Real Algebraic Geometry I – Exercise Sheet 6

Exercise 1 (8P). Let *R* be a real closed field. Suppose $a_0, \ldots, a_d \in R$, $a_d \neq 0$, the polynomial $\sum_{i=0}^{d} a_i X^i \in R[X]$ is real-rooted and $j \in \{0, \ldots, d-2\}$ with $a_j = a_{j+1} = 0$. Show that $a_0 = \ldots = a_{j-1} = 0$ in two ways:

- (a) Use the rule of Descartes for real-rooted polynomials together with elementary combinatorics.
- (b) Use the intermediate value theorem and the relation between the position and the multiplicities of the roots of a real-rooted polynomial and its derivative.

Exercise 2 (6P). Let *R* be a real closed field, $a, b \in R$ and $f := X^3 + aX + b \in R[X]$.

(a) Show with the Hermite-method that f is real-rooted if and only if

$$(\frac{a}{3})^3 + (\frac{b}{2})^2 \le 0.$$

- (b) Show $-4a^3 27b^2 = (a_1 a_2)^2(a_1 a_3)^2(a_2 a_3)^2$ where a_1, a_2, a_3 are the roots of *f*. In the case $R = \mathbb{R}$ and $f \in \mathbb{Q}[X]$, compare the result of (a) with Exercise 1 on Sheet 3.
- (c) Show that f has three distinct roots in R if and only if

$$\left(\frac{a}{3}\right)^3 + \left(\frac{b}{2}\right)^2 < 0.$$

(d) How can we find out if an arbitrary monic polynomial *f* of degree 3 has exactly 3 roots in *R*?

Exercise 3 (4P). Let *R* be a real closed field. Consider polynomials $f, g \in R[X]$, where *f* is monic and $r \in R$. Show that there is an invertible matrix $P \in R^{\deg(f) \times \deg(f)}$ such that $H(f,g) = P^T H(f(X+r), g(X+r))P$ where f(X+r) and g(X+r) arise from *f* and *g* by substituting *X* by X + r.

Please submit until Thursday, December 8, 2016, 11:44 in the box named RAG I, Number 10, near to the room F411.