Real Algebraic Geometry I - Exercise Sheet 7

Exercise 1 (4P). For which algebraically closed fields C does there exist a real closed subfield R of C with $C=R(\dot{\mathrm{i}})$?

Exercise 2 (Bonus 4BP).
(a) Show that the field of rational functions $\mathbb{Q}(X)$ has an Archimedean order.
(b) Is it true that all real closed fields R_{1} and R_{2} with $R_{1}(\dot{i}) \cong R_{2}(\dot{\mathrm{i}})$ are isomorphic?

Exercise 3 (4P). Prove the following statement or provide a counterexample: Let $f \in$ $\mathbb{Q}[X]$ with $f(x) \geq 0$ for all $x \in \mathbb{Q}$. Then $f(x) \geq_{K} 0$ for all ordered fields $\left(K, \leq_{K}\right)$ and all $x \in K$.

Exercise 4 (4P). Let R be real closed field. Show that the semialgebraic subsets of R are exactly the finite unions of sets of the following form:

$$
\{a\} \text { and }(b, c)_{R} \quad(a \in R, b, c \in R \cup\{ \pm \infty\})
$$

Exercise 5 (4P). Let K be a Euclidean field, $n \in \mathbb{N}_{0},\left(a_{i j}\right)_{1 \leq i, j \leq n} \in S K^{n x n}$ and

$$
q:=\sum_{i, j=1}^{n} a_{i j} X_{i} X_{j} \in K\left[X_{1}, \ldots, X_{n}\right]
$$

a quadratic form with of rank r. For $A_{k}:=\left(a_{i j}\right)_{1 \leq i, j \leq k} \in S K^{k x k}$, suppose

$$
d_{k}:=\operatorname{det}\left(A_{k}\right) \neq 0 \text { for } k \in\{0, \ldots, r\}
$$

(in particular $d_{0}=\operatorname{det}(\varnothing)=1$). Show with the help of 1.6.1 (f), that there exist $\lambda_{1}, \ldots, \lambda_{r} \in K^{\times}$and linear forms $\ell_{1}, \ldots, \ell_{r} \in K\left[X_{1}, \ldots, X_{n}\right]$ with $q=\sum_{k=1}^{r} \lambda_{k} \ell_{k}^{2}$ satisfying the following conditions:
(a) $\ell_{k} \in X_{k}+K\left[X_{k+1}, \ldots, X_{n}\right]$ for $k \in\{1, \ldots, r\}$
(b) $\operatorname{sgn}\left(\lambda_{1} \cdots \lambda_{k}\right)=\operatorname{sgn}\left(d_{k}\right)$ for $k \in\{0, \ldots, r\}$

Deduce

$$
\operatorname{sg} q=r-2 \sigma\left(\sum_{i=0}^{r} d_{i} T^{i}\right)
$$

where T is a variable so that $\sigma\left(\sum_{i=0}^{r} d_{i} T^{i}\right)$ is the number of sign changes in the sequence d_{0}, \ldots, d_{r}. This result i sometimes referred to as Jacobi's criterion for the signature of a quadratic form.

Please submit until Thursday, December 15, 2016, 11:44 in the box named RAG I, Number 10, near to the room F411.

