Real Algebraic Geometry I - Exercise Sheet 3

Exercise 1 (4P). Let $f \in \mathbb{Q}[X]$ be a monic polynomial of degree 3. Write

$$
f=\left(X-a_{1}\right)\left(X-a_{2}\right)\left(X-a_{3}\right)
$$

with $a_{1}, a_{2}, a_{3} \in \mathbb{C}$. Characterize in terms of $d:=\left(a_{1}-a_{2}\right)\left(a_{2}-a_{3}\right)\left(a_{1}-a_{3}\right) \in \mathbb{C}$ when the splitting field $\mathbb{Q}\left(a_{1}, a_{2}, a_{3}\right)$ of f is real.
Hint: Show first that $d^{2} \in \mathbb{Q}$ either by using Galois theory or by relating d^{2} to the coefficients of f.

Exercise 2 (4P). Consider the field of rational functions $L:=\mathbb{R}(T)$ in the indeterminate T together with its order P_{0+} introduced in Example 1.3.8. We now consider the subfield $K=\mathbb{R}\left(T^{2}\right)$ of L and its unique order \leq making (K, \leq) into an ordered subfield of $\left(L, P_{0+}\right)$. Show that
(a) L is an algebraic extension of K.
(b) $K \cap\{x \in L \mid T<x<2 T\}=\varnothing$
(c) For $f:=X^{4}-5 T^{2} X^{2}+4 T^{4} \in K[X]$ one has $f \geq 0$ on K but not on L.

Exercise 3 (6P +2 BP).

(a) Let (K, P) be an ordered field. Show that

$$
Q:=\{f \in K(X) \mid \exists \varepsilon \in P \backslash\{0\}: \forall x \in K:(0<x<\varepsilon \Longrightarrow f(x) \in P)\}
$$

is the unique order of $K(X)$ extending P and satisfying

$$
\{a \in K \mid a-X \in Q\}=P \backslash\{0\}
$$

(b) Construct an order Q on $\mathbb{R}(X, Y)$ such that for all $f \in \mathbb{R}[X, Y]$ we have:

$$
f(0,0) \in \mathbb{R}_{>0} \Longrightarrow f \in Q .
$$

Try to find Q for which you can give an algorithm which determines if an $f \in$ $\mathbb{R}(X, Y)$ is in Q or not and could be effected by a computer it it could calculate with real numbers.
(c) (Bonus) One can show that an ordered set (A, \preceq) exists such that A is uncountable but $\{b \in A \mid b \prec a\}$ is countable for every $a \in A$. Show that there exists a unique order \leq on $K:=\mathbb{R}\left(X_{a} \mid a \in A\right)$ such that for all $a, b \in A$ with $a \prec b$ we have $\left\{r \in \mathbb{R} \mid r>X_{a}\right\}=\mathbb{R}_{>0}$ and

$$
\left\{f \in K\left[X_{a}\right] \mid f>X_{b}\right\}=\left\{f \in K\left[X_{a}\right] \mid f>0\right\} .
$$

Show that in K every Cauchy sequence is eventually constant.

Please submit until Thursday, November 17, 2016, 11:44 in the box named RAG I, Number 10, near to the room F411.

