Tom-Lukas Kriel María López Quijorna Markus Schweighofer

Real Algebraic Geometry I – Exercise Sheet 2

Exercise 1 (4P).

(a) Let *A* be a commutative ring, $m \in \mathbb{N}_0$ and $g_1, ..., g_m \in A$. Show that the set

$$T := \sum_{\alpha \in \{0,1\}^m} \left(\sum A^2 \prod_{i=1}^m g_i^{\alpha_i} \right)$$

is the smallest preorder of *A* containing $g_1, ..., g_m$. We say that *T* is finitely generated (generated by $g_1, ..., g_m$).

(b) Let $T \subseteq \mathbb{R}[X_1, ..., X_n]$ be a finitely generated preorder and $I \subseteq \mathbb{R}[X_1, ..., X_n]$ an ideal. Show that T + I is also a finitely generated preorder.

Exercise 2 (6P).

- (a) Let $s \in \sum \mathbb{R}[X]^2$ and $a \in \mathbb{R}$ with s(a) = 0. Show that $(X a)^2 | s$ in $\mathbb{R}[X]$.
- (b) Let $f, g \in \mathbb{R}[X]$ be polynomials of degree 1. Analyze under which circumstances the set

$$\sum \mathbb{R}[X]^2 + \sum \mathbb{R}[X]^2 f + \sum \mathbb{R}[X]^2 g$$

is a preorder.

Hint for (b): Try to reduce the question to finitely many cases. This can be done by looking at a change of coordinates induced by an appropriate ring automorphism of $\mathbb{R}[X]$.

Exercise 3 (6P). Let *A* be the ring of continuous functions from \mathbb{R} to \mathbb{R} . Answer the following questions:

- (a) Is any continuous function from \mathbb{R} to $\mathbb{R}_{\geq 0}$ a square in the ring *A*?
- (b) Is there an embedding of ordered sets from $\{-\infty\} \cup \mathbb{R} \cup \{\infty\}$ (with its natural ordering) into the set of all preorders of *A* (ordered by inclusion)?
- (c) Is there a preorder *P* of *A* with $P \cap -P = \{0\}$ and $P \cup -P = A$?

Please submit until Thursday, November 10, 2016, 11:44 in the box named RAG I, Number 10, near to the room F411.