## Real Algebraic Geometry I - Exercise Sheet 4

Exercise 1 (4P). Show that there exists a Euclidean field that is not real closed.
Exercise $2(4 \mathrm{P})$. Let $(R, P)$ be an ordered field. Show that the following is equivalent:
(a) $R$ is real closed.
(b) The intermediate value theorem for polynomials holds in $(R, P)$ : If $f \in R[X]$ and $a, b \in R$ such that $a \leq_{p} b$ and $\operatorname{sgn}_{p}(f(a)) \neq \operatorname{sgn}_{p}(f(b))$, then there is $c \in K$ with $a \leq_{p} c \leq_{p} b$ and $f(c)=0$.
(c) If $(L, Q)$ is an ordered extension field of $(R, P)$ and $L \mid R$ is algebraic, then $R=L$.

Exercise 3 (4P).
(a) Let $R$ be a real closed field and $K$ a subfield of $R$ that is (relatively) algebraically closed in $R$. Show that $K$ is also a real closed field.
(b) Show that there exists a countable real closed field.

Exercise 4 (4P). Let $R$ be a real closed field and suppose that $f \in R[X]$ that has no roots in $R(\mathrm{i}) \backslash R$. Show that the derivative $f^{\prime}$ has again no roots in $R(\mathrm{i}) \backslash R$ unless it is zero.

Please submit until Thursday, November 24, 2016, 11:44 in the box named RAG I, Number 10, near to the room F411.

