1))]

f monotone
= E

x∼{−1,1}n

[
f (x(i 7→1))− f (x(i 7→−1))

2

]
2.2.3
= E[Di f ] = D̂i f (∅)

2.2.6(a)
= f̂ ({i})

Proposition 2.2.8. Let f : {−1, 1}n → {−1, 1} be transitive-symmetric and monotone and
i ∈ [n]. Then

Infi[ f ] ≤ 1√
n

.

Proof. 1 = ∑S⊆[n] f̂ (S)2 ≥ ∑n
i=1 f̂ ({i})2 2.2.7

= ∑n
i=1 Infi[ f ]2

f transitive-symmetric
= n Infi[ f ]2.

Definition 2.2.9. Let i ∈ [n]. The i-th
{

expectation
Laplacian

}
operator is the vector space endo-

morphism
{

Ei
Li

}
of R{−1,1}n

defined by

Ei f (x) := E
y∼{−1,1}

[ f (x1, . . . , xi−1, y, xi+1, . . . , xn)]

for all f : {−1, 1}n → R and x ∈ {−1, 1}n and

Li f := f − Ei f

for all f : {−1, 1}n → R.

Remark 2.2.10. Let f : {−1, 1}n → R and x ∈ {−1, 1}n.

(a) Ei f (x) = f (x)+ f (x⊕i)
2

(b) f (x) = Ei f (x) + xiDi f (x) = Ei f (x) + Li f (x)

(c) Ei f (x) = ∑S⊆[n]
i/∈S

f̂ (S)xS

(d) Li f (x) = ∑S⊆[n]
i∈S

f̂ (S)xS

(e) 〈 f , Li f 〉 = 〈Li f , Li f 〉 = Infi[ f ]

Definition 2.2.11. [→ 2.2.4] The total influence of f : {−1, 1}n → R is defined to be

I[ f ] :=
n

∑
i=1

Infi[ f ].
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Definition 2.2.12. Let f : {−1, 1}n → {−1, 1}. The sensitivity sens f (x) of f at x is de-
fined to be the number of pivotal coordinates for f on input x [→ 2.2.1].

Remark 2.2.13. For f : {−1, 1}n → {−1, 1}, I[ f ] = Ex[sens f (x)]. [→ 2.2.1]

Theorem 2.2.14. Fix n ∈N0. For f : {−1, 1}n → {−1, 1},

E
x
[#{i ∈ [n] | xi = f (x)}] = n

2
+

1
2

n

∑
i=1

f̂ ({i})

and, for odd n, this is maximized if and only if f = Majn.

Proof. Let f : {−1, 1}n → {−1, 1}. The left hand side equals

n

∑
i=1

1 + Ex[ f (x)xi]

2
=

n
2
+

1
2

n

∑
i=1
〈 f , χ{i}〉

which equals the right hand side. Moreover,

1
2

n

∑
i=1

f̂ ({i}) = E
x
[ f (x)(x1 + · · ·+ xn)] ≤ E

x
[|x1 + · · ·+ xn|]

with equality if and only if f (x) = sgn(x1 + · · · + xn) for all x ∈ {−1, 1}n with x1 +
· · ·+ xn 6= 0. If n is odd, then x1 + · · ·+ xn 6= 0 for all x ∈ {−1, 1}n.

Corollary 2.2.15. [→ 2.2.7] Let n ∈N be odd. Among all monotone f : {−1, 1}n → {−1, 1},
Majn is the only one with maximal total influence.

Definition 2.2.16. [→ 2.2.3, 2.2.9] We introduce the (discrete) gradient operator

∇ : R{−1,1}n → (Rn){−1,1}n
, f 7→

x 7→

D1 f (x)
...

Dn f (x)




and the Laplacian operator L := ∑n
i=1 Li : R{−1,1}n → R{−1,1}n

.

These are of course linear maps.

Remark 2.2.17. [→ 2.2.10] Let f : {−1, 1}n → R.

(a) L f = ∑S⊆[n](#S) f̂ (S)χS

(b) 〈 f , L f 〉 = I[ f ]

(c) I[ f ] = ∑S⊆[n](#S) f̂ (S)2 = ∑n
k=0 k‖ f=k‖2

2 [→ 1.3.4]

Remark 2.2.18. Let f : {−1, 1}n → {−1, 1} and x ∈ {−1, 1}n.

(a) ‖∇ f (x)‖2 = sens f (x)
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(b) L f (x) = f (x) sens f (x)

(c) I[ f ] = ES∼ f̂ 2 [#S] [→ 1.3.3]

Proposition 2.2.19 (Poincaré inequality). Let f : {−1, 1}n → R. Then Var[ f ] ≤ I[ f ].

Proof. Var[ f ]
1.2.16(a)
= ∑S⊆[n]

S 6=∅
f̂ (S)2 ≤ ∑S⊆[n](#S) f̂ (S)2 2.2.17(c)

= I[ f ]

§2.3 Noise stability

Reminder 2.3.1. Consider random bits x ∼ {−1, 1} and y ∼ {−1, 1} both drawn uni-
formly from {−1, 1}, but this time not necessarily independently (e.g., one could draw
x ∼ {−1, 1} and then set y := x). The joint probability distribution of x and y (i.e., the
distribution of (x, y)) is given by λ := Pr[x = −1 = y] ∈ [0, 1

2 ] since

λ + Pr[x = −1 & y = 1] = Pr[x = −1] =
1
2

and analogously λ + Pr[x = 1 & y = −1] = 1
2 . Actually, one sees immediately that

each λ := Pr[x = −1 = y] ∈ [0, 1
2 ] is realized by a unique probability distribution on

{−1, 1}2. We have E[x] = 0 = E[y] and therefore

Cov[x, y] = E [(x− E[x]) (y− E[y])] = E[xy],

Var[x] = E[(x− E[x])2] = 1 and similarly Var[y] = 1. Therefore the correlation of x and
y is

Corr[x, y] =
Cov[x, y]√

Var[x]Var[y]
= Cov[x, y] = E[xy]

= Pr[ f (x) = f (y)]− Pr[ f (x) 6= f (y)] = 2λ− (1− 2λ) = 4λ− 1 ∈ [−1, 1].

The joint probability distribution of x and y is thus uniquely determined by the corre-
lation Corr[x, y] of x and y which can take arbitrary values between −1 and 1.

Definition 2.3.2. Fix $ ∈ [−1, 1]. If two random x, y ∈ {−1, 1} are chosen in such a
way that the n pairs (x1, y1), . . . , (xn, yn) are independant, both x and y are distributed
uniformly on {−1, 1}n and for each i ∈ [n], the joint distribution of xi and yi is the one
with correlation $ [→ 2.3.1], then we call x and y $-correlated.

Definition 2.3.3. Let x ∈ {−1, 1}n. For all $ ∈ [0, 1], we write y ∼ N$(x) to denote that
y ∈ {−1, 1}n is chosen at random as follows: For i ∈ [n] independently,

yi :=

{
xi with probability $

uniformly random with probability 1− $.
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For all $ ∈ [−1, 0], we set N$(x) := N−$(−x). If $ ∈ [−1, 1] such that y ∼ N$(x), we
say that y is a $-reliable version of x. Thus, if $ ∈ [−1, 1], we get a y ∼ N$(x) by setting

yi :=

{
xi with probability 1

2 +
1
2 $

−xi with probability 1
2 −

1
2 $

for each i ∈ [n] independently.

Lemma 2.3.4. Let $ ∈ [−1, 1]. Suppose that x ∼ {−1, 1}n is drawn uniformly at random
and then y ∼ N$(x) is chosen as a random $-reliable version of x. Then x and y are $-
correlated.

Proof. Fix i ∈ [n]. We have to show E[xi] = 0 = E[yi] and E[xiyi] = $. It is trivial
that E[xi] = 0. From Definition 2.3.3, we get E[yi] = ( 1

2 +
1
2 $) E[xi] + ( 1

2 −
1
2 $) E[−xi] =

0+ 0 = 0 and E[xiyi] = ( 1
2 +

1
2 $) E[x2

i ] + ( 1
2 −

1
2 $) E[−x2

i ]) = ( 1
2 +

1
2 $)+ ( 1

2 −
1
2 $)(−1) =

$.

Definition 2.3.5. For f : {−1, 1}n → R and $ ∈ [−1, 1], the noise stability of f at $ is

Stab$[ f ] := E
x,y

$-correlated

[ f (x) f (y)].

If f : {−1, 1}n → {−1, 1}, we have

Stab$[ f ] = Pr
x,y

$-corr.

[ f (x) = f (y)]− Pr
x,y

$-corr.

[ f (x) 6= f (y)] = 2 Pr
x,y

$-corr.

[ f (x) = f (y)]− 1.

Definition 2.3.6. For f : {−1, 1}n → {−1, 1} and δ ∈ [0, 1], we write NSδ[ f ] for noise
sensitivity of f at δ, defined to be the probability that f (x) 6= f (y) when x ∼ {−1, 1}n

is uniformly random and y is formed from x by reversing each bit independently with
probability δ (so that E[xy] = (1− δ) E[xx] + δ E[x(−x)] = 1− δ− δ = 1− 2δ). In other
words,

NSδ[ f ] =
1
2
− 1

2
Stab1−2δ[ f ].

Example 2.3.7. The constant functions±1 have noise stability 1 at each $ ∈ [−1, 1]. The
dictator functions χ{i} satisfy Stab$[χ{i}] = $ for all $ ∈ [−1, 1] and i ∈ [n] (equiva-
lently NSδ[χ{i}] = δ for all δ ∈ [0, 1] and i ∈ [n]). More generally,

Stab$[χS] = E
x,y

$-corr.

[xSyS] = E
x,y

$-corr.

[
∏
i∈S

(xiyi)

]
= ∏

i∈S
E

xi ,yi
[xiyi] = ∏

i∈S
$ = $#S,

where we used the fact that the bit pairs (xi, yi) are independent across i to convert the
expectation of a product into a product of expectations.

Version of Friday 21st April, 2017, 08:40



28

Definition 2.3.8. Let $ ∈ [−1, 1]. The noise operator with parameter $ is the vector space
endomorphism T$ of R{−1,1}n

defined by

T$ f (x) := E
y∼N$(x)

[ f (y)]

for all f : {−1, 1}n → R and x ∈ {−1, 1}n.

Proposition 2.3.9. For $ ∈ [−1, 1] and f : {−1, 1}n → R,

T$ f = ∑
S⊆[n]

$#S f̂ (S)χS =
n

∑
k=0

$k f=k.

Proof. By linearity, it is enough to show T$χS = $#SχS for all $ ∈ [−1, 1] and S ⊆ [n]
which follows from

T$χS(x) = E
y∼N$(x)

[yS] = ∏
i∈S

E
y∼N$(x)

[yi] = ∏
i∈S

($xi) = $#SχS(x).

Here we used the fact that for y ∼ N$(x) the bits yi are independent and satisfy E[yi] =

( 1
2 +

1
2 $)xi + ( 1

2 −
1
2 $)(−xi) = $xi.

Proposition 2.3.10. Let $ ∈ [−1, 1] and f : {−1, 1}n → R. Then

Stab$[ f ] = 〈 f , T$ f 〉.

Proof.

Stab$[ f ] 2.3.5
=

2.3.4
E

x∼{−1,1}n

y∼N$(x)

[ f (x) f (y)] = E
x

[
f (x) E

y∼N$(x)
[ f (y)]

]

Corollary 2.3.11. Let $ ∈ [−1, 1]. For all f : {−1, 1}n → R, we have

Stab$[ f ] = ∑
S⊆[n]

$#S f̂ (S)2 =
n

∑
k=0

$k‖ f=k‖2
2.

In particular,
Stab$[ f ] = E

S∼ f̂ 2
[$#S]

for all f : {−1, 1}n → {−1, 1}.

Proposition 2.3.12. Suppose that $ ∈ (0, 1) and f : {−1, 1}n → {−1, 1} is unbiased. Then

Stab$[ f ] ≤ $,

with equality if and only if f ∈ {χ{i} | i ∈ [n]} ∪ {−χ{i} | i ∈ [n]}.
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Proof. Since f is an unbiased Boolean function, we have ∑n
k=1 ‖ f=k‖2

2 = 1 and

Stab$[ f ] =
n

∑
k=1
‖ f=k‖2

2$k ≤
n

∑
k=1
‖ f=k‖2

2$ = $,

by 2.3.11 with equality if and only if ‖ f=k‖2
2 = 0 for all k ∈ {2, . . . , n}.1

Proposition 2.3.13. For f : {−1, 1}n → R,

d
d$

Stab$[ f ]
∣∣∣
$=0

= ‖ f=1‖2
2,

d
d$

Stab$[ f ]
∣∣∣
$=1

= I[ f ].

Proof. Use 2.3.11, in case of the second claim together with 2.2.17(c).

Definition 2.3.14. [→ 2.2.4, 2.2.11] For f : {−1, 1}n → R, $ ∈ [0, 1] and i ∈ [n], we
define the $-stable influence of coordinate i on f

Inf($)i [ f ] := Stab$[Di f ] 2.3.10
= 〈Di f , T$Di f 〉 2.3.9

=
2.2.6(a)

∑
S⊆[n]

i∈S

$#S−1 f̂ (S)2

and the $-stable total influence of f

I($)[ f ] :=
n

∑
i=1

Inf($)i [ f ] =
n

∑
k=1

k$k−1‖ f=k‖2
2

2.3.11
=

d
d$

Stab$[ f ].

As $ increases from 0 to 1, Inf($)i [ f ] increases from Inf(0)i [ f ] = f̂ ({i})2 to Inf(1)i [ f ] 2.3.8
=

‖Di f ‖2
2

2.2.4
= Infi[ f ] for any f : {−1, 1}n → R and i ∈ [n]. Consequently, at the same

time I($)[ f ] increases from I(0)[ f ] = ‖ f=1‖2
2 to I(1)[ f ] 2.2.11

= I[ f ]. For $ ∈ (0, 1), we
are not aware of an especially natural combinatorial meaning of the $-stable influence.
However, we will see later that the stable influences are technically very useful. One
reason for this is that every function f : {−1, 1}n → {−1, 1} has only a few “stably-
influental” coodinates.

Proposition 2.3.15. Suppose f : {−1, 1}n → R has Var[ f ] ≤ 1 (e.g., if f is Boolean). Let
δ, ε ∈ (0, 1]. Then I := {i ∈ [n] | Inf(1−δ)

i [ f ] ≥ ε} has at most 1
δε elements.

Proof. We have I(1−δ)[ f ] ≥ ε #I. It is therefore enough to show that I(1−δ)[ f ] ≤ 1
δ . We

show in fact that δ I(1−δ)[ f ] ≤ Var[ f ]. Comparing 1.2.16 with 2.3.14, it suffices to show
that kδ(1− δ)k−1 ≤ 1 for all k ∈ {1, . . . , n}. This follows by discussing the graph of

[0, 1]→ R, t 7→ kt(1− t)k−1.

1Now the reader concludes with a little argument also used as at the end of the proof of 2.4.3. In future
versions of this script, one might want to formulate a suitable lemma.
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It is good to think of the elements of the set I in this proposition as the “notable” coor-
dinates for the function f . The monomial function χ[n] has n coordinates with influence

1 [→ 2.2.6] but has no “notable” coordinate in this sense as soon as Inf(1−δ)
i [χ[n]] =

(1− δ)n−1 < ε, i.e., as soon as n is large. The intuition becomes quite clear when one
discusses χ[n] as a voting rule. This voting rule maximizes theoretically the influence
of each voter [→ 2.2.1] and yet in practice the voters would consider that they have no
influence, at least if n is big, for a couple of reasons one of which is that small noise
would lead to a quite random outcome of the election.

§2.4 Application: Arrow’s Theorem

When there are just 2 candidates, the majority rule seems to possess about all of the
mathematical properties that one ideally could expect from a voting rule [→ 2.1.2, 2.1.3,
2.2.15]. Unfortunately, as soon as there are 3 or more candidates, the problem of social
choice becomes much more difficult. For example, suppose we have three candidates
A, B and C and each of the n voters has a ranking of them. How should we aggregate
these preferences to produce a winning candidate? Condorcet proposed to conduct the
three pairwise elections A versus B, B versus C and C versus A and to hope that this
produces a Condorcet winner, i.e., a candidate winning both pairwise elections in which
he participates. Suppose 1 stands for a preference for the first candidate and −1 for
a preference of the second candidate in such a pairwise election. Then we encode a
ranking of an individual voter by a 3-tuple of consistent preferences, i.e., by an element
of the set

R := {(1, 1,−1), (1,−1,−1), (−1, 1,−1), (−1, 1, 1), (1,−1, 1), (−1,−1, 1)}

having 3! = 6 elements. For example (1, 1,−1) stands for the ranking where A is first,
B second and C third.

Theorem 2.4.1. Consider a 3-candidate Condorcet election using the same voting rule f : {−1, 1}n →
{−1, 1} for each pairwise election. If each of the n voters chooses uniformly and independently
one of the 3! = 6 candidate rankings, then the probability of a Condorcet winner is precisely
3
4 −

3
4 Stab− 1

3
[ f ].

Proof. Let x, y, z ∈ {−1, 1}n be the votes for the elections A versus B, B versus C and
C versus A, i.e., the (xi, yi, zi) are chosen uniformly from R and independently across i.
The function

g : {−1, 1}3 → {0, 1}, w 7→ 3
4
− 1

4
w1w2 −

1
4

w1w3 −
1
4

w2w3

is the 0-1-indicator function for R. The probability that there is a Condorcet winner is
thus

E[g( f (x), f (y), f (z))] =
3
4
− 1

4
E[ f (x) f (y)]− 1

4
E[ f (x) f (z)]− 1

4
E[ f (y) f (z)].
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Since E[xi] = 0 = E[yi] and E[xiyi] = 2
6 −

4
6 = − 1

3 for each i, we see that x and y
are (− 1

3 )-correlated in the sense of 2.3.2 so that E[ f (x) f (y)] = Stab− 1
3
[ f ] by Definition

2.3.5. Similarly, E[ f (x) f (z)] = E[ f (y) f (z)] = Stab− 1
3
[ f ] and the proof is complete.

Corollary 2.4.2. In a 3-candidate Condorcet election using f : {−1, 1}n → {−1, 1}, the prob-
ability of a Condorcet winner is at most 7

9 +
2
9‖ f=1‖2

2.

Proof. From Theorem 2.3.11, we have that the probability in question is

3
4
− 3

4
Stab− 1

3
[ f ] =

3
4
− 3

4

(
‖ f=0‖2

2 −
1
3
‖ f=1‖2

2 +
1
9
‖ f=2‖2

2 −
1
27
‖ f=3‖2

2 + . . .
)

≤ 3
4

(
1 +

1
3
‖ f=1‖2

2 +
1
27
‖ f=3‖2

2 +
1

243
‖ f=5‖2

2 + . . .
)

≤ 3
4

(
1 +

1
3
‖ f=1‖2

2 +
1
27

(‖ f=3‖2
2 + ‖ f=5‖2

2 + . . .)
)

≤ 3
4

(
1 +

1
3
‖ f=1‖2

2 +
1
27

(1− ‖ f=1‖2
2)

)
=

7
9
+

2
9
‖ f=1‖2

2.

Corollary 2.4.3 (Arrow’s Theorem). Suppose f : {−1, 1}n → {−1, 1} is a unanimous vot-
ing rule used in a 3-candidate Condorcet election. If there is always a Condorcet winner, then f
must be a dictatorship.

Proof. If there is always a Condorcet winner, then 1 ≤ 7
9 + 2

9‖ f=1‖2
2 ≤ 7

9 + 2
9‖ f ‖2

2 =
7
9 + 2

9 = 1 and thus ‖ f=1‖2
2 = 1 = ‖ f ‖2

2. Hence f = f=1. We leave it to the reader to
show that f must then be a dictator or a negated dictator. Since f is unanimous, f is a
dictator.2

2This is the same argument as at the end of the proof of 2.3.12. In future versions of this script, one might
want to formulate a suitable lemma.
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§3 Spectral structure and learning

§3.1 Low degree spectral concentration

Definition 3.1.1. We say that the Fourier spectrum of f : {−1, 1}n → R is ε-concentrated
on degree up to k if ‖ f>k‖2

2 ≤ ε [→ 1.3.4]. For f : {−1, 1}n → {−1, 1} we can express this
condition using the spectral sample [→ 1.3.3]: PrS∼ f̂ 2 [#S > k] ≤ ε.

Proposition 3.1.2. Let f : {−1, 1}n → R and suppose ε > 0. Then the Fourier spectrum of f
is ε-concentrated on degree up to I[ f ]

ε .

Proof. First consider the special case where I[ f ] = 0. Then Var[ f ] = 0 by the Poincaré
inequality 2.2.19. This implies that f is constant by 1.2.16. Then ‖ f>0‖2

2 = 0 ≤ ε. Now

consider the case where I[ f ] > 0. From 2.2.17(c) it follows that I[ f ]
ε

∥∥∥ f≥ I[ f ]
ε

∥∥∥2

2
≤ I[ f ].

Thus ‖ f
> I[ f ]

ε

‖2
2 ≤ ‖ f≥ I[ f ]

ε

‖2
2 ≤ ε.

Proposition 3.1.3. For any f : {−1, 1}n → {−1, 1} and δ ∈ (0, 1
2 ], the Fourier spectrum of

f is ε-concentrated on degree up to 1
δ for ε := 2

1−e−2 NSδ[ f ] ≤ 3 NSδ[ f ].

Proof. Consider the function ϕ :
(
0, 1

2

]
→ R, t 7→ 1− (1− 2t)

1
t . We have

ϕ(t) = 1− e
log(1−2t)

t

and therefore

ϕ′(t) = e
log(1−2t)

t
t 1

1−2t (−2)− log(1− 2t)
t2

for all t ∈ (0, 1
2 ). Introducing g :

[
0, 1

2

)
→ R, t 7→ − 2t

1−2t − log(1− 2t), it follows that

sgn ϕ′(t) = − sgn g(t)

for all t ∈
(
0, 1

2

)
. Because of g′(t) = −2(1−2t)−4t

(1−2t)2 + 2
1−2t = − 4t

(1−2t)2 ≤ 0 for t ∈
[
0, 1

2

)
and g(0) = 0, g is pointwise positive. Hence ϕ is monotonically increasing on (0, 1

2 ).
Because of

lim
t→ 1

2

ϕ(t) = lim
t→ 1

2

(
1− e

log(1−2t)
t

)
= 1 = 1− 02 = ϕ

(
1
2

)
,

33



34

ϕ is moreover continuous. Therefore ϕ is monotonically decreasing on its whole do-
main

(
0, 1

2

]
. Now

2 NSδ[ f ] 2.3.6
= 1− Stab1−2δ[ f ] 2.3.11

= 1− E
S∼ f̂ 2

[(1− 2δ)#S] = E
S∼ f̂ 2

[1− (1− 2δ)#S]

≥ (1− (1− 2δ)
1
δ ) Pr

S∼ f̂ 2

[
#S ≥ 1

δ

]
≥ (1− e−2) Pr

S∼ f̂ 2

[
#S ≥ 1

δ

]
where for the last inequality we use that ϕ is monotonically increasing and that

lim
t→0

ϕ(t) = 1− e−2.

Lemma 3.1.4. For all f : {−1, 1}n → R with f 6= 0, we have [→ 1.2.9]

Pr
x
[ f (x) 6= 0] ≥ 1

2deg f .

Proof. We prove by induction on d ∈ N0 that for all n ∈ N0 and f : {−1, 1}n → R of
degree d, we have Prx[ f (x) 6= 0] ≥ 1

2d .
d = 0 For all n ∈ N0 and f : {−1, 1}n → R of degree 0, we have Prx[ f (x) 6= 0] =

1 = 1
20 .

d− 1→ d (d ∈N) Let n ∈ N0 and let f : {−1, 1}n → R be of degree d. Choose
i ∈ [n] and g, h : {−1, 1}n−1 → R such that

f (x) = g(x1, . . . , xi−1, xi+1, . . . , xn−1) + h(x1, . . . , xi−1, xi+1, . . . , xn−1)xi

for all x ∈ {−1, 1}n and deg h = d− 1. WLOG i = n. Now we have

Pr
x
[ f (x) 6= 0] =

1
2

Pr
x∼{−1,1}n−1

[ f (x,−1) 6= 0] +
1
2

Pr
x∼{−1,1}n−1

[ f (x, 1) 6= 0]

=
1
2

Pr
x∼{−1,1}n−1

[g(x)− h(x) 6= 0] +
1
2

Pr
x∼{−1,1}n−1

[g(x) + h(x) 6= 0]

≥ 1
2

Pr
x∼{−1,1}n−1

[g(x)− h(x) 6= 0 or g(x) + h(x) 6= 0]

≥ 1
2

Pr
x∼{−1,1}n−1

[h(x) 6= 0]
induction
≥

hypothesis

1
2
· 1

2d−1 =
1
2d .

Proposition 3.1.5. Let d ∈ N0, f : {−1, 1}n → {−1, 1} be of degree ≤ d and i ∈ [n]. Then
Infi[ f ] is either 0 or at least 21−d.

Proof. Infi[ f ] 2.2.1
=

2.2.3
Prx[Di f (x) 6= 0] is zero if Di f = 0 and ≥ 1

2deg(Di f ) otherwise. By 2.2.6,

deg(Di f ) ≤ (deg f )− 1 ≤ d− 1.
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Lemma 3.1.6. Let f : {−1, 1}n → {−1, 1}. Then I[ f ] ≤ deg f .

Proof.

I[ f ]
2.2.17(c)
=

n

∑
k=0

k‖ f=k‖2
2 =

deg f

∑
k=0

k‖ f=k‖2
2 ≤ (deg f )

deg f

∑
k=0
‖ f=k‖2

2

= (deg f )
n

∑
k=0
‖ f=k‖2

2 = (deg f )‖ f ‖2
2 = deg f

Theorem 3.1.7. Let d ∈ N0 and suppose f : {−1, 1}n → {−1, 1} has degree ≤ d. Then f is
a d2d−1-junta [→ 2.1.1(e)].

Proof. Let k ∈ {0, . . . , n} denote the number of relevant coordinates for f [→ 2.2.5]. By
Remark 2.2.6(b), we have to show k ≤ d2d−1. This follows from

k21−d 3.1.5
≤

n

∑
i=1

Infi[ f ] 2.2.11
= I[ f ]

3.1.6
≤ deg f ≤ d.

§3.2 Subspaces and decision trees

Definition 3.2.1. [→ 1.2.6] We will use the norms defined on R{−1,1}n
and RP([n]) by

‖ f ‖∞ := max{| f (x)| | x ∈ {−1, 1}n},
‖ f̂ ‖∞ := max{| f̂ (S)| | S ⊆ [n]},
‖ f ‖1 := ∑

x∈{−1,1}n

| f (x)| and

‖ f̂ ‖1 := ∑
S⊆[n]

| f̂ (S)|

for all f : {−1, 1}n → R.

Definition 3.2.2. Let ε ∈ R and f : {−1, 1}n → R. We say that f̂ is ε-granular if f̂ (S) is
an integer multiple of ε for all S ⊆ [n].

Definition and Proposition 3.2.3. Let n ∈N0 and let K be a field. For each subspace U
of the K-vector space Kn, we define the subspace

U⊥ := {x ∈ Kn | ∀y ∈ U :
n

∑
i=1

xiyi = 0}

of Kn. Then for any subspace U of Kn, we have dim(U) + dim(U⊥) = n and

U⊥⊥ := (U⊥)⊥ = U.
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Proof. Let U be a subspace of Kn and choose an m ∈N0 and a matrix A ∈ Km×n whose
rows form a basis of U. Then U⊥ = ker A and thus

dim(U) + dim(U⊥) = m + dim ker A = rk A + dim ker A = n.

For each x ∈ U, we have ∑n
i=1 xiyi = ∑n

i=1 yixi = 0 for all y ∈ U⊥ and thus x ∈ U⊥⊥.
This shows U ⊆ U⊥⊥. But U and U⊥⊥ have the same dimension and are therefore
equal since dim(U) + dim(U⊥) = n = dim(U⊥) + dim(U⊥⊥).

Proposition 3.2.4. Let n ∈ N0. Consider the vector space Fn
2 over the field F2 = {0, 1}.

Consider the natural maps {−1, 1}n ι←− Fn
2

ι′−→P([n]) defined by

the i-th component of ι(x) equals −1 ⇐⇒ xi = 1 ⇐⇒ i ∈ ι′(x)

for all x ∈ Fn
2 and i ∈ [n]. These maps are group isomorphisms [→ 1.3.11]. Let U be a subspace

of Fn
2 of codimension k := n− dim U and let v ∈ Fn

2 . For the the 0-1-indicator function

1ι(v+U) : {−1, 1}n → {0, 1} ⊆ R

of ι(v + U) ⊆ {−1, 1}n, we have for all S ⊆ [n]

1̂ι(v+U)(S) =

{
(ι(v))S2−k if S ∈ (ι′(U))⊥,
0 otherwise.

Hence ϕι(v+U) = ∑S∈ι′(U⊥)(ι(v))
SχS where ϕι(v+U) is the density function associated to the

uniform distribution on ι(v + U) from 1.3.6. We have {S ⊆ [n] | 1̂ι(v+U)(S) 6= ∅} = 2k,

1̂ι(v+U) is 2−k-granular, ‖1̂ι(v+U)‖∞ = 2−k and ‖1̂ι(v+U)‖1 = 1.

Proof. Choose a basis u1, . . . , uk of U⊥. Then

w ∈ v + U ⇐⇒ w− v ∈ U ⇐⇒ w + v ∈ U 3.2.3⇐⇒ v + w ∈ U⊥⊥

⇐⇒ ∀i ∈ [k] : (ι(v + w))ι′(ui) = 1

for all w ∈ Fn
2 . Hence

2k1ι(v+U)(x) = 2k ∏k
i=1

(
1
2 +

1
2 (ι(v + ι−1(x)))ι′(ui)

)
= ∑I⊆[n] ∏i∈I(ι(v + ι−1(x)))ι′(ui)

ι′ group hom.
= ∑I⊆[n](ι(v + ι−1(x)))ι′(∑i∈I ui)

= ∑λ1,...,λk∈F2
(ι(v + ι−1(x)))ι′(λ1u1+...+λkuk)

u1,...,uk basis
= ∑y∈U⊥(ι(v + ι−1(x)))ι′(y)

= ∑S∈ι′(U⊥)(ι(v + ι−1(x)))S

ι group hom.
= ∑S∈ι′(U⊥)(ι(v)ι(ι

−1(x)))S

= ∑S∈ι′(U⊥)(ι(v)x)S

= ∑S∈ι′(U⊥)(ι(v))
SxS

for all x ∈ {−1, 1}n. The rest is easy.
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Definition 3.2.5. A decision tree T is a representation of a real-valued Boolean function
f : {−1, 1}n → R. It consists of a rooted binary tree in which the internal nodes are
labeled by coordinates i ∈ [n], the outgoing edges of each internal node are labeled −1
and 1, and the leaves are labeled by real numbers. We insist that no coordinate i ∈ [n]
appears more than once on any root-to-leaf path.

On input x ∈ Fn
2 , the tree T constructs a computation path from the root node to a leaf.

Specifically, when the computation path reaches an internal node labeled by coordinate
i ∈ [n] we say that T queries xi. The computation path then follows the outgoing edge
labeled by xi. The output of T (and hence f ) on input x is the label of the leaf reached
by the computation path.

The size s of a decision tree is the total number of leaves. The depth k of T is the
maximum length of any root-to-leaf path (where you count its number of edges or,
equivalently, the number of its internal nodes). Given f : {−1, 1}n → R, we write
DT( f ) (respectively, DTsize( f )) for the least depth (respectively, size) of a decision tree
computing f .

Proposition 3.2.6. Let f : {−1, 1}n → R be computable by a decision tree of size s and depth
k. Then

(a) deg f ≤ k,

(b) #{S ⊆ [n] | f̂ (S) 6= 0} ≤ s2k ≤ 4k,

(c) ‖ f̂ ‖1 ≤ s‖ f ‖∞ ≤ 2k‖ f ‖∞ and

(d) f̂ is 2−k-granular if f ({−1, 1}n) ⊆ Z.

Proof. Easy.

Lemma 3.2.7. If k, n ∈ N0 and f : {−1, 1}n → {−1, 1} is a Boolean function computed
by a decision tree T with exactly s leafs whose connecting path to the root hat at least k
edges, then 2k‖ f≥k‖2

2 ≤ s.

Proof. Induction on k. For k = 0, we have 2k‖ f≥k‖2
2 = ‖ f≥k‖2

2 = ‖ f ‖2
2 = 1 ≤ s. Now

consider k ∈ N and suppose the claim is already proven for k − 1 instead of k. If T
consists only of its root, then f is constant so that we have 2k‖ f≥k‖2

2 = 0 = s. From now
on suppose that the root of T is an internal node and denote by Tb the decision subtree
of T whose root is connected to the root of T by the edge labeled with b ∈ {−1, 1}. In
particular n ≥ 1 and WLOG the root of T is labeled by coordinate 1. Then Tb computes
fb : {−1, 1}n−1 → {−1, 1}, (x2, . . . , xn) 7→ f (b, x2, . . . , xn) for each b ∈ {−1, 1}. Denote
by sb the number of leafs of Tb whose connecting path to the root of Tb has at least k− 1
edges. By induction hypothesis, we have 2k−1‖( fb)≥k−1‖2

2 ≤ sb for each b ∈ {−1, 1}.
Now

f (x) =
(

1− x1

2

)
f−1(x2, . . . , xn) +

(
1 + x1

2

)
f1(x2, . . . , xn)
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for all x ∈ Rn. Defining

g : {−1, 1}n → R,

x 7→
(

1− x1

2

)
( f−1)≥k−1(x2, . . . , xn) +

(
1 + x1

2

)
( f1)≥k−1(x2, . . . , xn),

we obviously have that f≥k = g≥k and thus ‖ f≥k‖2
2 = ‖g≥k‖2

2 ≤ ‖g‖2
2. Moreover,

2k‖ f≥k‖2
2 = 2k‖g≥k‖2

2 ≤ 2k‖g‖2
2 =

2k E
x



(
1− x1

2

)2

( f−1)≥k−1(x2, . . . , xn))
2+

2
(

1− x1

2

)(
1 + x1

2

)
( f−1)≥k−1(x2, . . . , xn))

2( f1)≥k−1(x2, . . . , xn))
2+(

1 + x1

2

)2

( f1)≥k−1(x2, . . . , xn))
2]


= 2k

(
1
2
‖( f−1)≥k−1‖2

2 +
1
2
‖( f1)≥k−1‖2

2

)
= 2k−1‖( f−1)≥k−1‖2

2 + 2k−1‖( f1)≥k−1‖2
2 ≤ s−1 + s1 = s.

Theorem 3.2.8. Let f : {−1, 1}n → {−1, 1} be computable by a decision tree of size s and let
ε ∈ (0, 1]. Then the spectrum of f is ε-concentrated on degree up to log2

( s
ε

)
[→ 3.1.1].

Proof. Setting k := blog2

( s
ε

)
c ∈ N0, we have to show that ‖ f≥k+1‖2

2 = ‖ f>k‖2
2 ≤ ε.

From log2

( s
ε

)
≤ k + 1, we obtain s

ε ≤ 2k+1. It therefore suffices to show that

‖ f≥k+1‖2
2 ≤

s
2k+1 .

This follows from 3.2.7.
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