Real Algebraic Geometry I - Exercise Sheet 6

Exercise 1 (8P). Let R be a real closed field. Suppose $a_{0}, \ldots, a_{d} \in R, a_{d} \neq 0$, the polynomial $\sum_{i=0}^{d} a_{i} X^{i} \in R[X]$ is real-rooted and $j \in\{0, \ldots, d-2\}$ with $a_{j}=a_{j+1}=0$. Show that $a_{0}=\ldots=a_{j-1}=0$ in two ways:
(a) Use the rule of Descartes for real-rooted polynomials together with elementary combinatorics.
(b) Use the intermediate value theorem and the relation between the position and the multiplicities of the roots of a real-rooted polynomial and its derivative.

Exercise 2 (6P). Let R be a real closed field, $a, b \in R$ and $f:=X^{3}+a X+b \in R[X]$.
(a) Show with the Hermite-method that f is real-rooted if and only if

$$
\left(\frac{a}{3}\right)^{3}+\left(\frac{b}{2}\right)^{2} \leq 0
$$

(b) Show $-4 a^{3}-27 b^{2}=\left(a_{1}-a_{2}\right)^{2}\left(a_{1}-a_{3}\right)^{2}\left(a_{2}-a_{3}\right)^{2}$ where a_{1}, a_{2}, a_{3} are the roots of f. In the case $R=\mathbb{R}$ and $f \in \mathbb{Q}[X]$, compare the result of (a) with Exercise 1 on Sheet 3.
(c) Show that f has three distinct roots in R if and only if

$$
\left(\frac{a}{3}\right)^{3}+\left(\frac{b}{2}\right)^{2}<0
$$

(d) How can we find out if an arbitrary monic polynomial f of degree 3 has exactly 3 roots in R ?

Exercise 3 (4P). Let R be a real closed field. Consider polynomials $f, g \in R[X]$, where f is monic and $r \in R$. Show that there is an invertible matrix $P \in R^{\operatorname{deg}(f) \times \operatorname{deg}(f)}$ such that $H(f, g)=P^{T} H(f(X+r), g(X+r)) P$ where $f(X+r)$ and $g(X+r)$ arise from f and g by substituting X by $X+r$.

Please submit until Thursday, December 8, 2016, 11:44 in the box named RAG I, Number 10, near to the room F411.

